Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Review Article

The Beneficial Effect of Physical Exercise on Inflammatory Makers in Older Individuals

Author(s): Pablo Gómez-Rubio* and Isabel Trapero

Volume 21, Issue 6, 2021

Published on: 06 June, 2020

Page: [1008 - 1016] Pages: 9

DOI: 10.2174/1871530320666200606225357

Price: $65

Abstract

Old age is associated with a loss of motor functions and a general progressive decline in cognitive functions. Physical exercise is one of the ways in which inflammatory levels in general can be reduced, and therefore physical exercise can be considered a biological aging decelerator. In this article, we examine the relationships between physical exercise and inflammatory markers reported for the different physical exercise protocols that have been used in studies with older individuals, as well as the effects of these regimens. The different types of exercises programmed, and methods used to implement them were very heterogeneous in the articles we analysed. Both, the aerobic exercise and resistance training protocols produced a decrease in plasma levels of IL-6, CRP and TNF-α, and an increase of IL-10 plasma levels as a chronic effect. However, the acute-response of physical exercise appeared to be an initial increase in IL-6 expression and plasma IL-6 levels. Continuing with these exercise programs usually subsequently achieved a chronic response in which there was a decrease in both the basal levels of IL-6, CRP and TNF-α, and the IL-6 produced as acute responses. Regardless of the type of exercise performed, it seems that the exercise parameters, intensity, duration, subject variables, fitness, and level of inflammation are key factors in achieving the expected balance between proinflammatory and anti-inflammatory cytokines.

Keywords: Inflammatory markers, aerobic exercise, resistance training, aging, IL-6 expression, plasma IL-6 levels.

Next »
Graphical Abstract

[1]
Heneka, M.T.; O’Banion, M.K.; Terwel, D.; Kummer, M.P. Neuroinflammatory processes in Alzheimer’s disease. J. Neural Transm. (Vienna), 2010, 117(8), 919-947.
[http://dx.doi.org/10.1007/s00702-010-0438-z] [PMID: 20632195]
[2]
Forster, M.J.; Dubey, A.; Dawson, K.M.; Stutts, W.A.; Lal, H.; Sohal, R.S. Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc. Natl. Acad. Sci. USA, 1996, 93(10), 4765-4769.
[http://dx.doi.org/10.1073/pnas.93.10.4765] [PMID: 8643477]
[3]
Bott, N.T.; Bettcher, B.M.; Yokoyama, J.S.; Frazier, D.T.; Wynn, M.; Karydas, A.; Yaffe, K.; Kramer, J.H. Youthful Processing speed in older adults: genetic, biological and behavioral predictors of cognitive processing speed trajectories in aging. Front. Aging Neurosci., 2017, 9, 55.
[http://dx.doi.org/10.3389/fnagi.2017.00055] [PMID: 28344553]
[4]
DeCarlo, C.A.; Tuokko, H.A.; Williams, D.; Dixon, R.A.; MacDonald, S.W. BioAge: toward a multi-determined, mechanistic account of cognitive aging. Ageing Res. Rev., 2014, 18, 95-105.
[http://dx.doi.org/10.1016/j.arr.2014.09.003] [PMID: 25278166]
[5]
Franceschi, C.; Bonafè, M.; Valensin, S.; Olivieri, F.; De Luca, M.; Ottaviani, E.; De Benedictis, G. Inflamm-aging. An evolutionary perspective on immunosenescence. Ann. N. Y. Acad. Sci., 2000, 908, 244-254.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06651.x] [PMID: 10911963]
[6]
Scheinert, R.B.; Asokan, A.; Rani, A.; Kumar, A.; Foster, T.C.; Ormerod, B.K. Some hormone, cytokine and chemokine levels that change across lifespan vary by cognitive status in male Fischer 344 rats. Brain Behav. Immun., 2015, 49, 216-232.
[http://dx.doi.org/10.1016/j.bbi.2015.06.005] [PMID: 26093306]
[7]
Chupel, M.U.; Direito, F.; Furtado, G.E.; Minuzzi, L.G.; Pedrosa, F.M.; Colado, J.C.; Ferreira, J.P.; Filaire, E.; Teixeira, A.M. Strength Training Decreases Inflammation and Increases Cognition and Physical Fitness in Older Women with Cognitive Impairment. Front. Physiol., 2017, 8(8), 377.
[http://dx.doi.org/10.3389/fphys.2017.00377] [PMID: 28659812]
[8]
Di Benedetto, S.; Müller, L.; Wenger, E.; Düzel, S.; Pawelec, G. Contribution of neuroinflammation and immunity to brain aging and the mitigating effects of physical and cognitive interventions. Neurosci. Biobehav. Rev., 2017, 75, 114-128.
[http://dx.doi.org/10.1016/j.neubiorev.2017.01.044] [PMID: 28161508]
[9]
Silva, F.O.C.; Macedo, D.V. Physical exercise, inflammatory process and adaptation: an overview. Brazilian Journal of Cineanthropometry and Human Performance, 2011, 13, 320-328.
[10]
Opdenakker, G.; Fibbe, W.E.; Van Damme, J. The molecular basis of leukocytosis. Immunol. Today, 1998, 19(4), 182-189.
[http://dx.doi.org/10.1016/S0167-5699(97)01243-7] [PMID: 9577095]
[11]
Locksley, R.M.; Killeen, N.; Lenardo, M.J. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell, 2001, 104(4), 487-501.
[http://dx.doi.org/10.1016/S0092-8674(01)00237-9] [PMID: 11239407]
[12]
Mosca, L. C-reactive protein--to screen or not to screen? N. Engl. J. Med., 2002, 347(20), 1615-1617.
[http://dx.doi.org/10.1056/NEJMe020127] [PMID: 12432050]
[13]
Saraiva, M.; O’Garra, A. The regulation of IL-10 production by immune cells. Nat. Rev. Immunol., 2010, 10(3), 170-181.
[http://dx.doi.org/10.1038/nri2711] [PMID: 20154735]
[14]
Yaffe, K.; Kanaya, A.; Lindquist, K.; Simonsick, E.M.; Harris, T.; Shorr, R.I.; Tylavsky, F.A.; Newman, A.B. The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA, 2004, 292(18), 2237-2242.
[http://dx.doi.org/10.1001/jama.292.18.2237] [PMID: 15536110]
[15]
Dik, M.G.; Jonker, C.; Hack, C.E.; Smit, J.H.; Comijs, H.C.; Eikelenboom, P. Serum inflammatory proteins and cognitive decline in older persons. Neurology, 2005, 64(8), 1371-1377.
[http://dx.doi.org/10.1212/01.WNL.0000158281.08946.68] [PMID: 15851726]
[16]
Mooijaart, S.P.; Sattar, N.; Trompet, S.; Lucke, J.; Stott, D.J.; Ford, I.; Jukema, J.W.; Westendorp, R.G.; de Craen, A.J. PROSPER Study Group. Circulating interleukin-6 concentration and cognitive decline in old age: the PROSPER study. J. Intern. Med., 2013, 274(1), 77-85.
[http://dx.doi.org/10.1111/joim.12052] [PMID: 23414490]
[17]
Kline, R.; Wong, E.; Haile, M.; Didehvar, S.; Farber, S.; Sacks, A.; Pirraglia, E.; de Leon, M.J.; Bekker, A. Peri-Operative Inflammatory Cytokines in Plasma of the Elderly Correlate in Prospective Study with Postoperative Changes in Cognitive Test Scores. Int. J. Anesthesiol. Res., 2016, 4(8), 313-321.
[PMID: 28317003]
[18]
Marsland, A.L.; Gianaros, P.J.; Kuan, D.C-H.; Sheu, L.K.; Krajina, K.; Manuck, S.B. Brain morphology links systemic inflammation to cognitive function in midlife adults. Brain Behav. Immun., 2015, 48, 195-204.
[http://dx.doi.org/10.1016/j.bbi.2015.03.015] [PMID: 25882911]
[19]
Puzianowska-Kuźnicka, M.; Owczarz, M.; Wieczorowska-Tobis, K.; Nadrowski, P.; Chudek, J.; Slusarczyk, P.; Skalska, A.; Jonas, M.; Franek, E.; Mossakowska, M. Interleukin-6 and C-reactive protein, successful aging, and mortality: the PolSenior study. Immun. Ageing, 2016, 13, 21.
[http://dx.doi.org/10.1186/s12979-016-0076-x] [PMID: 27274758]
[20]
Paine, N.J.; Bosch, J.A.; Ring, C.; Drayson, M.T.; Veldhuijzen van Zanten, J.J. Induced mild systemic inflammation is associated with impaired ability to improve cognitive task performance by practice. Psychophysiology, 2015, 52(3), 333-341.
[http://dx.doi.org/10.1111/psyp.12360] [PMID: 25366393]
[21]
Bradburn, S.; Sarginson, J.; Murgatroyd, C.A. Association of Peripheral Interleukin-6 with Global Cognitive Decline in Non-demented Adults: A Meta-Analysis of Prospective Studies. Front. Aging Neurosci., 2018, 9, 438.
[http://dx.doi.org/10.3389/fnagi.2017.00438] [PMID: 29358917]
[22]
Shivakumar, V.; Debnath, M.; Venugopal, D.; Rajasekaran, A.; Kalmady, S.V.; Subbanna, M.; Narayanaswamy, J.C.; Amaresha, A.C.; Venkatasubramanian, G. Influence of correlation between HLA-G polymorphism and Interleukin-6 (IL6) gene expression on the risk of schizophrenia. Cytokine, 2018, 107, 59-64.
[http://dx.doi.org/10.1016/j.cyto.2017.11.016] [PMID: 29217401]
[23]
Gruol, D.L. IL-6 regulation of synaptic function in the CNS. Neuropharmacology, 2015, 96(Pt. A), 42-54.
[http://dx.doi.org/10.1016/j.neuropharm.2014.10.023] [PMID: 25445486]
[24]
Thielen, J-W.; Kärgel, C.; Müller, B.W.; Rasche, I.; Genius, J.; Bus, B.; Maderwald, S.; Norris, D.G.; Wiltfang, J.; Tendolkar, I. Aerobic Activity in the Healthy Elderly Is Associated with Larger Plasticity in Memory Related Brain Structures and Lower Systemic Inflammation. Front. Aging Neurosci., 2016, 8, 319.
[http://dx.doi.org/10.3389/fnagi.2016.00319] [PMID: 28082894]
[25]
Philippe, M.; Krüsmann, P.J.; Mersa, L.; Eder, E.M.; Gatterer, H.; Melmer, A.; Ebenbichler, C.; Burtscher, M. Acute effects of concentric and eccentric exercise on glucose metabolism and interleukin-6 concentration in healthy males. Biol. Sport, 2016, 33(2), 153-158.
[http://dx.doi.org/10.5604/20831862.1198634] [PMID: 27274108]
[26]
Pruimboom, L.; Raison, C.L.; Muskiet, F.A.J. Physical Activity Protects the Human Brain against Metabolic Stress Induced by a Postprandial and Chronic Inflammation. Behav. Neurol., 2015., 2015569869.
[http://dx.doi.org/10.1155/2015/569869] [PMID: 26074674]
[27]
Kim, J.S.; Yi, H.K. Intermittent bout exercise training down-regulates age-associated inflammation in skeletal muscles. Exp. Gerontol., 2015, 72, 261-268.
[http://dx.doi.org/10.1016/j.exger.2015.11.001] [PMID: 26545590]
[28]
Beavers, K.M.; Brinkley, T.E.; Nicklas, B.J. Effect of exercise training on chronic inflammation. Clin. Chim. Acta, 2010, 411(11-12), 785-793.
[http://dx.doi.org/10.1016/j.cca.2010.02.069] [PMID: 20188719]
[29]
Lee, I.M.; Sesso, H.D.; Ridker, P.M.; Mouton, C.P.; Stefanick, M.L.; Manson, J.E. Physical activity and inflammation in a multiethnic cohort of women. Med. Sci. Sports Exerc., 2012, 44(6), 1088-1096.
[http://dx.doi.org/10.1249/MSS.0b013e318242b11a] [PMID: 22595984]
[30]
Streese, L.; Deiseroth, A.; Schäfer, J.; Schmidt-Trucksäss, A.; Hanssen, H. Exercise, arterial crosstalk-modulation, and inflammation in an aging population: the ExAMIN age study. Front. Physiol., 2018, 9, 116.
[http://dx.doi.org/10.3389/fphys.2018.00116] [PMID: 29515458]
[31]
Liu, D.; Wang, R.; Grant, A.R.; Zhang, J.; Gordon, P.M.; Wei, Y.; Chen, P. Immune adaptation to chronic intense exercise training: new microarray evidence. BMC Genomics, 2017, 18(1), 29.
[http://dx.doi.org/10.1186/s12864-016-3388-5] [PMID: 28056786]
[32]
Miller, K.J.; Gonçalves-Bradley, D.C.; Areerob, P.; Hennessy, D.; Mesagno, C.; Grace, F. Comparative effectiveness of three exercise types to treat clinical depression in older adults: A systematic review and network meta-analysis of randomised controlled trials. Ageing Res. Rev., 2020, 58, 100999.
[http://dx.doi.org/10.1016/j.arr.2019.100999] [PMID: 31837462]
[33]
Irwin, M.R.; Olmstead, R. Mitigating cellular inflammation in older adults: a randomized controlled trial of Tai Chi Chih. Am. J. Geriatr. Psychiatry, 2012, 20(9), 764-772.
[http://dx.doi.org/10.1097/JGP.0b013e3182330fd3] [PMID: 21934474]
[34]
Tartibian, B.; FitzGerald, L.Z.; Azadpour, N.; Maleki, B.H. A randomized controlled study examining the effect of exercise on inflammatory cytokine levels in post-menopausal women. Post Reprod. Health, 2015, 21(1), 9-15.
[http://dx.doi.org/10.1177/2053369114565708] [PMID: 25710943]
[35]
Nishida, Y.; Tanaka, K.; Hara, M.; Hirao, N.; Tanaka, H.; Tobina, T.; Ikeda, M.; Yamato, H.; Ohta, M. Effects of home-based bench step exercise on inflammatory cytokines and lipid profiles in elderly Japanese females: A randomized controlled trial. Arch. Gerontol. Geriatr., 2015, 61(3), 443-451.
[http://dx.doi.org/10.1016/j.archger.2015.06.017] [PMID: 26228714]
[36]
Abdollahpour, A.; Khosravi, N.; Eskandari, Z.; Haghighat, S. Effect of six months of aerobic exercise on plasma interleukin-6 and tumor necrosis factor-alpha as breast cancer risk factors in postmenopausal women: a randomized controlled trial. Iran. Red Crescent Med. J., 2016, 19, e27842.
[http://dx.doi.org/10.5812/ircmj.27842]
[37]
Nascimento, C.M.C.; Cominetti, M.R.; Pereira, J.R.; Andrade, L.P.; Garuffi, M.; Kerr, D.S.; Forlenza, O.V.; Stella, F. Regular multimodal aerobic exercise reduces pro-inflamatory cytokines and improves BNDF peripheal levels and executive functions in elderly MCI individuals with different BDNF VAL66MET genotypes. Alzheimers Dement., 2015, 11(7), 323.
[http://dx.doi.org/10.1016/j.jalz.2015.07.465]
[38]
Abd El-Kader, S.M.; Al-Jiffri, O.H. Aerobic exercise modulates cytokine profile and sleep quality in elderly. Afr. Health Sci., 2019, 19(2), 2198-2207.
[http://dx.doi.org/10.4314/ahs.v19i2.45] [PMID: 31656505]
[39]
Lee, J.S.; Kim, C.G.; Seo, T.B.; Kim, H.G.; Yoon, S.J. Effects of 8-week combined training on body composition, isokinetic strength, and cardiovascular disease risk factors in older women. Aging Clin. Exp. Res., 2015, 27(2), 179-186.
[http://dx.doi.org/10.1007/s40520-014-0257-4] [PMID: 24997614]
[40]
Lima, L.G.; Bonardi, J.M.T.; Campos, G.O.; Bertani, R.F.; Scher, L.M.L.; Louzada-Junior, P.; Moriguti, J.C.; Ferriolli, E.; Lima, N.K.C. Effect of aerobic training and aerobic and resistance training on the inflammatory status of hypertensive older adults. Aging Clin. Exp. Res., 2015, 27(4), 483-489.
[http://dx.doi.org/10.1007/s40520-014-0307-y] [PMID: 25567682]
[41]
Muscari, A.; Giannoni, C.; Pierpaoli, L.; Berzigotti, A.; Maietta, P.; Foschi, E.; Ravaioli, C.; Poggiopollini, G.; Bianchi, G.; Magalotti, D.; Tentoni, C.; Zoli, M. Chronic endurance exercise training prevents aging-related cognitive decline in healthy older adults: a randomized controlled trial. Int. J. Geriatr. Psychiatry, 2010, 25(10), 1055-1064.
[http://dx.doi.org/10.1002/gps.2462] [PMID: 20033904]
[42]
Windsor, M.T.; Bailey, T.G.; Perissiou, M.; Greaves, K.; Jha, P.; Leicht, A.S.; Russell, F.D.; Golledge, J.; Askew, C.D. Acute inflammatory responses to exercise in patients with abdominal aortic aneurysm. Med. Sci. Sports Exerc., 2018, 50(4), 649-658.
[http://dx.doi.org/10.1249/MSS.0000000000001501] [PMID: 29210916]
[43]
Zheng, G.; Qiu, P.; Xia, R.; Lin, H.; Ye, B.; Tao, J.; Chen, L. Effect of Aerobic Exercise on Inflammatory Markers in Healthy Middle-Aged and Older Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Front. Aging Neurosci., 2019, 11, 98.
[http://dx.doi.org/10.3389/fnagi.2019.00098] [PMID: 31080412]
[44]
Abd El-Kader, S.M.; Al-Shreef, F.M.; Al-Jiffri, O.H. Impact of aerobic exercise versus resisted exercise on endothelial activation markers and inflammatory cytokines among elderly. Afr. Health Sci., 2019, 19(4), 2874-2880.
[PMID: 32127863]
[45]
Ihalainen, J.K.; Inglis, A.; Mäkinen, T.; Newton, R.U.; Kainulainen, H.; Kyröläinen, H.; Walker, S. Strength Training Improves Metabolic Health Markers in Older Individual Regardless of Training Frequency. Front. Physiol., 2019, 10, 32.
[http://dx.doi.org/10.3389/fphys.2019.00032] [PMID: 30774600]
[46]
Cao Dinh, H.; Njemini, R.; Onyema, O.O.; Beyer, I.; Liberman, K.; De Ddobbeleer, L.; Renmans, W.; Vander Meeren, S.; Jochmans, K.; Delaere, A.; Knoop, V.; Bautmans, I. Strength Endurance Training but Not Intensive Strength Training Reduces Senescence-Prone T Cells in Peripheral Blood in Community-Dwelling Elderly Women. J. Gerontol. A Biol. Sci. Med. Sci., 2019, 74(12), 1870-1878.
[http://dx.doi.org/10.1093/gerona/gly229] [PMID: 30285092]
[47]
Cunha, P.M.; Ribeiro, A.S.; Nunes, J.P.; Tomeleri, C.M.; Nascimento, M.A.; Moraes, G.K.; Sugihara, P.; Barbosa, D.S.; Venturini, D.; Cyrino, E.S. Resistance training performed with single-set is sufficient to reduce cardiovascular risk factors in untrained older women: The randomized clinical trial. Active Aging Longitudinal Study. Arch. Gerontol. Geriatr., 2019, 81, 171-175.
[http://dx.doi.org/10.1016/j.archger.2018.12.012] [PMID: 30594892]
[48]
Alikhani, S.; Sheikholeslami-Vatani, D. Oxidative stress and anti-oxidant responses to regular resistance training in young and older adult women. Geriatr. Gerontol. Int., 2019, 19(5), 419-422.
[http://dx.doi.org/10.1111/ggi.13636] [PMID: 30811775]
[49]
Rodriguez-Miguelez, P.; Fernandez-Gonzalo, R.; Almar, M.; Mejías, Y.; Rivas, A.; de Paz, J.A.; Cuevas, M.J.; González-Gallego, J. Role of Toll-like receptor 2 and 4 signaling pathways on the inflammatory response to resistance training in elderly subjects. Age (Dordr.), 2014, 36(6), 9734.
[http://dx.doi.org/10.1007/s11357-014-9734-0] [PMID: 25427999]
[50]
Hagstrom, A.D.; Marshall, P.W.; Lonsdale, C.; Papalia, S.; Cheema, B.S.; Toben, C.; Baune, B.T.; Fiatarone Singh, M.A.; Green, S. The effect of resistance training on markers of immune function and inflammation in previously sedentary women recovering from breast cancer: a randomized controlled trial. Breast Cancer Res. Treat., 2016, 155(3), 471-482.
[http://dx.doi.org/10.1007/s10549-016-3688-0] [PMID: 26820653]
[51]
Strandberg, E.; Edholm, P.; Ponsot, E.; Wåhlin-Larsson, B.; Hellmén, E.; Nilsson, A.; Engfeldt, P.; Cederholm, T.; Risérus, U.; Kadi, F. Influence of combined resistance training and healthy diet on muscle mass in healthy elderly women: a randomized controlled trial. J. Appl. Physiol., 2015, 119(8), 918-925.
[http://dx.doi.org/10.1152/japplphysiol.00066.2015] [PMID: 26338453]
[52]
Nunes, P.R.; Barcelos, L.C.; Oliveira, A.A.; Furlanetto Júnior, R.; Martins, F.M.; Orsatti, C.L.; Resende, E.A.; Orsatti, F.L. Effect of resistance training on muscular strength and indicators of abdominal adiposity, metabolic risk, and inflammation in postmenopausal women: controlled and randomized clinical trial of efficacy of training volume. Age (Dordr.), 2016, 38(2), 40.
[http://dx.doi.org/10.1007/s11357-016-9901-6] [PMID: 26984105]
[53]
Tomeleri, C.M.; Souza, M.F.; Burini, R.C.; Cavaglieri, C.R.; Ribeiro, A.S.; Antunes, M.; Nunes, J.P.; Venturini, D.; Barbosa, D.S.; Sardinha, L.B.; Cyrino, E.S. Resistance training reduces metabolic syndrome and inflammatory markers in older women: A randomized controlled trial. J. Diabetes, 2018, 10(4), 328-337.
[http://dx.doi.org/10.1111/1753-0407.12614] [PMID: 29031002]
[54]
Ogawa, K.; Sanada, K.; Machida, S.; Okutsu, M.; Suzuki, K. Resistance Exercise Training-Induced Muscle Hypertrophy Was Associated with Reduction of Inflammatory Markers in Elderly Women. Mediators Inflamm., 2010, 171023.
[http://dx.doi.org/10.1155/2010/171023] [PMID: 21253481]
[55]
Marques, E.A.; Mota, J.; Viana, J.L.; Tuna, D.; Figueiredo, P.; Guimarães, J.T.; Carvalho, J. Response of bone mineral density, inflammatory cytokines, and biochemical bone markers to a 32-week combined loading exercise programme in older men and women. Arch. Gerontol. Geriatr., 2013, 57(2), 226-233.
[http://dx.doi.org/10.1016/j.archger.2013.03.014] [PMID: 23623588]
[56]
Nascimento, Dda. C; Navalta, J.W.; Durigan, J.L.Q.; Marqueti, Rde.C.; Tibana, R.A.; Luiz Franco, O.; de Almeida, J.A.; Camarço, N.F.; Neto, I.V.S.; Prestes, J. Acute eccentric resistance exercise decreases matrix metalloproteinase activity in obese elderly women. Clin. Physiol. Funct. Imaging, 2016, 36(2), 139-145.
[http://dx.doi.org/10.1111/cpf.12207] [PMID: 25523909]
[57]
Gmiat, A.; Micielska, K.; Kozłowska, M.; Flis, D.J.; Smaruj, M.; Kujach, S.; Jaworska, J.; Lipińska, P.; Ziemann, E. The impact of a single bout of high intensity circuit training on myokines’ concentrations and cognitive functions in women of different age. Physiol. Behav., 2017, 179, 290-297.
[http://dx.doi.org/10.1016/j.physbeh.2017.07.004] [PMID: 28687176]
[58]
Mandolesi, L.; Polverino, A.; Montuori, S.; Foti, F.; Ferraioli, G.; Sorrentino, P.; Sorrentino, G. Effects of Physical Exercise on Cognitive Functioning and Wellbeing: Biological and Psychological Benefits. Front. Psychol., 2018, 9(509), 509.
[http://dx.doi.org/10.3389/fpsyg.2018.00509] [PMID: 29755380]
[59]
Li, F.H.; Sun, L.; Zhu, M.; Li, T.; Gao, H.E.; Wu, D.S.; Zhu, L.; Duan, R.; Liu, T.C.Y. Beneficial alterations in body composition, physical performance, oxidative stress, inflammatory markers, and adipocytokines induced by long-term high-intensity interval training in an aged rat model. Exp. Gerontol., 2018, 113, 150-162.
[http://dx.doi.org/10.1016/j.exger.2018.10.006] [PMID: 30308288]
[60]
Levin, S.G.; Godukhin, O.V. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. Biochemistry (Mosc.), 2017, 82(3), 264-274.
[http://dx.doi.org/10.1134/S000629791703004X] [PMID: 28320267]
[61]
Monteiro-Junior, R.S.; de Tarso Maciel-Pinheiro, P.; da Matta Mello Portugal, E.; da Silva Figueiredo, L.F.; Terra, R.; Carneiro, L.S.F.; Rodrigues, V.D.; Nascimento, O.J.M.; Deslandes, A.C.; Laks, J. Effect of Exercise on Inflammatory Profile of Older Persons: Systematic Review and Meta-Analyses. J. Phys. Act. Health, 2018, 15(1), 64-71.
[http://dx.doi.org/10.1123/jpah.2016-0735] [PMID: 28771081]
[62]
Fischer, C.P. Interleukin-6 in acute exercise and training: what is the biological relevance? Exerc. Immunol. Rev., 2006, 12, 6-33.
[PMID: 17201070]
[63]
Reihmane, D.; Dela, F. Interleukin-6: possible biological roles during exercise. Eur. J. Sport Sci., 2014, 14(3), 242-250.
[http://dx.doi.org/10.1080/17461391.2013.776640] [PMID: 24655147]
[64]
Pedersen, B.K.; Febbraio, M. Muscle-derived interleukin-6--a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav. Immun., 2005, 19(5), 371-376.
[http://dx.doi.org/10.1016/j.bbi.2005.04.008] [PMID: 15935612]
[65]
Nybo, L.; Møller, K.; Pedersen, B.K.; Nielsen, B.; Secher, N.H. Association between fatigue and failure to preserve cerebral energy turnover during prolonged exercise. Acta Physiol. Scand., 2003, 179(1), 67-74.
[http://dx.doi.org/10.1046/j.1365-201X.2003.01175.x] [PMID: 12940940]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy