Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

One-pot Synthesis of β-acetamido-β-(phenyl) Propiophenone using ZnO/Carbon Nanocomposites

Author(s): Thangavelu Krithiga, Sunitha Salla, Karthikeyan Jayabalan and Jagadeesan Aravind Kumar*

Volume 24, Issue 2, 2021

Published on: 06 June, 2020

Page: [213 - 219] Pages: 7

DOI: 10.2174/1386207323666200606213536

Price: $65

Abstract

Aim and Objectives: The focus of the present work is to synthesize ZnO/C composite using dextrose as carbon source by combustion method and study the comparative evaluation on one-pot synthesis of β-acetamido- β-(phenyl) propiophenone over ZnO nanoparticles and ZnO/C composite catalyst.

Materials and Methods: The ZnO nanoparticles has been synthesized by sol-gel method using zinc nitrate and NaOH and ZnO/Carbon composites by combustion method using zinc nitrate and dextrose as carbon source. The resulting gel was placed in a preheated muffle furnace at 400oC. The solution boils and ignites with a flame. On cooling highly amorphous powder of ZnO/Carbon composite is obtained.

Results: The XRD patterns reveal the hexagonal phase with Wurtzite structure and the nanocrystalline nature of the catalysts. The SEM image of ZnO/C composite showed that it contains spherical particles with an average size of 41 nm. The average particle size of the composite was around 60nm by DLS method. The catalytic activity of the ZnO/Carbon composites has been analyzed by one-pot four-component condensation of benzaldehyde, acetophenone, acetyl chloride and acetonitrile. The feed molar ratio of 1:1 (Bz:AP) and catalyst loading of 30 mol% is found to be the optimal condition for β-acetamido ketone conversion over ZnO/carbon composite.

Conclusion: The substantial catalytic activity of the synthesized ZnO/C composite materials was tested by one-pot four-component condensation of benzaldehyde (Bz), acetophenone (AP), acetyl chloride (AC) and acetonitrile (AN) which showed a high β-acetamido ketone conversion under the optimized reaction conditions. It has also been found that the catalyst is very stable and reusable.

Keywords: ZnO/Carbon composite, one-pot synthesis, β-acetamido ketone, propiophenone, catalytic activity, catalyst.

[1]
Zhang, X.H.; Fan, L.; Wang, G.B.; Yang, D.C. Synthesis and antidiabetic activity of β-acetamido ketones. Acta Pharm. Sin. B, 2011, 1(5), 100-105.
[http://dx.doi.org/10.1016/j.apsb.2011.06.006]
[2]
Ugi, I. Recent progress in the chemistry of multicomponent reactions. Pure Appl. Chem., 2001, 77(1), 187-191.
[http://dx.doi.org/10.1351/pac200173010187]
[3]
Zhu, J.; Bienayme, H. In: Multicomponent ReactionsWiley,Weinheim;, 2005, 2(2), 100-150.
[4]
Beck, B.; Hess, S.; Dömling, A. One-pot synthesis and biological evaluation of aspergillamides and analogues. Bioorg. Med. Chem. Lett., 2000, 10(15), 1701-1705.
[http://dx.doi.org/10.1016/S0960-894X(00)00305-X] [PMID: 10937728]
[5]
Mirjalili, B.F.; Bamoniri, A.; Zarchi, M.A.K.; Emtiazi, A. Zr(HSO4)(4)/SiO2: An effective heterogeneous alternative for one-pot synthesis of beta-acetamido ketones. J. Iran Chem. Soc., 2010, 7(2), 95-99.
[http://dx.doi.org/10.1007/BF03245864]
[6]
Bahulayan, D.; Das, S.K.; Iqbal, J. Montmorillonite K10 clay: an efficient catalyst for the one-pot stereoselective synthesis of beta-acetamido ketones. J. Org. Chem., 2003, 68(14), 5735-5738.
[http://dx.doi.org/10.1021/jo020734p] [PMID: 12839472]
[7]
Ghosh, R.; Maity, S.; Chakraborty, A.; Chakraborty, S. Mukherjee., ZrOCl2•8H2O: an efficient Lewis acid catalyst for the one-pot multicomponent synthesis of β-acetamido ketones. A. K. Tetrahedron, 2006, 62(17), 4059-4064.
[http://dx.doi.org/10.1016/j.tet.2006.02.037]
[8]
Rafiee, E.; Shahbazi, F.; Joshaghani, M.; Tork, F.J. Supported heteropoly acids offering strong option for efficient and cleaner processing for the synthesis of imidazole derivatives under solvent-free condition. Mol. Catal. A: Chem., 2005, 242(1-2), 129-134.
[http://dx.doi.org/10.1016/j.molcata.2005.08.005]
[9]
Khan Matloubi, A.T.; Choudhury, L.H.; Parvin, T.; Ali, M.A. CeCl3•7H2O: an efficient and reusable catalyst for the preparation of β-acetamido carbonyl compounds by multi-component reactions (MCRs). Tetrahedron Lett., 2006, 47(10), 8137-8142.
[http://dx.doi.org/10.1016/j.tetlet.2006.09.041]
[10]
Mirjafary, Z.; Saeidian, H.; Sadeghi, A.; Moghaddam, F. ZnO nanoparticles: An efficient nanocatalyst for the synthesis of β-acetamido ketones/esters via a multi-component reaction. Catal. Commun., 2008, 9(2), 299-306.
[http://dx.doi.org/10.1016/j.catcom.2007.06.018]
[11]
Hosseini, S.A.; Babaei, S. Graphene Oxide/Zinc Oxide (GO/ZnO) nanocomposite as a superior photocatalyst for degradation of Methylene Blue (MB)-process modeling by Response Surface Methodology (RSM). J. Braz. Chem. Soc., 2017, 28(2), 299-307.
[12]
Vaishnav, D.; Goyal, R.K. Thermal and dielectric properties of high performance polymer/ZnO nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng.,, 2014, 64, pp. 012-016.
[13]
López, M.C.U.; Lemus, M.A.A.; Hidalgo, M.C.; González, R.L.; Owen, P.Q.; Oros-Ruiz, S.; López, S.A.A.; Acosta, J. Synthesis and characterization of ZnO-ZrO2 nanocomposites for photocatalytic degradation and mineralization of phenol. J. Nanomater., 2019, 1-12.
[http://dx.doi.org/10.1155/2019/1015876]
[14]
Wu, Z.; Chen, L.; Xing, C.; Jiang, D.; Xie, J.; Chen, M. Controlled synthesis of Bi2S3/ZnS microspheres by an in situ ion-exchange process with enhanced visible light photocatalytic activity. Dalton Trans., 2013, 42(36), 12980-12988.
[http://dx.doi.org/10.1039/c3dt50984b] [PMID: 23868676]
[15]
Wang, L.; Chang, L.; Zhao, B.; Yuan, Z.; Shao, G.; Zheng, W. Systematic investigation on morphologies, forming mechanism, photocatalytic and photoluminescent properties of ZnO nanostructures constructed in ionic liquids. Inorg. Chem., 2008, 47(5), 1443-1452.
[http://dx.doi.org/10.1021/ic701094a] [PMID: 18201081]
[16]
Li, Y.; Xie, W.; Hu, X.; Shen, G.; Zhou, X.; Xiang, Y.; Zhao, X.; Fang, P. Comparison of dye photodegradation and its coupling with light-to-electricity conversion over TiO(2) and ZnO. Langmuir, 2010, 26(1), 591-597.
[http://dx.doi.org/10.1021/la902117c] [PMID: 20038182]
[17]
Zhang, D.; Xu, H.; Xue, M.; Xu, W.; Tarasov, V. Preparation and photocatalytic kinetics of nano-ZnO powders by precipitation stripping process. Front. Chem. Eng. China, 2008, 2(1), 319-324.
[http://dx.doi.org/10.1007/s11705-008-0051-y]
[18]
Hayat, K.; Gondal, M.A.; Khaled, M.M.; Ahmed, S. Kinetic study of laser-induced photocatalytic degradation of dye (alizarin yellow) from wastewater using nanostructured ZnO. J. Environ. Sci. Health A. Tox. Hazard Subst. Environ. Eng., 2010, 45(11), 1413-1420.
[http://dx.doi.org/10.1080/10934529.2010.500934] [PMID: 20694880]
[19]
Zhang, C.; Zhou, Y.; Bao, J.; Fang, J.; Zhao, S.; Zhang, Y.; Saheng, X.; Cheng, W. Structure regulation of ZnS@g-C3N4/TiO2 nanospheres for efficient photocatalytic H2 production under visible-light irradiation. Chem. Eng., 2018, 346, 226-237.
[http://dx.doi.org/10.1016/j.cej.2018.04.038]
[20]
Zhang, C.; Zhou, Y.; Bao, J.; Sheng, X.; Fang, J.; Zhao, S.; Zhang, Y.; Chen, W. Hierarchical Honeycomb Br-, N-Codoped TiO2 with enhanced visible-light photocatalytic H2 production. ACS Appl. Mater. Interfaces, 2018, 10(22), 18796-18804.
[http://dx.doi.org/10.1021/acsami.8b04947] [PMID: 29745646]
[21]
Sunitha, S.; Nageswara Rao, A.; Karthikeyan, J. Krithiga, T. AIP Conf. Proc., 2013, 151(2), 1538-1560.
[22]
Vinu, A.; Krithiga, T.; Gokulakrishnan, N.; Srinivasu, P.; Anandan, S.; Ariga, K.; Murugesan, V.; Balasubramanian, V.V.; Mori, T. Halogen-free acylation of toluene over FeSBA-1 molecular sieves. Microporous Mesoporous Mater., 2007, 100(1-3), 87-94.
[http://dx.doi.org/10.1016/j.micromeso.2006.10.014]
[23]
Maghsoodlou, M.T.; Hassankhani, A.; Shaterian, H.R.; Khorasania, S.M.H.; Mosaddeghb, E. Zinc oxide as an economical and efficient catalyst for the one-pot preparation of β-acetamido ketones via a four-component condensation reaction. Tetrahedron Lett., 2007, 48(10), 1729-1734.
[http://dx.doi.org/10.1016/j.tetlet.2007.01.060]
[24]
Masoud, N.E.; Morteza, M.; Tahere, G. Silica supported perchloric acid: a convenient and environmentally friendly catalyst for the One‐pot multicomponent synthesis of β‐Acetamido ketones. Chin. J. Chem., 2011, 29(2), 123-128.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy