Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Ultrasound-promoted Green Synthesis of pyrido[2,1-a]isoquinoline Derivatives and Studies on their Antioxidant Activity

Author(s): Shirin Sharafian, Zinatossadat Hossaini*, Faramarz Rostami-Charati and Mohammad A. Khalilzadeh

Volume 24, Issue 1, 2021

Published on: 06 June, 2020

Page: [119 - 128] Pages: 10

DOI: 10.2174/1386207323666200606212501

Price: $65

Abstract

Aims & Objective: An efficient procedure for the synthesis of pyrido[2,1-a]isoquinoline derivatives in excellent yields was investigated using catalyst-free multicomponent reaction of phthaladehyde, methylamine, activated acetylenic compounds, alkyl bromides and triphenylphosphine in water under ultrasonic irradiation at room temperature. In addition, Diels- Alder reactions of pyrido[2,1-a]isoquinoline derivatives with activated acetylenic compounds under ultrasonic irradiation are investigated in two procedures. The advantages of this procedure compared to report methods are short time of reaction, high yields of product, easy separation of product, clean mixture of reaction and green media for performing reaction. In addition, because of having isoquinoline core in synthesized compounds, in this research antioxidant activity of some synthesized compounds was studied.

Materials and Methods: To a stirred mixture of phthalaldehyde 1 (2 mmol) and methylamine 2 (2 mmol) in water (3 mL) under ultrasonic irradiation was added to activated acetylenic compounds 4 after 20 min. Alkyl bromide 3 and triphenylphosphine 5 react in another pot in water (3 mL) under ultrasonic irradiation for 15 min. After this time, this mixture was added to the first pot. After completion of the reaction, the solid residue was separated by filtration and washed with Et2O to afforded pure title compound 6.

Results: In this work, generation of pyrido[2,1-a]isoquinoline derivatives 6 are performed using phthalaldehyde 1, methylamine 2, α-halo substituted carbonyls 3, activated acetylenic compounds 4 and triphenylphosphine 5 in water under ultrasonic irradiation condition at room temperature in excellent yield at short time.

Conclusion: In summary, multicomponent reaction of phthaladehyde, methylamine, activated acetylenic compounds, alkyl bromides and triphenylphosphine in water under ultrasonic irradiation at room temperature produced pyrido[2,1-a]isoquinoline derivatives in excellent yields. Also, Diels-Alder reaction of pyrido[2,1-a]isoquinoline derivatives with activated acetylenic compounds and triphenylphosphine under ultrasonic irradiation is investigated in two procedures. Also, the antioxidant activities of 6a, 6c, 6g and 6i were evaluated by DPPH radical scavenging and ferric reducing power analyzes. The compounds 6a exhibit excellent DPPH radical scavenging activity and FRAP compared to synthetic antioxidants BHT and TBHQ. The chief benefits of our method are high atom economy, green reaction conditions, higher yield, shorter reaction times, and easy work-up, which agree with some principles of green chemistry.

Keywords: Phthalaldehyde, four-component reaction, Alkyl bromide, isoquinoline, triphenylphosphine, diels-alder reactions.

[1]
Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998.
[2]
Anastas, P.T.; Williamson, T. Green Chemistry, Frontiers in Benign Chemical Synthesis and Process; Oxford University Press: Oxford, UK, 1998.
[3]
Grasso, S.; De Sarro, G.; De Sarro, A.; Micale, N.; Zappalà, M.; Puja, G.; Baraldi, M.; De Micheli, C. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J. Med. Chem., 2000, 43(15), 2851-2859.
[http://dx.doi.org/10.1021/jm001002x] [PMID: 10956193]
[4]
Watanabe, N.; Kabasawa, Y.; Takase, Y.; Matsukura, M.; Miyazaki, K.; Ishihara, H.; Kodama, K.; Adachi, H. 4-Benzylamino-1-chloro-6-substituted phthalazines: synthesis and inhibitory activity toward phosphodiesterase 5. J. Med. Chem., 1998, 41(18), 3367-3372.
[http://dx.doi.org/10.1021/jm970815r] [PMID: 9719589]
[5]
Li, Y.; Chen, H.; Shi, C.; Shi, D.; Ji, S. Efficient one-pot synthesis of spirooxindole derivatives catalyzed by L-proline in aqueous medium. J. Comb. Chem., 2010, 12(2), 231-237.
[http://dx.doi.org/10.1021/cc9001185] [PMID: 20085353]
[6]
Shi, D.Q.; Chen, J.; Zhuang, Q.Y.; Hu, W.W. Three-component processes for the synthesis of 4-Aryl-7,7-Dimethyl-5-Oxo-3,4,5,6,7,8-Hexahydrocoumarin in aqueous media. J. Chem. Res., 2003, 674-675.
[http://dx.doi.org/10.3184/030823403322656364]
[7]
Chen, H.; Shi, D. Efficient one-pot synthesis of novel spirooxindole derivatives via three-component reaction in aqueous medium. J. Comb. Chem., 2010, 12(4), 571-576.
[http://dx.doi.org/10.1021/cc100056p] [PMID: 20515044]
[8]
Kantam, M.L.; Rajasekhar, C.V.; Gopikrishna, G.; Reddy, K.R.; Choudary, B.M. Proline catalyzed two-component, three-component and self-asymmetric Mannich reactions promoted by ultrasonic conditions. Tetrahedron Lett., 2006, 47, 5965.
[http://dx.doi.org/10.1016/j.tetlet.2006.06.042]
[9]
Liu, Y.Q.; Li, L.H.; Yang, L.; Li, H.Y. A novel, stereoselective and practical protocol for the synthesis of 4β-aminopodophyllotoxins. Chem. Pap., 2010, 64, 533.
[http://dx.doi.org/10.2478/s11696-010-0020-z]
[10]
Meciarova, M.; Polackova, V.; Toma, S. The effect of microwave and ultrasonic irradiation on the reactivity of benzaldehydes under Al2O3, Ba(OH)2, and K2CO3 catalysis. Chem. Pap., 2002, 56, 208.
[11]
Meciarova, M.; Toma, S.; Babiak, P. Effect of ultrasound on one-pot conversion of alcohols to nitro and azido compounds. Chem. Pap., 2004, 58, 104.
[12]
Tabatabaeian, K.; Mamaghani, M.; Mahmoodi, N.O.; Khorshidi, A. Ultrasonic-assisted ruthenium-catalyzed oxidation of aromatic and heteroaromatic compounds. Catal. Commun., 2008, 9, 416.
[http://dx.doi.org/10.1016/j.catcom.2007.07.024]
[13]
Meciarova, M.; Toma, S.; Luche, J.L. The sonochemical arylation of malonic esters mediated by manganese triacetate. Ultrason. Sonochem., 2001, 8(2), 119-122.
[http://dx.doi.org/10.1016/S1350-4177(00)00029-8] [PMID: 11326605]
[14]
Vinatoru, M.; Bartha, E.; Badea, F.; Luche, J.L. Sonochemical and thermal redox reactions of triphenylmethane and triphenylmethyl carbinol in nitrobenzene. Ultrason. Sonochem., 1998, 5(1), 27-31.
[http://dx.doi.org/10.1016/S1350-4177(98)00004-2] [PMID: 11270332]
[15]
Ando, T.; Kimura, T.; Fujita, M.; Leveque, J.M.; Luche, J.L. Scavenging of the radical species formed in the sonochemical excitation of styrenes. Tetrahedron Lett., 2001, 42, 6865.
[http://dx.doi.org/10.1016/S0040-4039(01)01395-8]
[16]
Cabello, N.; Cintas, P.; Luche, J.L. Sonochemical effects in the additions of furan to masked ortho-benzoquinones. Ultrason. Sonochem., 2003, 10(1), 25-31.
[http://dx.doi.org/10.1016/S1350-4177(02)00103-7] [PMID: 12457947]
[17]
Kumar, V.; Sharma, A.; Sharma, M.; Sharma, U.K.; Sinha, A.K. DDQ catalyzed benzylic acetoxylation of arylalkanes: a case of exquisitely controlled oxidation under sonochemical activation. Tetrahedron, 2007, 63, 9718.
[http://dx.doi.org/10.1016/j.tet.2007.07.018]
[18]
Sinha, A.K.; Sharma, A.; Joshi, B.P. One-pot two-step synthesis of 4-vinylphenols from 4-hydroxy substituted benzaldehydes under microwave irradiation: a new perspective on the classical Knoevenagel–Doebner reaction. Tetrahedron, 2007, 63, 960.
[http://dx.doi.org/10.1016/j.tet.2006.11.023]
[19]
Mason, T.J.; Peters, D. Practical Sonochemistry, 2nd ed; Ellis Horwood: London, 2002.
[http://dx.doi.org/10.1533/9781782420620]
[20]
Luche, J.L. Synthetic Organic Sonochemistry; Plenum Press: New York, 1998.
[http://dx.doi.org/10.1007/978-1-4899-1910-6]
[21]
Li, J.T.; Bian, Y.J.; Zang, H.J.; Li, T.S. Pinacol coupling of aromatic aldehydes and ketones using magnesium in aqueous ammonium chloride under ultrasound. Synth. Commun., 2002, 32, 547-551.
[http://dx.doi.org/10.1081/SCC-120002400]
[22]
Zang, H.J.; Wang, M.L.; Cheng, B.W. Song. Ultrasound-promoted synthesis of oximes catalyzed by a basic ionic liquid [bmIm]OH. J. Ultrason. Sonochem., 2009, 16, 301-303.
[http://dx.doi.org/10.1016/j.ultsonch.2008.09.003]
[23]
Roesch, K.R.; Larock, R.C. Synthesis of Isoquinolines and Pyridines via Palladium-Catalyzed Iminoannulation of Internal Acetylenes. J. Org. Chem., 1998, 63, 5306-5307.
[http://dx.doi.org/10.1021/jo980871f]
[24]
Roesch, K.R.; Larock, R.C. Synthesis of Isoquinolines and Pyridines by the Palladium- and Copper-Catalyzed Coupling and Cyclization of Terminal Acetylenes. Org. Lett., 1999, 1, 553-556.
[http://dx.doi.org/10.1021/ol990067v]
[25]
Roesch, K.R.; Zhang, H.; Larock, R.C. Synthesis of isoquinolines and pyridines by the palladium-catalyzed iminoannulation of internal alkynes. J. Org. Chem., 2001, 66(24), 8042-8051.
[http://dx.doi.org/10.1021/jo0105540] [PMID: 11722203]
[26]
Dai, G.; Larock, R.C. Synthesis of 3-substituted 4-aroylisoquinolines via Pd-catalyzed carbonylative cyclization of o-(1-alkynyl)benzaldimines. Org. Lett., 2002, 4(2), 193-196.
[http://dx.doi.org/10.1021/ol010230y] [PMID: 11796048]
[27]
Dai, G.; Larock, R.C. Synthesis of 3,4-disubstituted isoquinolines via palladium-catalyzed cross-coupling of 2-(1-alkynyl)benzaldimines and organic halides. J. Org. Chem., 2003, 68(3), 920-928.
[http://dx.doi.org/10.1021/jo026294j] [PMID: 12558417]
[28]
Todorovic, N.; Awuah, E.; Albu, S.; Ozimok, C.; Capretta, A. Synthesis of substituted isoquinolines via Pd-catalyzed cross-coupling approaches. Org. Lett., 2011, 13(23), 6180-6183.
[http://dx.doi.org/10.1021/ol202565j] [PMID: 22066469]
[29]
Florentino, L.; Aznar, F.; Valdés, C. Synthesis of polysubstituted isoquinolines through cross-coupling reactions with α-alkoxytosylhydrazones. Org. Lett., 2012, 14(9), 2323-2325.
[http://dx.doi.org/10.1021/ol300810p] [PMID: 22512290]
[30]
Bentley, K.W. In The Isoquinoline Alkaloids; Hardwood Academic: Amsterdam, 1998, Vol. 1, .
[31]
Leonardi, M.; Villacampa, M.; Menéndez, J. Carlos. J. Org. Chem., 2017, 82, 2570-2578.
[http://dx.doi.org/10.1021/acs.joc.6b02995] [PMID: 28186415]
[32]
(a)Dzierszinski, F.; Coppin, A.; Mortuaire, M.; Dewailly, E.; Slomianny, C.; Ameisen, J-C.; DeBels, F.; Tomavo, S. Ligands of the peripheral benzodiazepine receptor are potent inhibitors of Plasmodium falciparum and Toxoplasma gondii in vitro. Antimicrob. Agents Chemother., 2002, 46(10), 3197-3207.
[http://dx.doi.org/10.1128/AAC.46.10.3197-3207.2002] [PMID: 12234845]
(b)Kletsas, D.; Li, W.; Han, Z.; Papadopoulos, V. Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: role of ERK, c-Jun and ligandactivated PBR-independent pathways. Biochem. Pharmacol., 2004, 67(10), 1927-1932.
[http://dx.doi.org/10.1016/j.bcp.2004.01.021] [PMID: 15130769]
(c)Mach, U.R.; Hackling, A.E.; Perachon, S.; Ferry, S.; Wermuth, C.G.; Schwartz, J-C.; Sokoloff, P.; Stark, H. Development of novel 1,2,3,4-tetrahydroisoquinoline derivatives and closely related compounds as potent and selective dopamine D3 receptor ligands. ChemBioChem, 2004, 5(4), 508-518.
[http://dx.doi.org/10.1002/cbic.200300784] [PMID: 15185375]
(d)Muscarella, D.E.; O’Brien, K.A.; Lemley, A.T.; Bloom, S.E. Reversal of Bcl-2-mediated resistance of the EW36 human B-cell lymphoma cell line to arsenite- and pesticide-induced apoptosis by PK11195, a ligand of the mitochondrial benzodiazepine receptor. Toxicol. Sci., 2003, 74(1), 66-73.
[http://dx.doi.org/10.1093/toxsci/kfg052] [PMID: 12730627]
[33]
(a)Halliwell, B. Antioxidant defence mechanisms: from the beginning to the end (of the beginning). Free Radic. Res., 1999, 31(4), 261-272.
[http://dx.doi.org/10.1080/10715769900300841] [PMID: 10517532]
(b)Ahmadi, F.; Kadivar, M.; Shahedi, M. Antioxidant activity of Kelussia odoratissima Mozaff. in model and food systems. Food Chem., 2007, 105, 57-64.
[http://dx.doi.org/10.1016/j.foodchem.2007.03.056]
[34]
Babizhayev, M.A.; Deyev, A.I.; Yermakova, V.N.; Brikman, I.V.; Bours, J. Lipid peroxidation and cataracts: N-acetylcarnosine as a therapeutic tool to manage age-related cataracts in human and in canine eyes. Drugs R D., 2004, 5(3), 125-139.
[http://dx.doi.org/10.2165/00126839-200405030-00001] [PMID: 15139774]
[35]
Liu, M. Meydani. Combined vitamin C and E supplementation retards early progression of arteriosclerosis in heart transplant patients. Nutr. Rev., 2002, 60, 368-371.
[PMID: 12462519]
[36]
Ezzatzadeh, E.; Hossaini, Z. S. Green synthesis and antioxidant activity of novel series of benzofurans from euparin extracted of Petasites hybridus. Natural Product Research Published online,, http://dx.doi.org/DOI:10.1080/14786419.2018.1428598
[37]
Ezzatzadeh, E.; Hossaini, Z.S. A novel one-pot three-component synthesis of benzofuran derivatives via Strecker reaction: Study of antioxidant activity. Natural Product Research Published online, http://dx.doi.org/DOI:10.1080/14786419.2018.1542389
[38]
Ezzatzadeh, E.; Hossaini, Z. Four-component green synthesis of benzochromene derivatives using nano-KF/clinoptilolite as basic catalyst: study of antioxidant activity. Mol. Divers., 2020, 24(1), 81-91.
[http://dx.doi.org/10.1007/s11030-019-09935-6] [PMID: 30830596]
[39]
Rajabi, M.; Hossaini, Z.; Khalilzadeh, M.A.; Datta, S.; Halder, M.; Mousa, S.A. Synthesis of a new class of furo[3,2-c]coumarins and its anticancer activity. J. Photochem. Photobiol. B, 2015, 148, 66-72.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.027] [PMID: 25889947]
[40]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Efficient synthesis of functionalized 2,5-dihydrofurans and 1,5-dihydro-2H-pyrrol-2-ones by reaction of isocyanides with activated acetylenes in the presence of hexachloroacetone. Chemical Monthly, 2008, 139, 625-628.
[http://dx.doi.org/10.1007/s00706-007-0810-3]
[41]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S. Proline-Promoted Efficient Synthesis of 4-Aryl-3,4-dihydro-2H,5H-pyrano[3,2-c]chromene-2,5-diones in Aqueous Media. Synlett, 2008, 1153-1154.
[http://dx.doi.org/10.1055/s-2008-1072656]
[42]
Yavari, I.; Hossaini, Z.S.; Sabbaghan, M. Efficient synthesis of functionalized spiro-2,5-dihydro-1,2-λ5-oxaphospholes. Ghazanfarpour-Darjani Tetrahedron, 2007, 63, 9423-9428.
[43]
Yavari, I.; Sabbaghan, M.; Hossaini, Z.S.; Ghazanfarpour-Darjani, M. Surprising formation of chlorinated butenolides from dialkyl acetylenedicarboxylates and hexachloroacetone in the presence of triphenyl phosphite. Helv. Chim. Acta, 2008, 91, 1144-1147.
[http://dx.doi.org/10.1002/hlca.200890123]
[44]
Rostami-Charati, F. Efficient synthesis of functionalized hydroindoles via catalyst-free multicomponent reactions of ninhydrin in water. Chin. Chem. Lett., 2014, 169-171.
[http://dx.doi.org/10.1016/j.cclet.2013.09.016]
[45]
Rostami‐Charati, F.; Hossaini, Z.S.; Khalilzadeh, M.A.; Jafaryan, H. Solvent‐free synthesis of pyrrole derivatives. J. Heterocycl. Chem., 2012, 49, 217-220.
[http://dx.doi.org/10.1002/jhet.785]
[46]
Hajinasiri, R.; Hossaini, Z.S.; Rostami‐Charati, F. Efficient synthesis of α‐aminophosphonates via one‐pot reactions of aldehydes, amines, and phosphates in ionic liquid. Heteroatom Chem., 2011, 22, 625-629.
[http://dx.doi.org/10.1002/hc.20724]
[47]
Rostami Charati, F.; Hossaini, Z.S.; Hosseini-Tabatabaei, M.R. A simple synthesis of oxaphospholes. Phosphorus, Sulfur, and Silicon and the Related Elements A., 2011, 186, 1443-1448.
[http://dx.doi.org/10.1080/10426507.2010.515953]
[48]
Rostami-Charati, F.; Hossaini, Z.S. Facile synthesis of phosphonates via catalyst-free multicomponent reactions in water. Synlett, 2012, 23, 2397-2399.
[http://dx.doi.org/10.1055/s-0032-1317078]
[49]
Ghazvini, M.; Sheikholeslami-Farahani, F.; Soleimani-Amiri, S.; Salimifard, M.; Rostamian, R. Green Synthesis of Pyrido[2,1-a]isoquinolines and Pyrido[1,2-a]quinolines by Using ZnO Nanoparticles. Synlett, 2018, 29(04), 493-496.
[http://dx.doi.org/10.1055/s-0036-1591509]
[50]
Ezzatzadeh, E.; Hossaini, Z.S.; Rostamian, R.; Vaseghi, S.; Mousavi, S.F.J. Fe3O4 Magnetic Nanoparticles (MNPs) as Reusable Catalyst for the Synthesis of Chromene Derivatives Using Multicomponent Reaction of 4‐Hydroxycumarin Basis on Cheletropic Reaction. Heterocyclic Chem., 2017, 54, 2906.
[http://dx.doi.org/10.1002/jhet.2900]
[51]
Soleimani-Amiri, S.; Hossaini, Z.S.; Arabkhazaeli, M.; Karami, H.; Afshari Sharif Abad, S. Green synthesis of pyrimido‐isoquinolines and pyrimido‐quinoline using ZnO nanorods as an efficient catalyst: Study of antioxidant activity. J. Chin. Chem. Soc. (Taipei), 2019, 66, 438-445.
[http://dx.doi.org/10.1002/jccs.201800199]
[52]
Dastoorani, P.; Maghsoodlou, M.T.; Khalilzadeh, M.A.; Sarina, E. Synthesis of new dibenzofuran derivatives via Diels–Alder reaction of euparin with activated acetylenic esters. Tetrahedron Lett., 2016, 57, 314-316.
[http://dx.doi.org/10.1016/j.tetlet.2015.12.021]
[53]
Bidchol, A.M.; Wilfred, A.; Abhijna, P.; Harish, R. Free Radical Scavenging Activity of Aqueous and Ethanolic Extract of Brassica oleracea L. var. italic. Food Bioprocess Technol., 2011, 4, 1137-1143.
[http://dx.doi.org/10.1007/s11947-009-0196-9]
[54]
Shimada, K.; Fujikawa, K.; Yahara, K.; Nakamura, T. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 1992, 40, 945-948.
[http://dx.doi.org/10.1021/jf00018a005]
[55]
Yildirim, A.; Mavi, A.; Kara, A.A. Determination of antioxidant and antimicrobial activities of Rumex crispus L. extracts. J. Agric. Food Chem., 2001, 49(8), 4083-4089.
[http://dx.doi.org/10.1021/jf0103572] [PMID: 11513714]
[56]
Yen, G.C.; Duh, P.D. Scavenging effect of methanolic extracts of peanut hulls on free-radical and active-oxygen species. J. Agric. Food Chem., 1994, 42, 629-632.
[http://dx.doi.org/10.1021/jf00039a005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy