Review Article

严重程度增加的阻塞性肺疾病发病机理中的氧化和亚硝化应激

卷 27, 期 42, 2020

页: [7149 - 7158] 页: 10

弟呕挨: 10.2174/0929867327666200604165451

价格: $65

摘要

氧化剂增加和抗氧化防御机制之间的不平衡是阻塞性肺部疾病(如哮喘和COPD)的发病机理的中心。在这些患者中,活性氧水平升高。超氧阴离子(O2-),过氧化氢(H2O2)和羟基自由基(•OH)对于在支气管和肺实质中进一步形成细胞毒性自由基至关重要。慢性炎症(部分由氧化应激引起)可通过活化的吞噬细胞(嗜中性粒细胞,嗜酸性粒细胞,巨噬细胞)进一步增加氧化剂负担,尤其是在严重的疾病状态下。实际上,在患病的患者中抗氧化剂和抗炎基因经常被下调。 Nrf2激活抗氧化剂反应元件(ARE),导致GPx上调,硫醇代谢相关的解毒酶(GSTs)和应激反应基因(HO-1)在动物模型以及哮喘和COPD患者中均被下调。存在氧化应激时一氧化氮(NO)的过度产生会促进氧化性反应性氮物种(如过氧亚硝酸盐(ONO2--))的形成,导致硝化作用和DNA损伤,线粒体呼吸抑制,蛋白质功能障碍和细胞生物系统的损害。髓过氧化物酶和H2O2的活化也会引起蛋白质硝化,从而促进亚硝酸盐(NO2-)的氧化。在COPD患者的支气管中,硝基酪氨酸和髓过氧化物酶增加,特别是在严重疾病中。在COPD患者的诱导痰中发现的过氧亚硝酸盐抑制活性降低与肺功能相关。在严重哮喘患者的支气管肺泡灌洗中,蛋白质硝化的标记物-3-硝基酪氨酸,3-溴酪氨酸和3-氯酪氨酸增加。通过使用反硝化机制或抗氧化剂给药的新药物递送策略来针对氧化,亚硝化应激和相关的肺部炎症,可以改善对这些慢性致残性阻塞性肺疾病的治疗。

关键词: 氧化应激,哮喘,COPD,炎症,亚硝化应激,发病机制。

[1]
Andreadis, A.A.; Hazen, S.L.; Comhair, S.A.; Erzurum, S.C. Oxidative and nitrosative events in asthma. Free Radic. Biol. Med., 2003, 35(3), 213-225.
[http://dx.doi.org/10.1016/S0891-5849(03)00278-8] [PMID: 12885584]
[2]
Ricciardolo, F.L.; Di Stefano, A.; Sabatini, F.; Folkerts, G. Reactive nitrogen species in the respiratory tract. Eur. J. Pharmacol., 2006, 533(1-3), 240-252.
[http://dx.doi.org/10.1016/j.ejphar.2005.12.057] [PMID: 16464450]
[3]
Dozor, A.J. The role of oxidative stress in the pathogenesis and treatment of asthma. Ann. N. Y. Acad. Sci., 2010, 1203, 133-137.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05562.x] [PMID: 20716295]
[4]
Antus, B.; Kardos, Z. Oxidative stress in COPD: molecular background and clinical monitoring. Curr. Med. Chem., 2015, 22(5), 627-650.
[http://dx.doi.org/10.2174/092986732205150112104411] [PMID: 25585265]
[5]
Soodaeva, S.; Kubysheva, N.; Klimanov, I.; Nikitina, L.; Batyrshin, I. Features of oxidative and nitrosative metabolism in lung diseases. Oxid. Med. Cell. Longev., 2019, 2019(1), 1-12.
[http://dx.doi.org/10.1155/2019/1689861]
[6]
Ricciardolo, F.L.; Sterk, P.J.; Gaston, B.; Folkerts, G. Nitric oxide in health and disease of the respiratory system. Physiol. Rev., 2004, 84(3), 731-765.
[http://dx.doi.org/10.1152/physrev.00034.2003] [PMID: 15269335]
[7]
Folkerts, G.; Kloek, J.; Muijsers, R.B.; Nijkamp, F.P. Reactive nitrogen and oxygen species in airway inflammation. Eur. J. Pharmacol., 2001, 429(1-3), 251-262.
[http://dx.doi.org/10.1016/S0014-2999(01)01324-3] [PMID: 11698045]
[8]
Squadrito, G.L.; Pryor, W.A. Mapping the reaction of peroxynitrite with CO2: energetics, reactive species, and biological implications. Chem. Res. Toxicol., 2002, 15(7), 885-895.
[http://dx.doi.org/10.1021/tx020004c] [PMID: 12118998]
[9]
Lemercier, J.N.; Padmaja, S.; Cueto, R.; Squadrito, G.L.; Uppu, R.M.; Pryor, W.A. Carbon dioxide modulation of hydroxylation and nitration of phenol by peroxynitrite. Arch. Biochem. Biophys., 1997, 345(1), 160-170.
[http://dx.doi.org/10.1006/abbi.1997.0240] [PMID: 9281324]
[10]
Babior, B.M. NADPH oxidase. Curr. Opin. Immunol., 2004, 16(1), 42-47.
[http://dx.doi.org/10.1016/j.coi.2003.12.001] [PMID: 14734109]
[11]
Topic, A.; Milovanovic, V.; Lazic, Z.; Ivosevic, A.; Radojkovic, D. Oxidized alpha-1-antitrypsin as a potential biomarker associated with onset and severity of chronic obstructive pulmonary disease in adult population. COPD, 2018, 15(5), 472-478.
[http://dx.doi.org/10.1080/15412555.2018.1541448] [PMID: 30822244]
[12]
Lıu, X.; Deng, K.; Chen, S.; Zhang, Y.; Yao, J.; Weng, X.; Zhang, Y.; Gao, T.; Feng, G. 8-Hydroxy-2′-deoxyguanosine as a biomarker of oxidative stress in acute exacerbation of chronic obstructive pulmonary disease. Turk. J. Med. Sci., 2019, 49(1), 93-100.
[http://dx.doi.org/10.3906/sag-1807-106] [PMID: 30762093]
[13]
Tang, K.; Zhao, J.; Xie, J.; Wang, J. Decreased miR-29b expression is associated with airway inflammation in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol., 2019, 316(4), L621-L629.
[http://dx.doi.org/10.1152/ajplung.00436.2018] [PMID: 30652495]
[14]
Taka, C.; Hayashi, R.; Shimokawa, K.; Tokui, K.; Okazawa, S.; Kambara, K.; Inomata, M.; Yamada, T.; Matsui, S.; Tobe, K. SIRT1 and FOXO1 mRNA expression in PBMC correlates to physical activity in COPD patients. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 3237-3244.
[http://dx.doi.org/10.2147/COPD.S144969] [PMID: 29138552]
[15]
Sanders, K.A.; Delker, D.A.; Huecksteadt, T.; Beck, E.; Wuren, T.; Chen, Y.; Zhang, Y.; Hazel, M.W.; Hoidal, J.R. RAGE is a critical mediator of pulmonary oxidative stress, alveolar macrophage activation and emphysema in response to cigarette smoke. Sci. Rep., 2019, 9(1), 231.
[http://dx.doi.org/10.1038/s41598-018-36163-z] [PMID: 30659203]
[16]
Kuhn, V.; Diederich, L.; Keller, T.C.S., IV; Kramer, C.M.; Lückstädt, W.; Panknin, C.; Suvorava, T.; Isakson, B.E.; Kelm, M.; Cortese-Krott, M.M. Red Blood cell function and dysfunction: redox regulation, nitric oxide metabolism, anemia. Antioxid. Redox Signal., 2017, 26(13), 718-742.
[http://dx.doi.org/10.1089/ars.2016.6954] [PMID: 27889956]
[17]
Saleh, D.; Ernst, P.; Lim, S.; Barnes, P.J.; Giaid, A. Increased formation of the potent oxidant peroxynitrite in the airways of asthmatic patients is associated with induction of nitric oxide synthase: effect of inhaled glucocorticoid. FASEB J., 1998, 12(11), 929-937.
[http://dx.doi.org/10.1096/fasebj.12.11.929] [PMID: 9707165]
[18]
Ricciardolo, F.L.; Caramori, G.; Ito, K.; Capelli, A.; Brun, P.; Abatangelo, G.; Papi, A.; Chung, K.F.; Adcock, I.; Barnes, P.J.; Donner, C.F.; Rossi, A.; Di Stefano, A. Nitrosative stress in the bronchial mucosa of severe chronic obstructive pulmonary disease. J. Allergy Clin. Immunol., 2005, 116(5), 1028-1035.
[http://dx.doi.org/10.1016/j.jaci.2005.06.034] [PMID: 16275371]
[19]
van der Vliet, A.; Eiserich, J.P.; Shigenaga, M.K.; Cross, C.E. Reactive nitrogen species and tyrosine nitration in the respiratory tract: epiphenomena or a pathobiologic mechanism of disease? Am. J. Respir. Crit. Care Med., 1999, 160(1), 1-9.
[http://dx.doi.org/10.1164/ajrccm.160.1.9807044] [PMID: 10390372]
[20]
Marozkina, N.V.; Gaston, B. Nitrogen chemistry and lung physiology. Annu. Rev. Physiol., 2015, 77, 431-452.
[http://dx.doi.org/10.1146/annurev-physiol-021113-170352] [PMID: 25668023]
[21]
Fang, F.C. Perspectives series: host/pathogen interactions. Mechanisms of nitric oxide-related antimicrobial activity. J. Clin. Invest., 1997, 99(12), 2818-2825.
[http://dx.doi.org/10.1172/JCI119473] [PMID: 9185502]
[22]
Radi, R.; Cassina, A.; Hodara, R.; Quijano, C.; Castro, L. Peroxynitrite reactions and formation in mitochondria. Free Radic. Biol. Med., 2002, 33(11), 1451-1464.
[http://dx.doi.org/10.1016/S0891-5849(02)01111-5] [PMID: 12446202]
[23]
Eiserich, J.P.; Estévez, A.G.; Bamberg, T.V.; Ye, Y.Z.; Chumley, P.H.; Beckman, J.S.; Freeman, B.A. Microtubule dysfunction by posttranslational nitrotyrosination of alpha-tubulin: a nitric oxide-dependent mechanism of cellular injury. Proc. Natl. Acad. Sci. USA, 1999, 96(11), 6365-6370.
[http://dx.doi.org/10.1073/pnas.96.11.6365] [PMID: 10339593]
[24]
Shibuya, A.; Wada, K.; Nakajima, A.; Saeki, M.; Katayama, K.; Mayumi, T.; Kadowaki, T.; Niwa, H.; Kamisaki, Y. Nitration of PPARgamma inhibits ligand-dependent translocation into the nucleus in a macrophage-like cell line, RAW 264. FEBS Lett., 2002, 525(1-3), 43-47.
[http://dx.doi.org/10.1016/S0014-5793(02)03059-4] [PMID: 12163159]
[25]
Kamisaki, Y.; Wada, K.; Bian, K.; Balabanli, B.; Davis, K.; Martin, E.; Behbod, F.; Lee, Y.C.; Murad, F. An activity in rat tissues that modifies nitrotyrosine-containing proteins. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11584-11589.
[http://dx.doi.org/10.1073/pnas.95.20.11584] [PMID: 9751709]
[26]
Zingarelli, B.; O’Connor, M.; Wong, H.; Salzman, A.L.; Szabó, C. Peroxynitrite-mediated DNA strand breakage activates poly-adenosine diphosphate ribosyl synthetase and causes cellular energy depletion in macrophages stimulated with bacterial lipopolysac-charide. J. Immunol., 1996, 156(1), 350-358.
[PMID: 8598485]
[27]
O’Donnell, V.B.; Eiserich, J.P.; Bloodsworth, A.; Chumley, P.H.; Kirk, M.; Barnes, S.; Darley-Usmar, V.M.; Freeman, B.A. Nitration of unsaturated fatty acids by nitric oxide-derived reactive species. Methods Enzymol., 1999, 301, 454-470.
[http://dx.doi.org/10.1016/S0076-6879(99)01109-X] [PMID: 9919594]
[28]
Packer, M.A.; Murphy, M.P. Peroxynitrite formed by simultaneous nitric oxide and superoxide generation causes cyclosporin-A-sensitive mitochondrial calcium efflux and depolarisation. Eur. J. Biochem., 1995, 234(1), 231-239.
[http://dx.doi.org/10.1111/j.1432-1033.1995.231_c.x] [PMID: 8529645]
[29]
Zhu, S.; Haddad, I.Y.; Matalon, S. Nitration of surfactant protein A (SP-A) tyrosine residues results in decreased mannose binding ability. Arch. Biochem. Biophys., 1996, 333(1), 282-290.
[http://dx.doi.org/10.1006/abbi.1996.0392] [PMID: 8806782]
[30]
Gow, A.J.; Chen, Q.; Hess, D.T.; Day, B.J.; Ischiropoulos, H.; Stamler, J.S. Basal and stimulated protein S-nitrosylation in multiple cell types and tissues. J. Biol. Chem., 2002, 277(12), 9637-9640.
[http://dx.doi.org/10.1074/jbc.C100746200] [PMID: 11796706]
[31]
Okamoto, T.; Akuta, T.; Tamura, F.; van Der Vliet, A.; Akaike, T. Molecular mechanism for activation and regulation of matrix met-alloproteinases during bacterial infections and respiratory inflammation. Biol. Chem., 2004, 385(11), 997-1006.
[http://dx.doi.org/10.1515/BC.2004.130] [PMID: 15576319]
[32]
Whiteman, M.; Szabó, C.; Halliwell, B. Modulation of peroxynitrite- and hypochlorous acid-induced inactivation of alpha1-antiproteinase by mercaptoethylguanidine. Br. J. Pharmacol., 1999, 126(7), 1646-1652.
[http://dx.doi.org/10.1038/sj.bjp.0702465] [PMID: 10323598]
[33]
Filep, J.G.; Beauchamp, M.; Baron, C.; Paquette, Y. Peroxynitrite mediates IL-8 gene expression and production in lipopolysaccharide-stimulated human whole blood. J. Immunol., 1998, 161(10), 5656-5662.
[PMID: 9820546]
[34]
Payne, D.N.; Adcock, I.M.; Wilson, N.M.; Oates, T.; Scallan, M.; Bush, A. Relationship between exhaled nitric oxide and mucosal eosinophilic inflammation in children with difficult asthma, after treatment with oral prednisolone. Am. J. Respir. Crit. Care Med., 2001, 164(8 Pt 1), 1376-1381.
[http://dx.doi.org/10.1164/ajrccm.164.8.2101145] [PMID: 11704581]
[35]
Schleich, F.N.; Zanella, D.; Stefanuto, P.H.; Bessonov, K.; Smolinska, A.; Dallinga, J.W.; Henket, M.; Paulus, V.; Guissard, F.; Graff, S.; Moermans, C.; Wouters, E.F.M.; Van Steen, K.; van Schooten, F.J.; Focant, J.F.; Louis, R. Exhaled volatile organic compounds are able to discriminate between neutrophilic and eosinophilic asthma. Am. J. Respir. Crit. Care Med., 2019, 200(4), 444-453.
[http://dx.doi.org/10.1164/rccm.201811-2210OC] [PMID: 30973757]
[36]
Ricciardolo, F.L.; Geppetti, P.; Mistretta, A.; Nadel, J.A.; Sapienza, M.A.; Bellofiore, S.; Di Maria, G.U. Randomised double-blind placebo-controlled study of the effect of inhibition of nitric oxide synthesis in bradykinin-induced asthma. Lancet, 1996, 348(9024), 374-377.
[http://dx.doi.org/10.1016/S0140-6736(96)04450-9] [PMID: 8709736]
[37]
Ricciardolo, F.L.; Timmers, M.C.; Geppetti, P.; van Schadewijk, A.; Brahim, J.J.; Sont, J.K.; de Gouw, H.W.; Hiemstra, P.S.; van Krieken, J.H.; Sterk, P.J. Allergen-induced impairment of bronchoprotective nitric oxide synthesis in asthma. J. Allergy Clin. Immunol., 2001, 108(2), 198-204.
[http://dx.doi.org/10.1067/mai.2001.116572] [PMID: 11496234]
[38]
MacPherson, J.C.; Comhair, S.A.; Erzurum, S.C.; Klein, D.F.; Lipscomb, M.F.; Kavuru, M.S.; Samoszuk, M.K.; Hazen, S.L. Eosino-phils are a major source of nitric oxide-derived oxidants in severe asthma: characterization of pathways available to eosinophils for generating reactive nitrogen species. J. Immunol., 2001, 166(9), 5763-5772.
[http://dx.doi.org/10.4049/jimmunol.166.9.5763] [PMID: 11313420]
[39]
Chaudhuri, R.; Livingston, E.; McMahon, A.D.; Lafferty, J.; Fraser, I.; Spears, M.; McSharry, C.P.; Thomson, N.C. Effects of smoking cessation on lung function and airway inflammation in smokers with asthma. Am. J. Respir. Crit. Care Med., 2006, 174(2), 127-133.
[http://dx.doi.org/10.1164/rccm.200510-1589OC] [PMID: 16645173]
[40]
Kharitonov, S.A.; Robbins, R.A.; Yates, D.; Keatings, V.; Barnes, P.J. Acute and chronic effects of cigarette smoking on exhaled nitric oxide. Am. J. Respir. Crit. Care Med., 1995, 152(2), 609-612.
[http://dx.doi.org/10.1164/ajrccm.152.2.7543345] [PMID: 7543345]
[41]
Agustí, A.G.; Villaverde, J.M.; Togores, B.; Bosch, M. Serial measurements of exhaled nitric oxide during exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J., 1999, 14(3), 523-528.
[http://dx.doi.org/10.1034/j.1399-3003.1999.14c08.x] [PMID: 10543270]
[42]
Kharitonov, S.A.; Barnes, P.J. Nitric oxide, nitrotyrosine and nitric oxide modulators in asthma and chronic obstructive pulmonary disease. Curr. Allergy Asthma Rep., 2003, 3(2), 121-129.
[http://dx.doi.org/10.1007/s11882-003-0024-7] [PMID: 12562551]
[43]
Sugiura, H.; Ichinose, M. Nitrative stress in inflammatory lung diseases. Nitric Oxide, 2011, 25(2), 138-144.
[http://dx.doi.org/10.1016/j.niox.2011.03.079] [PMID: 21440655]
[44]
Indo, H.P.; Yen, H.C.; Nakanishi, I.; Matsumoto, K.; Tamura, M.; Nagano, Y.; Matsui, H.; Gusev, O.; Cornette, R.; Okuda, T.; Minamiyama, Y.; Ichikawa, H.; Suenaga, S.; Oki, M.; Sato, T.; Ozawa, T.; Clair, D.K.; Majima, H.J. A mitochondrial superoxide theory for oxidative stress diseases and aging. J. Clin. Biochem. Nutr., 2015, 56(1), 1-7.
[http://dx.doi.org/10.3164/jcbn.14-42] [PMID: 25834301]
[45]
Vézina, F.A.; Cantin, A.M. Antioxidants and chronic obstructive pulmonary disease. Chronic Obstr. Pulm. Dis. (Miami), 2018, 5(4), 277-288.
[http://dx.doi.org/10.15326/jcopdf.5.4.2018.0133] [PMID: 30723785]
[46]
Borgstahl, G.E.; Parge, H.E.; Hickey, M.J.; Johnson, M.J.; Boissinot, M.; Hallewell, R.A.; Lepock, J.R.; Cabelli, D.E.; Tainer, J.A. Human mitochondrial manganese superoxide dismutase polymorphic variant Ile58Thr reduces activity by destabilizing the tetrameric interface. Biochemistry, 1996, 35(14), 4287-4297.
[http://dx.doi.org/10.1021/bi951892w] [PMID: 8605177]
[47]
Gardner, P.R.; Raineri, I.; Epstein, L.B.; White, C.W. Superoxide radical and iron modulate aconitase activity in mammalian cells. J. Biol. Chem., 1995, 270(22), 13399-13405.
[http://dx.doi.org/10.1074/jbc.270.22.13399] [PMID: 7768942]
[48]
Chelikani, P.; Carpena, X.; Perez-Luque, R.; Donald, L.J.; Duckworth, H.W.; Switala, J.; Fita, I.; Loewen, P.C. Characterization of a large subunit catalase truncated by proteolytic cleavage. Biochemistry, 2005, 44(15), 5597-5605.
[http://dx.doi.org/10.1021/bi047277m] [PMID: 15823018]
[49]
Pader, I.; Sengupta, R.; Cebula, M.; Xu, J.; Lundberg, J.O.; Holmgren, A.; Johansson, K.; Arnér, E.S. Thioredoxin-related protein of 14 kDa is an efficient L-cystine reductase and S-denitrosylase. Proc. Natl. Acad. Sci. USA, 2014, 111(19), 6964-6969.
[http://dx.doi.org/10.1073/pnas.1317320111] [PMID: 24778250]
[50]
Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim. Biophys. Acta, 2013, 1830(5), 3217-3266.
[http://dx.doi.org/10.1016/j.bbagen.2012.09.018] [PMID: 23036594]
[51]
Sharapov, M.G.; Novoselov, V.I. Catalytic and signaling role of peroxiredoxins in carcinogenesis. Biochemistry (Mosc.), 2019, 84(2), 79-100.
[http://dx.doi.org/10.1134/S0006297919020019] [PMID: 31216969]
[52]
Levine, M.; Padayatty, S.J.; Espey, M.G. Vitamin C: a concentration-function approach yields pharmacology and therapeutic discoveries. Adv. Nutr., 2011, 2(2), 78-88.
[http://dx.doi.org/10.3945/an.110.000109] [PMID: 22332036]
[53]
Cadenas, E.; Packer, L.; Traber, M.G. Antioxidants, oxidants and redox impacts on cell function - a tribute to Helmut Sies. Arch. Biochem. Biophys., 2016, 595, 94-99.
[http://dx.doi.org/10.1016/j.abb.2015.11.012] [PMID: 27095223]
[54]
Millea, P.J. N-acetylcysteine: multiple clinical applications. Am. Fam. Physician, 2009, 80(3), 265-269.
[PMID: 19621836]
[55]
Kelly, G. The interaction of cigarette smoking and antioxidants. Part III: ascorbic acid. Altern. Med. Rev., 2003, 8(1), 43-54.
[PMID: 12611560]
[56]
Parodi, O.; De Maria, R.; Roubina, E. Redox state, oxidative stress and endothelial dysfunction in heart failure: the puzzle of nitrate-thiol interaction. J. Cardiovasc. Med. (Hagerstown), 2007, 8(10), 765-774.
[http://dx.doi.org/10.2459/JCM.0b013e32801194d4] [PMID: 17885513]
[57]
Santus, P.; Corsico, A.; Solidoro, P.; Braido, F.; Di Marco, F.; Scichilone, N. Oxidative stress and respiratory system: pharmacological and clinical reappraisal of N-acetylcysteine. COPD, 2014, 11(6), 705-717.
[http://dx.doi.org/10.3109/15412555.2014.898040] [PMID: 24787454]
[58]
Janssens, W.; Mathieu, C.; Boonen, S.; Decramer, M. Vitamin D deficiency and chronic obstructive pulmonary disease: a vicious circle. Vitam. Horm., 2011, 86, 379-399.
[http://dx.doi.org/10.1016/B978-0-12-386960-9.00017-4] [PMID: 21419281]
[59]
Calzetta, L.; Matera, M.G.; Rogliani, P.; Cazzola, M. Multifaceted activity of N-acetyl-l-cysteine in chronic obstructive pulmonary disease. Expert Rev. Respir. Med., 2018, 12(8), 693-708.
[http://dx.doi.org/10.1080/17476348.2018.1495562] [PMID: 29972340]
[60]
Fowdar, K.; Chen, H.; He, Z.; Zhang, J.; Zhong, X.; Zhang, J.; Li, M.; Bai, J. The effect of N-acetylcysteine on exacerbations of chronic obstructive pulmonary disease: A meta-analysis and systematic review. Heart Lung, 2017, 46(2), 120-128.
[http://dx.doi.org/10.1016/j.hrtlng.2016.12.004] [PMID: 28109565]
[61]
Zeng, Z.; Yang, D.; Huang, X.; Xiao, Z. Effect of carbocisteine on patients with COPD: a systematic review and meta-analysis. Int. J. Chron. Obstruct. Pulmon. Dis., 2017, 12, 2277-2283.
[http://dx.doi.org/10.2147/COPD.S140603] [PMID: 28814855]
[62]
Biswas, S.; Hwang, J.W.; Kirkham, P.A.; Rahman, I. Pharmacological and dietary antioxidant therapies for chronic obstructive pul-monary disease. Curr. Med. Chem., 2013, 20(12), 1496-1530.
[http://dx.doi.org/10.2174/0929867311320120004] [PMID: 22963552]
[63]
Poole, P.; Sathananthan, K.; Fortescue, R. Mucolytic agents versus placebo for chronic bronchitis or chronic obstructive pulmonary disease. Cochrane Database Syst. Rev., 2019, 5(5)CD001287
[http://dx.doi.org/10.1002/14651858.CD001287.pub6] [PMID: 31107966]
[64]
Moretti, M.; Bottrighi, P.; Dallari, R.; Da Porto, R.; Dolcetti, A.; Grandi, P.; Garuti, G.; Guffanti, E.; Roversi, P.; De Gugliemo, M.; Potena, A. EQUALIFE Study Group The effect of long-term treatment with erdosteine on chronic obstructive pulmonary disease: the EQUALIFE Study. Drugs Exp. Clin. Res., 2004, 30(4), 143-152.
[PMID: 15553660]
[65]
Negro, D.R.; Pozzi, E.; Cella, S.G. Erdosteine: Drug exhibiting polypharmacy for the treatment of respiratory diseases. Pulm. Pharmacol. Ther., 2018, 53, 80-85.
[http://dx.doi.org/10.1016/j.pupt.2018.10.005] [PMID: 30352285]
[66]
Hodge, S.; Matthews, G.; Mukaro, V.; Ahern, J.; Shivam, A.; Hodge, G.; Holmes, M.; Jersmann, H.; Reynolds, P.N. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. Am. J. Respir. Cell Mol. Biol., 2011, 44(5), 673-681.
[http://dx.doi.org/10.1165/rcmb.2009-0459OC] [PMID: 20595463]
[67]
Tanabe, N.; Hoshino, Y.; Marumo, S.; Kiyokawa, H.; Sato, S.; Kinose, D.; Uno, K.; Muro, S.; Hirai, T.; Yodoi, J.; Mishima, M. Thi-oredoxin-1 protects against neutrophilic inflammation and emphysema progression in a mouse model of chronic obstructive pulmonary disease exacerbation. PLoS One, 2013, 8(11)e79016
[http://dx.doi.org/10.1371/journal.pone.0079016] [PMID: 24244404]
[68]
Liu, Q.; Gao, Y.; Ci, X. Role of Nrf2 and its activators in respiratory diseases. Oxid. Med. Cell. Longev., 2019, 20197090534
[http://dx.doi.org/10.1155/2019/7090534] [PMID: 30728889]
[69]
Zhao, H.; Eguchi, S.; Alam, A.; Ma, D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol., 2017, 312(2), L155-L162.
[http://dx.doi.org/10.1152/ajplung.00449.2016] [PMID: 27864288]
[70]
Vunta, H.; Davis, F.; Palempalli, U.D.; Bhat, D.; Arner, R.J.; Thompson, J.T.; Peterson, D.G.; Reddy, C.C.; Prabhu, K.S. The anti-inflammatory effects of selenium are mediated through 15-deoxy-Delta12,14-prostaglandin J2 in macrophages. J. Biol. Chem., 2007, 282(25), 17964-17973.
[http://dx.doi.org/10.1074/jbc.M703075200] [PMID: 17439952]
[71]
Sussan, T.E.; Rangasamy, T.; Blake, D.J.; Malhotra, D.; El-Haddad, H.; Bedja, D.; Yates, M.S.; Kombairaju, P.; Yamamoto, M.; Liby, K.T.; Sporn, M.B.; Gabrielson, K.L.; Champion, H.C.; Tuder, R.M.; Kensler, T.W.; Biswal, S. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc. Natl. Acad. Sci. USA, 2009, 106(1), 250-255.
[http://dx.doi.org/10.1073/pnas.0804333106] [PMID: 19104057]
[72]
Wise, R.A.; Holbrook, J.T.; Criner, G.; Sethi, S.; Rayapudi, S.; Sudini, K.R.; Sugar, E.A.; Burke, A.; Thimmulappa, R.; Singh, A.; Talalay, P.; Fahey, J.W.; Berenson, C.S.; Jacobs, M.R. Lack of effect of oral sulforaphane administration on NRF2 expression in COPD: a randomized, double-blind, placebo controlled trial. PLoS One, 2016, 11(11)e0163716
[http://dx.doi.org/10.1371/journal.pone.0163716] [PMID: 27832073]
[73]
Boehm, J.; Davis, R.; Murar, C.E.; Li, T.; McCleland, B.; Dong, S.; Yan, H.; Kerns, J.; Moody, C.J.; Wilson, A.J.; Graves, A.P.; Mentzer, M.; Qi, H.; Yonchuk, J.; Kou, J.P.; Foley, J.; Sanchez, Y.; Podolin, P.L.; Bolognese, B.; Booth-Genthe, C.; Galop, M.; Wolfe, L.; Carr, R.; Callahan, J.F. Discovery of a crystalline sulforaphane analog with good solid-state stability and engagement of the Nrf2 pathway in vitro and in vivo. Bioorg. Med. Chem., 2019, 27(4), 579-588.
[http://dx.doi.org/10.1016/j.bmc.2018.12.026] [PMID: 30626555]
[74]
Wang, T.; Dai, F.; Li, G-H.; Chen, X-M.; Li, Y.R.; Wang, S.-Q.; Ren, D-M.; Wang, X-N.; Lou, H-X.; Zhou, B.; Shen, T. Trans -4,4′-dihydroxystilbene ameliorates cigarette smoke-induced progression of chronic obstructive pulmonary disease via inhibiting oxidative stress and inflammatory response. Free Radic. Biol. Med., 2019, 152, 525-539.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.026]
[75]
Yonchuk, J.G.; Foley, J.P.; Bolognese, B.J.; Logan, G.; Wixted, W.E.; Kou, J.P.; Chalupowicz, D.G.; Feldser, H.G.; Sanchez, Y.; Nie, H.; Callahan, J.F.; Kerns, J.K.; Podolin, P.L. Characterization of the potent, selective Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2h-chromen-2-one, in cellular and in vivo models of pulmonary oxidative stress. J. Pharmacol. Exp. Ther., 2017, 363(1), 114-125.
[http://dx.doi.org/10.1124/jpet.117.241794] [PMID: 28790194]
[76]
Rogliani, P.; Matera, M.G.; Page, C.; Puxeddu, E.; Cazzola, M.; Calzetta, L. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine. Respir. Res., 2019, 20(1), 104.
[http://dx.doi.org/10.1186/s12931-019-1078-y] [PMID: 31133026]
[77]
Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. The copper-zinc superoxide dismutase activity in selected diseases. Eur. J. Clin. Invest., 2019, 49(1)e13036
[http://dx.doi.org/10.1111/eci.13036] [PMID: 30316201]
[78]
Lakhdar, R.; Denden, S.; Kassab, A.; Leban, N.; Knani, J.; Lefranc, G.; Miled, A.; Chibani, J.B.; Khelil, A.H. Update in chronic ob-structive pulmonary disease: role of antioxidant and metabolizing gene polymorphisms. Exp. Lung Res., 2011, 37(6), 364-375.
[http://dx.doi.org/10.3109/01902148.2011.580416] [PMID: 21721950]
[79]
Oostwoud, L.C.; Gunasinghe, P.; Seow, H.J.; Ye, J.M.; Selemidis, S.; Bozinovski, S.; Vlahos, R. Apocynin and ebselen reduce influ-enza A virus-induced lung inflammation in cigarette smoke-exposed mice. Sci. Rep., 2016, 6, 20983.
[http://dx.doi.org/10.1038/srep20983] [PMID: 26877172]
[80]
Vlahos, R.; Bozinovski, S. Glutathione peroxidase-1 as a novel therapeutic target for COPD. Redox Rep., 2013, 18(4), 142-149.
[http://dx.doi.org/10.1179/1351000213Y.0000000053] [PMID: 23849338]
[81]
Hollins, F.; Sutcliffe, A.; Gomez, E.; Berair, R.; Russell, R.; Szyndralewiez, C.; Saunders, R.; Brightling, C. Airway smooth muscle NOX4 is upregulated and modulates ROS generation in COPD. Respir. Res., 2016, 17(1), 84.
[http://dx.doi.org/10.1186/s12931-016-0403-y] [PMID: 27435477]
[82]
Hsu, P.S.; Lin, C.M.; Chang, J.F.; Wu, C.S.; Sia, K.C.; Lee, I.T.; Huang, K.Y.; Lin, W.N. Participation of NADPH oxidase-related reactive oxygen species in leptin-promoted pulmonary inflammation: regulation of cPLA2α and COX-2 expression. Int. J. Mol. Sci., 2019, 20(5), 1078.
[http://dx.doi.org/10.3390/ijms20051078] [PMID: 30832310]
[83]
Churg, A.; Marshall, C.V.; Sin, D.D.; Bolton, S.; Zhou, S.; Thain, K.; Cadogan, E.B.; Maltby, J.; Soars, M.G.; Mallinder, P.R.; Wright, J.L. Late intervention with a myeloperoxidase inhibitor stops progression of experimental chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med., 2012, 185(1), 34-43.
[http://dx.doi.org/10.1164/rccm.201103-0468OC] [PMID: 21997333]
[84]
Kutter, D.; Devaquet, P.; Vanderstocken, G.; Paulus, J.M.; Marchal, V.; Gothot, A. Consequences of total and subtotal myeloperoxidase deficiency: risk or benefit? Acta Haematol., 2000, 104(1), 10-15.
[http://dx.doi.org/10.1159/000041062] [PMID: 11111115]
[85]
Kaluza, J.; Larsson, S.C.; Orsini, N.; Linden, A.; Wolk, A. Fruit and vegetable consumption and risk of COPD: a prospective cohort study of men. Thorax, 2017, 72(6), 500-509.
[http://dx.doi.org/10.1136/thoraxjnl-2015-207851] [PMID: 28228486]
[86]
Agler, A.H.; Kurth, T.; Gaziano, J.M.; Buring, J.E.; Cassano, P.A. Randomised vitamin E supplementation and risk of chronic lung disease in the Women’s Health Study. Thorax, 2011, 66(4), 320-325.
[http://dx.doi.org/10.1136/thx.2010.155028] [PMID: 21257986]
[87]
Dua, K.; Malyla, V.; Singhvi, G.; Wadhwa, R.; Krishna, R.V.; Shukla, S.D.; Shastri, M.D.; Chellappan, D.K.; Maurya, P.K.; Satija, S.; Mehta, M.; Gulati, M.; Hansbro, N.; Collet, T.; Awasthi, R.; Gupta, G.; Hsu, A.; Hansbro, P.M. Increasing complexity and interactions of oxidative stress in chronic respiratory diseases: An emerging need for novel drug delivery systems. Chem. Biol. Interact., 2019, 299, 168-178.
[http://dx.doi.org/10.1016/j.cbi.2018.12.009] [PMID: 30553721]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy