Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Role of Interferences in the Increasing Incidence of Vitamin D Deficiency

Author(s): Ataman Gonel*, Idris Kirhan, Ismail Koyuncu, Nihayet Bayraktar, Mujgan Ercan Karadag and Mehmet Karadag

Volume 20, Issue 8, 2020

Page: [1303 - 1308] Pages: 6

DOI: 10.2174/1871530320666200604160208

Price: $65

Abstract

Objective: Lipemia is one of the causes of interference in immunoassay and LC-MS/MS methods. Increased prevalence of vitamin D deficiency in the US, where obesity is gradually increasing, raises the suspicion that high levels of fat diet and blood lipid levels interfere with vitamin D measurement results. The focus of this study was to investigate the effect of blood lipid profiles on vitamin D results and prevent the matrix effect.

Material and Methods: In this study, 25OH vitamin D3 (25OHD3) levels of 100 samples consecutively accepted to biochemistry laboratory regardless of age and sex were measured by the LC-MS/MS method, and each sample was restudied after 1/10 dilution. After dilution restudy, two groups were obtained-group 1 (results deviating below 20%) and group 2 (results deviating above 20%)—and the difference between the groups was investigated. There were 79 patients in group 1 and 21 patients in group 2. In our study, lipid profiles (triglyceride, total cholesterol, HDL, LDL) from the same samples of consecutive vitamin D patients were studied.

Results: It was observed that the triglyceride, total cholesterol HDL, LDL, and 25OHD3 measurements of group 1 and group 2 were similar (p > 0.05). While the mean vitamin D value in the second group was 9.94 ± 7.85, the mean vitamin D value after dilution was measured as 39.23 ± 18.13 and was statistically significant. 25OHD3 concentrations of 21 patients out of 100 were found to be falsely low. Measurements were repeated to confirm the results.

Conclusion: The matrix effect caused by exogenous and endogenous interferences in the blood could be a hidden factor increasing the prevalence of vitamin D deficiency by causing falsely low 25OHD3 values. Suspicious results should be remeasured by a dilution study.

Keywords: 25OHD3, mismeasurement, LC-MS/MS, matrix effect, dilution, false result.

Graphical Abstract

[1]
Holick, M.F. The global D-Lemma: The vitamin D deficiency pandemic even in sun-drenched countries. J. Clin. Sci. Res., 2018, 7(3), 101.
[http://dx.doi.org/10.4103/JCSR.JCSR_3_19]
[2]
Pettifor, J.M. Thandrayen, K.; Thacher, T.D.Vitamin D; Elsevier, 2018, pp. 179-201.
[http://dx.doi.org/10.1016/B978-0-12-809963-6.00067-5]
[3]
Roth, D.E.; Abrams, S.A.; Aloia, J.; Bergeron, G.; Bourassa, M.W.; Brown, K.H.; Calvo, M.S.; Cashman, K.D.; Combs, G.; De-Regil, L.M. Global prevalence and disease burden of vitamin D deficiency: A roadmap for action in low-and middle-income countries, 2018.
[http://dx.doi.org/10.1111/nyas.13968]
[4]
Griffiths, J.K. In Hunter’s Tropical Medicine and Emerging Infectious Diseases; Elsevier, 2020, pp. 1042-1047.
[5]
Hassan-Smith, Z.K.; Hewison, M.; Gittoes, N.J. Effect of vitamin D deficiency in developed countries. Br. Med. Bull., 2017, 122(1), 79-89.
[http://dx.doi.org/10.1093/bmb/ldx005] [PMID: 28334220]
[6]
Edwards, M.; Cole, Z.; Harvey, N.; Cooper, C. The global epidemiology of vitamin D status. J. Aging Res. Clin. Pract., 2014, 3(3), 148-158.
[7]
Parva, N.R.; Tadepalli, S.; Singh, P.; Qian, A.; Joshi, R.; Kandala, H.; Nookala, V.K.; Cheriyath, P. Prevalence of vitamin D deficiency and associated risk factors in the US population (2011-2012). Cureus, 2018, 10(6) e2741
[http://dx.doi.org/10.7759/cureus.2741] [PMID: 30087817]
[8]
Glendenning, P. Measuring vitamin D. Aust. Prescr., 2015, 38(1), 12-15.
[http://dx.doi.org/10.18773/austprescr.2015.004] [PMID: 26648604]
[9]
Moritz, A. Timeless Secrets of Health and Rejuvenation; Ener-Chi Wellness Center, 2007.
[10]
Itkonen, S.T.; Andersen, R.; Björk, A.K.; Brugård Konde, Å.; Eneroth, H.; Erkkola, M.; Holvik, K.; Madar, A.A.; Meyer, H.E.; Tetens, I.; Torfadóttir, J.E.; Thórisdóttir, B.; Lamberg-Allardt, C.J.E. Vitamin D status and current policies to achieve adequate vitamin D intake in the Nordic countries. Scand. J. Public Health, 2020. 1403494819896878
[http://dx.doi.org/10.1177/1403494819896878] [PMID: 31916497]
[11]
Dimeski, G.; Badrick, T.; John, A.S. Ion Selective Electrodes (ISEs) and interferences--a review. Clin. Chim. Acta, 2010, 411(5-6), 309-317.
[http://dx.doi.org/10.1016/j.cca.2009.12.005] [PMID: 20004654]
[12]
Saibaba, K.S.; Bhaskar, M.V.; Rao, P.V.; Ramana, G.V.; Dakshinamurty, K.V. Interferences in clinical chemistry analysis. Indian J. Clin. Biochem., 1998, 13(2), 55-62.
[http://dx.doi.org/10.1007/BF02867865] [PMID: 23105184]
[13]
Gönel, A.; Koyuncu, I. measurement of the cellular hemoglobin concentration by laser scatter method from excessive lipemic sample. Case Report. Comb. Chem. High Throughput Screen., 2019, 22(7), 502-505.
[http://dx.doi.org/10.2174/1386207322666190925130114] [PMID: 31553289]
[14]
Thompson, M.; Ellison, S.L. A review of interference effects and their correction in chemical analysis with special reference to uncertainty. Accredit. Qual. Assur., 2005, 10(3), 82-97.
[http://dx.doi.org/10.1007/s00769-004-0871-5]
[15]
Dimeski, G. Interference testing. Clin. Biochem. Rev., 2008, 29(Suppl. 1), S43-S48.
[PMID: 18852856]
[16]
Calmarza, P.; Cordero, J. Lipemia interferences in routine clinical biochemical tests. Biochem. Med. (Zagreb), 2011, 21(2), 160-166.
[http://dx.doi.org/10.11613/BM.2011.025] [PMID: 22135856]
[17]
Sturgeon, C.M.; Viljoen, A. Analytical error and interference in immunoassay: Minimizing risk. Ann. Clin. Biochem., 2011, 48(Pt 5), 418-432.
[http://dx.doi.org/10.1258/acb.2011.011073] [PMID: 21750113]
[18]
Nikolac, N. Lipemia: Causes, interference mechanisms, detection and management. Biochem. Med. (Zagreb), 2014, 24(1), 57-67.
[http://dx.doi.org/10.11613/BM.2014.008] [PMID: 24627715]
[19]
Martinello, F.; da Silva, E.L. Ascorbic acid interference in the measurement of serum biochemical parameters: in vivo and in vitro studies. Clin. Biochem., 2006, 39(4), 396-403.
[http://dx.doi.org/10.1016/j.clinbiochem.2005.11.011] [PMID: 16403487]
[20]
Pudek, M.R.; Nanji, A.A. Antibody interference with biochemical tests and its clinical significance. Clin. Biochem., 1983, 16(5), 275-280.
[http://dx.doi.org/10.1016/S0009-9120(83)94025-0] [PMID: 6197204]
[21]
Ismail, A.A.; Walker, P.L.; Barth, J.H.; Lewandowski, K.C.; Jones, R.; Burr, W.A. Wrong biochemistry results: two case reports and observational study in 5310 patients on potentially misleading thyroid-stimulating hormone and gonadotropin immunoassay results. Clin. Chem., 2002, 48(11), 2023-2029.
[http://dx.doi.org/10.1093/clinchem/48.11.2023] [PMID: 12406989]
[22]
Agarwal, S.; Vargas, G.; Nordstrom, C.; Tam, E.; Buffone, G.J.; Devaraj, S. Effect of interference from hemolysis, icterus and lipemia on routine pediatric clinical chemistry assays Clinica chimica acta; international journal of clinical chemistry, 2015.438, 241-245..
[23]
Gonel, A.; Yetisgin, A. False Negative D Vitamin Measurement in LC-MS/MS Method Due to Hyperlipidemia: Case Report. Comb. Chem. High Throughput Screen., 2019, 22(6), 428-430.
[http://dx.doi.org/10.2174/1386207322666190722155106] [PMID: 31573878]
[24]
Earthman, C.P.; Beckman, L.M.; Masodkar, K.; Sibley, S.D. The link between obesity and low circulating 25-hydroxyvitamin D concentrations: considerations and implications. Int. J. Obes., 2012, 36(3), 387-396.
[http://dx.doi.org/10.1038/ijo.2011.119] [PMID: 21694701]
[25]
Bhatt, S.P.; Misra, A.; Pandey, R.M.; Upadhyay, A.D.; Gulati, S.; Singh, N.; Vitamin, D. supplementation in overweight/obese asian indian women with prediabetes reduces glycemic measures and truncal subcutaneous fat: a 78 weeks randomized placebo-controlled trial (PREVENT-WIN Trial). Sci. Rep., 2020, 10(1), 1-13.
[PMID: 31913322]
[26]
Li, P.; Li, P.P.; Liu, Y.; Liu, W.; Zha, L.; Chen, X.; Zheng, R.; Qi, K.; Zhang, Y. Maternal vitamin D deficiency increases the risk of obesity in male mice offspring by affecting the immune response. bioRxiv,, 2020.Avaialble at:. 2020.03.23.004721v1.full (Accessed on June 20, 2019).
[27]
Farrell, C-J.L.; Martin, S.; McWhinney, B.; Straub, I.; Williams, P.; Herrmann, M. State-of-the-art vitamin D assays: A comparison of automated immunoassays with liquid chromatography–tandem mass spectrometry methods. Clin. Chem., 2012, 58(3)Pages. , 531-542.
[http://dx.doi.org/10.1373/clinchem.2011.172155]
[28]
García-González, E.; Aramendía, M.; Álvarez-Ballano, D.; Trincado, P.; Rello, L. Serum sample containing endogenous antibodies interfering with multiple hormone immunoassays. Laboratory strategies to detect interference. Pract. Lab. Med., 2016, 4, 1-10.
[29]
Ismail, A.A. A radical approach is needed to eliminate interference from endogenous antibodies in immunoassays. Clin. Chem., 2005, 51(1), 25-26.
[http://dx.doi.org/10.1373/clinchem.2004.042523] [PMID: 15539464]
[30]
Binkley, N.; Sempos, C.T.; Program, V.D.S.; Vitamin, D. Standardization Program (VDSP). Standardizing vitamin D assays: the way forward. J. Bone Miner. Res., 2014, 29(8), 1709-1714.
[http://dx.doi.org/10.1002/jbmr.2252] [PMID: 24737265]
[31]
Carter, G.D. Accuracy of 25-hydroxyvitamin D assays: confronting the issues. Curr. Drug Targets, 2011, 12(1), 19-28.
[http://dx.doi.org/10.2174/138945011793591608] [PMID: 20795940]
[32]
de la Hunty, A.; Wallace, A.M.; Gibson, S.; Viljakainen, H.; Lamberg-Allardt, C.; Ashwell, M. UK Food Standards Agency Workshop Consensus Report: the choice of method for measuring 25-hydroxyvitamin D to estimate vitamin D status for the UK National Diet and Nutrition Survey. Br. J. Nutr., 2010, 104(4), 612-619.
[http://dx.doi.org/10.1017/S000711451000214X] [PMID: 20712915]
[33]
Mineva, E.M.; Schleicher, R.L.; Chaudhary-Webb, M.; Maw, K.L.; Botelho, J.C.; Vesper, H.W.; Pfeiffer, C.M. A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D3 and 25-hydroxyvitamin D2 using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem., 2015, 407(19), 5615-5624.
[http://dx.doi.org/10.1007/s00216-015-8733-z] [PMID: 25967149]
[34]
Su, Z.; Narla, S.N.; Zhu, Y. 25-Hydroxyvitamin D: Analysis and clinical application. Clin. Chim. Acta, 2014, 433, 200-205.
[http://dx.doi.org/10.1016/j.cca.2014.03.022] [PMID: 24680864]
[35]
Fraser, W.D.; Milan, A.M. Vitamin D assays: Past and present debates, difficulties, and developments. Calcif. Tissue Int., 2013, 92(2), 118-127.
[http://dx.doi.org/10.1007/s00223-012-9693-3] [PMID: 23314742]
[36]
Le Goff, C.; Cavalier, E.; Souberbielle, J-C.; González-Antuña, A.; Delvin, E. Measurement of circulating 25-hydroxyvitamin D: A historical review. Pract. Lab. Med., 2015, 2, 1-14.
[37]
Taylor, P.J. Matrix effects: The Achilles heel of quantitative high-performance liquid chromatography-electrospray-tandem mass spectrometry. Clin. Biochem., 2005, 38(4), 328-334.
[http://dx.doi.org/10.1016/j.clinbiochem.2004.11.007] [PMID: 15766734]
[38]
Tascanov, M.B.; Gönel, A. how do contrast agents affect cardiac markers and coagulation tests? experimental study. comb. chem. high throughput screen.,, 2019. 22(5), 355-360..
[http://dx.doi.org/10.2174/1386207322666190603170438 ] [PMID: 31161978]
[39]
Gönel, A.; Kirhan, I. effects of broad spectrum antibiotics on measurement of immunosuppressant drugs. Antiinflamm. Antiallergy Agents Med. Chem., 2020.
[http://dx.doi.org/10.2174/1871523019666200324111436] [PMID: 32208127]
[40]
Gönel, A.; Tascanov, M.B.; Bayraktar, N.; Koyuncu, I.; Agan, V.; Enes, M.; Guzelcicek, A. in vitro demonstration of drug-reagent interactions among commonly used parenteral drugs in cardiology. Cardiovasc. Hematol. Agents Med. Chem., 2020.
[http://dx.doi.org/10.2174/1871525718666200226115235] [PMID: 32101135]
[41]
Dasgupta, A.; Krasowski, M. Therapeutic Drug Monitoring Data: A Concise Guide; Academic Press, 2019.
[42]
Hall, T.G.; Smukste, I.; Bresciano, K.R.; Wang, Y.; McKearn, D.; Savage, R.E. Identifying and overcoming matrix effects in drug discovery and development Tandem mass spectrometry–applications and principles, 2012.18, 390-419..
[43]
Matuszewski, B.K.; Constanzer, M.L.; Chavez-Eng, C.M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations. Anal. Chem., 1998, 70(5), 882-889.
[http://dx.doi.org/10.1021/ac971078+] [PMID: 9511465]
[44]
Piketty, M-L.; Polak, M.; Flechtner, I.; Gonzales-Briceño, L.; Souberbielle, J-C. False biochemical diagnosis of hyperthyroidism in streptavidin-biotin-based immunoassays: The problem of biotin intake and related interferences. Clin. Chem. Lab. Med., 2017, 55(6), 780-788.
[http://dx.doi.org/10.1515/cclm-2016-0606] [PMID: 27732554]
[45]
Ostrov, B.E.; Amsterdam, D. The interference of monoclonal antibodies with laboratory diagnosis: clinical and diagnostic implications. Immunol. Invest., 2013, 42(8), 673-690.
[http://dx.doi.org/10.3109/08820139.2013.837918] [PMID: 24094033]
[46]
Tate, J.; Ward, G. Interferences in immunoassay. Clin. Biochem. Rev., 2004, 25(2), 105-120.
[PMID: 18458713]
[47]
Rulander, N.J.; Cardamone, D.; Senior, M.; Snyder, P.J.; Master, S.R. Interference from anti-streptavidin antibody. Arch. Pathol. Lab. Med., 2013, 137(8), 1141-1146.
[http://dx.doi.org/10.5858/arpa.2012-0270-CR] [PMID: 23899071]
[48]
Meng, M.; Carter, S.; Bennett, P. LC-MS bioanalysis of drugs in hemolyzed and lipemic samples. Handbook of LC-MS bioanalysis. Best practices, experimental protocols and regulation; Wiley: Hoboken, NJ, 2013, pp. 369-377.
[49]
Clark, G.T.; Russell, P.J.; Westwood, S. Modification without impact: A case study in clinical assay failure due to lipemia. Bioanalysis, 2012, 4(12), 1421-1428.
[http://dx.doi.org/10.4155/bio.12.120] [PMID: 22793027]
[50]
Mayrand-Provencher, L.; Furtado, M.; Mess, J-N.; Dumont, I.; Garofolo, F. Choosing the appropriate matrix to perform a scientifically meaningful lipemic plasma test in bioanalytical method validation. Bioanalysis, 2014, 6(12), 1639-1646.
[http://dx.doi.org/10.4155/bio.14.33] [PMID: 24617519]
[51]
Ke, Y.; Bertin, J.; Gonthier, R.; Simard, J-N.; Labrie, F. A sensitive, simple and robust LC-MS/MS method for the simultaneous quantification of seven androgen- and estrogen-related steroids in postmenopausal serum. J. Steroid Biochem. Mol. Biol.,, 2014.144(Pt B), 523- 534.
[http://dx.doi.org/10.1016/j.jsbmb.2014.08.015] [PMID: 25158021]
[52]
Clark, Z.; Balloch, S.; Calton, L.; Mason, D. Interference Testing and Mitigation in LC-MS/MS Assays. Clin. Lab. News, 2017, 43(8), 22-25.
[53]
Ou, M.; Song, Y.; Li, S.; Liu, G.; Jia, J.; Zhang, M.; Zhang, H.; Yu, C. LC-MS/MS Method for serum creatinine: Comparison with enzymatic method and Jaffe method. PLoS One, 2015, 10(7) e0133912
[http://dx.doi.org/10.1371/journal.pone.0133912] [PMID: 26207996]
[54]
Health, U.D.o.; Services, H. Bioanalytical method validation, guidance for industry, http://www. fda. gov./cder/guidance/4252fnl. htm2001.
[55]
Wichitnithad, W.; Nantaphol, S.; Vicheantawatchai, P.; Kiatkumjorn, T.; Wangkangwan, W.; Rojsitthisak, P. Development and Validation of Liquid Chromatography-Tandem Mass Spectrometry Method for Simple Analysis of Sumatriptan and its Application in Bioequivalence Study. Pharmaceuticals (Basel), 2020, 13(2), 21.
[http://dx.doi.org/10.3390/ph13020021] [PMID: 31991540]
[56]
Furey, A.; Moriarty, M.; Bane, V.; Kinsella, B.; Lehane, M. Ion suppression; a critical review on causes, evaluation, prevention and applications. Talanta, 2013, 115, 104-122.
[http://dx.doi.org/10.1016/j.talanta.2013.03.048] [PMID: 24054567]
[57]
Gönel, A.; Koyuncu, I. False Immunosuppressant Measurement by LC-MS/MS Method Due to Radiopaque Agents. Comb. Chem. High Throughput Screen., 2019, 22(2), 129-134.
[http://dx.doi.org/10.2174/1386207322666190418125307] [PMID: 31038053]
[58]
Delatour, T.; Savoy, M-C.; Tarres, A.; Bessaire, T.; Mottier, P.; Desmarchelier, A. Low false response rates in screening a hundred veterinary drug residues in foodstuffs by LC-MS/MS with analyte-specific correction of the matrix effect. Food Control, 2018, 94, 353-360.
[http://dx.doi.org/10.1016/j.foodcont.2018.07.014]
[59]
Gaudl, A.; Kratzsch, J.; Ceglarek, U. Advancement in steroid hormone analysis by LC-MS/MS in clinical routine diagnostics - A three year recap from serum cortisol to dried blood 17α-hydroxyprogesterone. J. Steroid Biochem. Mol. Biol., 2019, 192105389
[http://dx.doi.org/10.1016/j.jsbmb.2019.105389]] [PMID: 31158444]
[60]
Uclés, S.; Lozano, A.; Sosa, A.; Parrilla Vázquez, P.; Valverde, A.; Fernández-Alba, A.R. Matrix interference evaluation employing GC and LC coupled to triple quadrupole tandem mass spectrometry. Talanta, 2017, 174, 72-81.
[http://dx.doi.org/10.1016/j.talanta.2017.05.068] [PMID: 28738648]
[61]
King, A.M.; Mullin, L.G.; Wilson, I.D.; Coen, M.; Rainville, P.D.; Plumb, R.S.; Gethings, L.A.; Maker, G.; Trengove, R. Development of a rapid profiling method for the analysis of polar analytes in urine using HILIC-MS and ion mobility enabled HILIC-MS. Metabolomics, 2019, 15(2), 17.
[http://dx.doi.org/10.1007/s11306-019-1474-9] [PMID: 30830424]
[62]
Zhou, W.; Yang, S.; Wang, P.G. Future Science, 2017.
[63]
Wacker, M.; Holick, M.F.; Vitamin, D. Vitamin D - effects on skeletal and extraskeletal health and the need for supplementation. Nutrients, 2013, 5(1), 111-148.
[http://dx.doi.org/10.3390/nu5010111] [PMID: 23306192]
[64]
Pludowski, P.; Holick, M.F.; Pilz, S.; Wagner, C.L.; Hollis, B.W.; Grant, W.B.; Shoenfeld, Y.; Lerchbaum, E.; Llewellyn, D.J.; Kienreich, K.; Soni, M. Vitamin D effects on musculoskeletal health, immunity, autoimmunity, cardiovascular disease, cancer, fertility, pregnancy, dementia and mortality-a review of recent evidence. Autoimmun. Rev., 2013, 12(10), 976-989.
[http://dx.doi.org/10.1016/j.autrev.2013.02.004] [PMID: 23542507]
[65]
Holick, M.F. Vitamin D status: measurement, interpretation, and clinical application. Ann. Epidemiol., 2009, 19(2), 73-78.
[http://dx.doi.org/10.1016/j.annepidem.2007.12.001] [PMID: 18329892]
[66]
Holick, M.F. In Vitamin D; Springer, 2010, pp. 3-33.
[http://dx.doi.org/10.1007/978-1-60327-303-9_1]
[67]
Alshahrani, F.; Aljohani, N.; Vitamin, D.; Vitamin, D. Deficiency, sufficiency and toxicity. Nutrients, 2013, 5(9), 3605-3616.
[http://dx.doi.org/10.3390/nu5093605] [PMID: 24067388]
[68]
Singh, G.; Drees, B. Normal, healthy, and optimum level of 25-hydroxyvitamin D and required daily intake of vitamin D. Austin J. Nutr. Food Sci., 2015, 3(2), 3-6.
[69]
Zelzer, S.; Goessler, W.; Herrmann, M. Measurement of vitamin D metabolites by mass spectrometry, an analytical challenge. J. Lab. Precis. Med., 2018, 3, 99.
[http://dx.doi.org/10.21037/jlpm.2018.11.06]
[70]
Wan, D.; Yang, J.; Barnych, B.; Hwang, S.H.; Lee, K.S.S.; Cui, Y.; Niu, J.; Watsky, M.A.; Hammock, B.D. A new sensitive LC/MS/MS analysis of vitamin D metabolites using a click derivatization reagent, 2-nitrosopyridine. J. Lipid Res., 2017, 58(4), 798-808.
[http://dx.doi.org/10.1194/jlr.D073536] [PMID: 28148721]
[71]
Shah, I.; James, R.; Barker, J.; Petroczi, A.; Naughton, D.P. Misleading measures in Vitamin D analysis: A novel LC-MS/MS assay to account for epimers and isobars. Nutr. J., 2011, 10(1), 46.
[http://dx.doi.org/10.1186/1475-2891-10-46] [PMID: 21569549]
[72]
Ismail, Y.; Ismail, A.A.; Ismail, A.A. Erroneous laboratory results: What clinicians need to know. Clin. Med. (Lond.), 2007, 7(4), 357-361.
[http://dx.doi.org/10.7861/clinmedicine.7-4-357] [PMID: 17882852]
[73]
Jacobs, J.F.; van der Molen, R.G.; Bossuyt, X.; Damoiseaux, J. Antigen excess in modern immunoassays: to anticipate on the unexpected. Autoimmun. Rev., 2015, 14(2), 160-167.
[http://dx.doi.org/10.1016/j.autrev.2014.10.018] [PMID: 25461469]
[74]
Bacon, O.; Halsall, D.J. Interference in thyroid function tests–problems and solutions. Biosystems, 2017, 13.
[75]
Pilz, S.; Zittermann, A.; Trummer, C.; Theiler-Schwetz, V.; Lerchbaum, E.; Keppel, M.H.; Grübler, M.R.; März, W.; Pandis, M. Vitamin D testing and treatment: a narrative review of current evidence. Endocr. Connect., 2019, 8(2), R27-R43.
[http://dx.doi.org/10.1530/EC-18-0432] [PMID: 30650061]
[76]
LeBlanc, E.; Chou, R.; Zakher, B.; Daeges, M.; Pappas, M. Screening for vitamin D deficiency: systematic review for the US Preventive Services Task Force recommendation, 2014.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy