Review Article

肽核酸作为抗菌剂的研究进展

卷 28, 期 6, 2021

发表于: 02 June, 2020

页: [1104 - 1125] 页: 22

弟呕挨: 10.2174/0929867327666200602132504

价格: $65

摘要

耐抗生素细菌的出现和寻找新的抗菌药物进展缓慢,使得治疗细菌感染变得困难,并给全世界的医疗保健系统带来了问题,包括高昂的费用、长期住院和死亡率上升。因此,有效抗菌药物的发现具有重要意义。反义肽核酸(PNA)是一种很有吸引力的选择,它通过与必需基因的互补信使RNA (mRNA)序列或核糖体RNA (rRNA)的可访问和功能重要区域结合,抑制或消除基因的表达。经过30年的发展,PNA在处理革兰氏阳性、革兰氏阴性和耐酸细菌中发挥了极其重要的作用,因为其与目标RNA的杂交复合体具有良好的稳定性,对目标mRNA/rRNA具有很强的亲和力,对核酸酶具有稳定性。在微摩尔浓度下,基于PNA的反义抗生素能够以序列特异性和剂量依赖性的方式强烈抑制致病性和耐药细菌的生长。然而,在PNA广泛应用于临床之前,一些基本的挑战,如细胞内传递、溶解性、生理稳定性和清除仍然需要解决。在这篇综述中,我们总结了近年来PNA作为抗菌药物的研究进展以及未来需要克服的挑战。

关键词: 肽核酸(PNA),反义,抗菌,信使RNA (mRNA),核糖体RNA (rRNA),耐抗生素细菌

[1]
Thangamani, S.; Mohammad, H.; Abushahba, M.F.N.; Hamed, M.I.; Sobreira, T.J.P.; Hedrick, V.E.; Paul, L.N.; Seleem, M.N. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. Sci. Rep., 2015, 5, 16407-16407.
[http://dx.doi.org/10.1038/srep16407] [PMID: 26553420]
[2]
Gupta, A.; Mishra, A.; Puri, N. Peptide nucleic acids: advanced tools for biomedical applications. J. Biotechnol., 2017, 259, 148-159.
[http://dx.doi.org/10.1016/j.jbiotec.2017.07.026] [PMID: 28764969]
[3]
Askari, R.; Sawyer, R.G. New antibacterial administration treatment strategies. Surg. Infect. (Larchmt.), 2005, 6(Suppl. 2), S-83-S-95.
[http://dx.doi.org/10.1089/sur.2005.6.s2-83] [PMID: 23577499]
[4]
Ghosh, C.; Sarkar, P.; Issa, R.; Haldar, J. Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol., 2019, 27(4), 323-338.
[http://dx.doi.org/10.1016/j.tim.2018.12.010] [PMID: 30683453]
[5]
Pelfrene, E.; Willebrand, E.; Cavaleiro Sanches, A.; Sebris, Z.; Cavaleri, M. Bacteriophage therapy: a regulatory perspective. J. Antimicrob. Chemother., 2016, 71(8), 2071-2074.
[http://dx.doi.org/10.1093/jac/dkw083] [PMID: 27068400]
[6]
Bebbington, C.; Yarranton, G. Antibodies for the treatment of bacterial infections: current experience and future prospects. Curr. Opin. Biotechnol., 2008, 19(6), 613-619.
[http://dx.doi.org/10.1016/j.copbio.2008.10.002] [PMID: 19000762]
[7]
Greber, K.E.; Dawgul, M. Antimicrobial peptides under clinical trials. Curr. Top. Med. Chem., 2017, 17(5), 620-628.
[http://dx.doi.org/10.2174/1568026616666160713143331] [PMID: 27411322]
[8]
de la Fuente-Nunez, C.; Lu, T.K. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr. Biol. (Camb),, 2017, 9(2), 109-122.
[http://dx.doi.org/10.1039/c6ib00140h] [PMID: 28045163]
[9]
Ding, X.; Wang, A.; Tong, W.; Xu, F.J. Biodegradable antibacterial polymeric nanosystems: a new hope to cope with multidrug-resistant bacteria. Small, 2019, 15(20)e1900999
[http://dx.doi.org/10.1002/smll.201900999] [PMID: 30957927]
[10]
Bui, V.K.H.; Park, D.; Lee, Y.C. Chitosan combined with ZnO, TiO2 and Ag nanoparticles for antimicrobial wound healing applications: a mini review of the research trends. Polymers (Basel), 2017, 9(1), 21.
[http://dx.doi.org/10.3390/polym9010021] [PMID: 30970696]
[11]
Ma, L.; Su, W.; Liu, J.X.; Zeng, X.X.; Huang, Z.; Li, W.; Liu, Z.C.; Tang, J.X. Optimization for extracellular biosynthesis of silver nanoparticles by Penicillium aculeatum Su1 and their antimicrobial activity and cytotoxic effect compared with silver ions. C. Mater. Biol. Appl., 2017, 77, 963-971.
[http://dx.doi.org/10.1016/j.msec.2017.03.294] [PMID: 28532117]
[12]
Shu, Z.; Zhang, Y.; Yang, Q.; Yang, H. Halloysite nanotubes supported Ag and ZnO nanoparticles with synergistically enhanced antibacterial activity. Nanoscale Res. Lett., 2017, 12(1), 135.
[http://dx.doi.org/10.1186/s11671-017-1859-5] [PMID: 28235369]
[13]
Sully, E.K.; Geller, B.L. Antisense antimicrobial therapeutics. Curr. Opin. Microbiol., 2016, 33, 47-55.
[http://dx.doi.org/10.1016/j.mib.2016.05.017] [PMID: 27375107]
[14]
Crooke, S.T. Molecular mechanisms of antisense oligonucleotides. Nucleic Acid Ther., 2017, 27(2), 70-77.
[http://dx.doi.org/10.1089/nat.2016.0656] [PMID: 28080221]
[15]
Shi, H.; Yang, F.; Li, W.; Zhao, W.; Nie, K.; Dong, B.; Liu, Z. A review: fabrications, detections and applications of peptide nucleic acids (PNAs) microarray. Biosens. Bioelectron., 2015, 66(15), 481-489.
[http://dx.doi.org/10.1016/j.bios.2014.12.010] [PMID: 25499661]
[16]
Narenji, H.; Gholizadeh, P.; Aghazadeh, M.; Rezaee, M.A.; Asgharzadeh, M.; Kafil, H.S. Peptide nucleic acids (PNAs): currently potential bactericidal agents. Biom. Pharmacother., 2017, 93, 580-588.
[http://dx.doi.org/10.1016/j.biopha.2017.06.092] [PMID: 28686972]
[17]
Nielsen, P.E.; Egholm, M.; Berg, R.H.; Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science, 1991, 254(5037), 1497-1500.
[http://dx.doi.org/10.1126/science.1962210] [PMID: 1962210]
[18]
Nielsen, P.E.; Egholm, M.; Buchardt, O. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug. Chem., 1994, 5(1), 3-7.
[http://dx.doi.org/10.1021/bc00025a001] [PMID: 8199231]
[19]
Egholm, M.; Buchardt, O.; Christensen, L.; Behrens, C.; Freier, S.M.; Driver, D.A.; Berg, R.H.; Kim, S.K.; Norden, B.; Nielsen, P.E. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature, 1993, 365(6446), 566-568.
[http://dx.doi.org/10.1038/365566a0] [PMID: 7692304]
[20]
Hyrup, B.; Nielsen, P.E. Peptide nucleic acids (PNA): synthesis, properties and potential applications. Bioorg. Med. Chem., 1996, 4(1), 5-23.
[http://dx.doi.org/10.1016/0968-0896(95)00171-9] [PMID: 8689239]
[21]
Nielsen, P.E. Structural and biological properties of peptide nucleic acid (PNA). pure and applied chemistry. Pure Appl. Chem., 1998, 70(1), 105-110.
[http://dx.doi.org/10.1351/pac199870010105]
[22]
Shakeel, S.; Karim, S.; Ali, A. Peptide nucleic acid (PNA) — a review. J. Chem. Technol. Biotechnol., 2006, 81(6), 892-899.
[http://dx.doi.org/10.1002/jctb.1505]
[23]
Uhlmann, E.; Peyman, A.; Breipohl, G.; Will, D.W. PNA: synthetic polyamide nucleic acids with unusual binding properties. Angew. Chem. Int. Ed. Engl., 1998, 37(20), 2796-2823.
[http://dx.doi.org/10.1002/(SICI)1521-3773(19981102)37: 20<2796:AID-ANIE2796>3.0.CO;2-K] [PMID: 29711102]
[24]
Nielsen, P.E.; Technology, P.N.A. PNA technology. Mol. Biotechnol., 2004, 26(3), 233-248.
[http://dx.doi.org/10.1385/MB:26:3:233] [PMID: 15004293]
[25]
Demidov, V.V.; Frank-Kamenetskii, M.D. Two sides of the coin: affinity and specificity of nucleic acid interactions. Trends Biochem. Sci., 2004, 29(2), 62-71.
[http://dx.doi.org/10.1016/j.tibs.2003.12.007] [PMID: 15102432]
[26]
Wojciechowska, M.; Równicki, M.; Mieczkowski, A.; Miszkiewicz, J.; Trylska, J. Antibacterial peptide nucleic acids facts and perspectives. Molecules, 2020, 25(3), 559.
[http://dx.doi.org/10.3390/molecules25030559] [PMID: 32012929]
[27]
Betts, L.; Josey, J.A.; Veal, J.M.; Jordan, S.R. A nucleic acid triple helix formed by a peptide nucleic acid-DNA complex. Science, 1995, 270(5243), 1838-1841.
[http://dx.doi.org/10.1126/science.270.5243.1838] [PMID: 8525381]
[28]
Agrawal, S.; Kandimalla, E.R. Antisense therapeutics: is it as simple as complementary base recognition? Mol. Med. Today, 2000, 6(2), 72-81.
[http://dx.doi.org/10.1016/S1357-4310(99)01638-X] [PMID: 10652480]
[29]
Myers, K.J.; Dean, N.M. Sensible use of antisense: how to use oligonucleotides as research tools. Trends Pharmacol. Sci., 2000, 21(1), 19-23.
[http://dx.doi.org/10.1016/S0165-6147(99)01420-0] [PMID: 10637651]
[30]
Good, L.; Nielsen, P.E. Antisense inhibition of gene expression in bacteria by PNA targeted to mRNA. Nat. Biotechnol., 1998, 16(4), 355-358.
[http://dx.doi.org/10.1038/nbt0498-355] [PMID: 9555726]
[31]
Good, L.; Nielsen, P.E. Peptide nucleic acid (PNA) antisense effects in Escherichia coli. Curr. Issues Mol. Biol., 1999, 1(1-2), 111-116.
[PMID: 11475695]
[32]
Dryselius, R.; Nekhotiaeva, N.; Good, L. Antimicrobial synergy between mRNA- and protein-level inhibitors. J. Antimicrob. Chemother., 2005, 56(1), 97-103.
[http://dx.doi.org/10.1093/jac/dki173] [PMID: 15914490]
[33]
Goh, S.; Boberek, J.M.; Nakashima, N.; Stach, J.; Good, L. Concurrent growth rate and transcript analyses reveal essential gene stringency in Escherichia coli. PLoS One, 2009, 4(6)e6061
[http://dx.doi.org/10.1371/journal.pone.0006061] [PMID: 19557168]
[34]
Tan, X.X.; Actor, J.K.; Chen, Y. Peptide nucleic acid antisense oligomer as a therapeutic strategy against bacterial infection: proof of principle using mouse intraperitoneal infection. Antimicrob. Agents Chemother., 2005, 49(8), 3203-3207.
[http://dx.doi.org/10.1128/AAC.49.8.3203-3207.2005] [PMID: 16048926]
[35]
Hansen, A.M.; Bonke, G.; Larsen, C.J.; Yavari, N.; Nielsen, P.E.; Franzyk, H. Antibacterial peptide nucleic acid-antimicrobial peptide (PNA-AMP) conjugates: antisense targeting of fatty acid biosynthesis. Bioconjug. Chem., 2016, 27(4), 863-867.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00013] [PMID: 26938833]
[36]
Hansen, A.M.; Bonke, G.; Hogendorf, W.F.J.; Björkling, F.; Nielsen, J.; Kongstad, K.T.; Zabicka, D.; Tomczak, M.; Urbas, M.; Nielsen, P.E.; Franzyk, H. Microwave-assisted solid-phase synthesis of antisense acpP peptide nucleic acid-peptide conjugates active against colistin- and tigecycline-resistant E. coli and K. pneumoniae. Eur. J. Med. Chem., 2019, 168, 134-145.
[http://dx.doi.org/10.1016/j.ejmech.2019.02.024] [PMID: 30807888]
[37]
Liang, S.; He, Y.; Xia, Y.; Wang, H.; Wang, L.; Gao, R.; Zhang, M. Inhibiting the growth of methicillin-resistant Staphylococcus aureus in vitro with antisense peptide nucleic acid conjugates targeting the ftsZ gene. Int. J. Infect. Dis., 2015, 30, 1-6.
[http://dx.doi.org/10.1016/j.ijid.2014.09.015] [PMID: 25447735]
[38]
Goh, S.; Loeffler, A.; Lloyd, D.H.; Nair, S.P.; Good, L. Oxacillin sensitization of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius by antisense peptide nucleic acids in vitro. BMC Microbiol., 2015, 15, 262.
[http://dx.doi.org/10.1186/s12866-015-0599-x] [PMID: 26560174]
[39]
Abushahba, M.F.; Mohammad, H.; Seleem, M.N. Targeting multidrug-resistant Staphylococci with an anti-rpoA peptide nucleic acid conjugated to the HIV-1 TAT cell penetrating peptide. Mol. Ther. Nucleic Acids, 2016, 5(7)e339
[http://dx.doi.org/10.1038/mtna.2016.53] [PMID: 27434684]
[40]
Alajlouni, R.A.; Seleem, M.N. Targeting Listeria monocytogenes rpoA and rpoD genes using peptide nucleic acids. Nucleic Acid Ther., 2013, 23(5), 363-367.
[http://dx.doi.org/10.1089/nat.2013.0426] [PMID: 23859300]
[41]
Rajasekaran, P.; Alexander, J.C.; Seleem, M.N.; Jain, N.; Sriranganathan, N.; Wattam, A.R.; Setubal, J.C.; Boyle, S.M. Peptide nucleic acids inhibit growth of Brucella suis in pure culture and in infected murine macrophages. Int. J. Antimicrob. Agents, 2013, 41(4), 358-362.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.11.017] [PMID: 23305655]
[42]
Otsuka, T.; Brauer, A.L.; Kirkham, C.; Sully, E.K.; Pettigrew, M.M.; Kong, Y.; Geller, B.L.; Murphy, T.F. Antimicrobial activity of antisense peptide-peptide nucleic acid conjugates against non-typeable Haemophilus influenzae in planktonic and biofilm forms. J. Antimicrob. Chemother., 2017, 72(1), 137-144.
[http://dx.doi.org/10.1093/jac/dkw384] [PMID: 27986898]
[43]
Good, L.; Awasthi, S.K.; Dryselius, R.; Larsson, O.; Nielsen, P.E. Bactericidal antisense effects of peptide-PNA conjugates. Nat. Biotechnol., 2001, 19(4), 360-364.
[http://dx.doi.org/10.1038/86753] [PMID: 11283595]
[44]
Goh, S.; Stach, J.; Good, L. Antisense effects of PNAs in bacteria. Methods Mol. Biol., 2014, 1050, 223-236.
[http://dx.doi.org/10.1007/978-1-62703-553-8_18] [PMID: 24297363]
[45]
Greenberg, D.E.; Marshall-Batty, K.R.; Brinster, L.R.; Zarember, K.A.; Shaw, P.A.; Mellbye, B.L.; Iversen, P.L.; Holland, S.M.; Geller, B.L. Antisense phosphorodiamidate morpholino oligomers targeted to an essential gene inhibit Burkholderia cepacia complex. J. Infect. Dis., 2010, 201(12), 1822-1830.
[http://dx.doi.org/10.1086/652807] [PMID: 20438352]
[46]
Bai, H.; Sang, G.; You, Y.; Xue, X.; Zhou, Y.; Hou, Z.; Meng, J.; Luo, X. Targeting RNA polymerase primary σ70 as a therapeutic strategy against methicillin-resistant Staphylococcus aureus by antisense peptide nucleic acid. PLoS One, 2012, 7(1)e29886
[http://dx.doi.org/10.1371/journal.pone.0029886] [PMID: 22253815]
[47]
Diekema, D.J.; Pfaller, M.A.; Schmitz, F.J.; Smayevsky, J.; Bell, J.; Jones, R.N.; Beach, M. SENTRY Partcipants Group. Survey of infections due to Staphylococcus species: frequency of occurrence and antimicrobial susceptibility of isolates collected in the United States, Canada, Latin America, Europe, and the Western Pacific region for the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis., 2001, 32(Suppl. 2), S114-S132.
[http://dx.doi.org/10.1086/320184] [PMID: 11320452]
[48]
Siegel, J.D.; Rhinehart, E.; Jackson, M.; Chiarello, L. Healthcare Infection Control Practices Advisory Committee. Management of multidrug-resistant organisms in health care settings, 2006. Am. J. Infect. Control, 2007, 35(10)(Suppl. 2), S165-S193.
[http://dx.doi.org/10.1016/j.ajic.2007.10.006] [PMID: 18068814]
[49]
DeLeo, F.R.; Chambers, H.F. Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J. Clin. Invest., 2009, 119(9), 2464-2474.
[http://dx.doi.org/10.1172/JCI38226] [PMID: 19729844]
[50]
Nannini, E.; Murray, B.E.; Arias, C.A. Resistance or decreased susceptibility to glycopeptides, daptomycin, and linezolid in methicillin-resistant Staphylococcus aureus. Curr. Opin. Pharmacol., 2010, 10(5), 516-521.
[http://dx.doi.org/10.1016/j.coph.2010.06.006] [PMID: 20598637]
[51]
Dryselius, R.; Aswasti, S.K.; Rajarao, G.K.; Nielsen, P.E.; Good, L. The translation start codon region is sensitive to antisense PNA inhibition in Escherichia coli. Oligonucleotides, 2003, 13(6), 427-433.
[http://dx.doi.org/10.1089/154545703322860753] [PMID: 15025910]
[52]
Nekhotiaeva, N.; Awasthi, S.K.; Nielsen, P.E.; Good, L. Inhibition of Staphylococcus aureus gene expression and growth using antisense peptide nucleic acids. Mol. Ther., 2004, 10(4), 652-659.
[http://dx.doi.org/10.1016/j.ymthe.2004.07.006] [PMID: 15451449]
[53]
Meng, J.; Wang, H.; Hou, Z.; Chen, T.; Fu, J.; Ma, X.; He, G.; Xue, X.; Jia, M.; Luo, X. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of methicillin-resistant Staphylococcus aureus and rescues mice from lethal sepsis by targeting mecA. Antimicrob. Agents Chemother., 2009, 53(7), 2871-2878.
[http://dx.doi.org/10.1128/AAC.01542-08] [PMID: 19433567]
[54]
Ralph, A.P.; Carapetis, J.R. Group a streptococcal diseases and their global burden. Curr. Top. Microbiol. Immunol., 2013, 368, 1-27.
[http://dx.doi.org/10.1007/82_2012_280] [PMID: 23242849]
[55]
Carapetis, J.R.; Steer, A.C.; Mulholland, E.K.; Weber, M. The global burden of group A streptococcal diseases. Lancet Infect. Dis., 2005, 5(11), 685-694.
[http://dx.doi.org/10.1016/S1473-3099(05)70267-X] [PMID: 16253886]
[56]
Cunningham, M.W. Pathogenesis of group A streptococcal infections and their sequelae. Adv. Exp. Med. Biol., 2008, 609, 29-42.
[http://dx.doi.org/10.1007/978-0-387-73960-1_3] [PMID: 18193655]
[57]
Logan, L.K.; McAuley, J.B.; Shulman, S.T. Macrolide treatment failure in Streptococcal pharyngitis resulting in acute rheumatic fever. Pediatrics, 2012, 129(3), e798-e802.
[http://dx.doi.org/10.1542/peds.2011-1198] [PMID: 22311996]
[58]
Patenge, N.; Pappesch, R.; Krawack, F.; Walda, C.; Mraheil, M.A.; Jacob, A.; Hain, T.; Kreikemeyer, B. Inhibition of growth and gene expression by PNA-peptide conjugates in Streptococcus pyogenes. Mol. Ther. Nucleic Acids, 2013, 2(11)e132
[http://dx.doi.org/10.1038/mtna.2013.62] [PMID: 24193033 ]
[59]
Vázquez-Boland, J.A.; Kuhn, M.; Berche, P.; Chakraborty, T.; Domínguez-Bernal, G.; Goebel, W.; González-Zorn, B.; Wehland, J.; Kreft, J. Listeria pathogenesis and molecular virulence determinants. Clin. Microbiol. Rev., 2001, 14(3), 584-640.
[http://dx.doi.org/10.1128/CMR.14.3.584-640.2001] [PMID: 11432815]
[60]
Pagliano, P.; Ascione, T.; Boccia, G.; De Caro, F.; Esposito, S. Listeria monocytogenes meningitis in the elderly: epidemiological, clinical and therapeutic findings. Infez. Med., 2016, 26(2), 105-111.
[PMID: 27367319]
[61]
Abushahba, M.F.; Mohammad, H.; Thangamani, S.; Hussein, A.A.; Seleem, M.N. Impact of different cell penetrating peptides on the efficacy of antisense therapeutics for targeting intracellular pathogens. Sci. Rep., 2016, 6, 20832.
[http://dx.doi.org/10.1038/srep20832] [PMID: 26860980]
[62]
Kelly, D.; King, T.; Aminov, R. Importance of microbial colonization of the gut in early life to the development of immunity. Mutat. Res., 2007, 622(1-2), 58-69.
[http://dx.doi.org/10.1016/j.mrfmmm.2007.03.011] [PMID: 17612575]
[63]
Kashef, N.; Djavid, G.E.; Shahbazi, S. Antimicrobial susceptibility patterns of community-acquired uropathogens in Tehran, Iran. J. Infect. Dev. Ctries., 2010, 4(4), 202-206.
[http://dx.doi.org/10.3855/jidc.540] [PMID: 20440056]
[64]
Biedenbach, D.J.; Moet, G.J.; Jones, R.N. Occurrence and antimicrobial resistance pattern comparisons among bloodstream infection isolates from the SENTRY Antimicrobial Surveillance Program (1997-2002). Diagn. Microbiol. Infect. Dis., 2004, 50(1), 59-69.
[http://dx.doi.org/10.1016/j.diagmicrobio.2004.05.003] [PMID: 15380279]
[65]
Gebre-Sealsssie, S. Antimicrobial resistance patterns of clinical bacterial isolates in southwestern Ethiopia. Ethiop. Med. J., 2007, 45(4), 363-370.
[PMID: 18326346]
[66]
Turner, S.M.; Scott-Tucker, A.; Cooper, L.M.; Henderson, I.R. Weapons of mass destruction: virulence factors of the global killer enterotoxigenic Escherichia coli. FEMS Microbiol. Lett., 2006, 263(1), 10-20.
[http://dx.doi.org/10.1111/j.1574-6968.2006.00401.x] [PMID: 16958845]
[67]
Pitout, J.D.; Laupland, K.B. Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect. Dis., 2008, 8(3), 159-166.
[http://dx.doi.org/10.1016/S1473-3099(08)70041-0] [PMID: 18291338]
[68]
Poirel, L.; Madec, J.Y.; Lupo, A.; Schink, A.K.; Kieffer, N.; Nordmann, P.; Schwarz, S. Antimicrobial resistance in Escherichia coli. Microbiol. Spec., 2018, 6(4)
[http://dx.doi.org/10.1128/9781555819804.ch13]
[69]
Bai, H.; You, Y.; Yan, H.; Meng, J.; Xue, X.; Hou, Z.; Zhou, Y.; Ma, X.; Sang, G.; Luo, X. Antisense inhibition of gene expression and growth in gram-negative bacteria by cell-penetrating peptide conjugates of peptide nucleic acids targeted to rpoD gene. Biomaterials, 2012, 33(2), 659-667.
[http://dx.doi.org/10.1016/j.biomaterials.2011.09.075] [PMID: 22000398]
[70]
Nikravesh, A.; Dryselius, R.; Faridani, O.R.; Goh, S.; Sadeghizadeh, M.; Behmanesh, M.; Ganyu, A.; Klok, E.J.; Zain, R.; Good, L. Antisense PNA accumulates in Escherichia coli and mediates a long post-antibiotic effect. Mol. Ther., 2007, 15(8), 1537-1542.
[http://dx.doi.org/10.1038/sj.mt.6300209] [PMID: 17534267]
[71]
Castillo, J.I.; Równicki, M.; Wojciechowska, M.; Trylska, J. Antimicrobial synergy between mRNA targeted peptide nucleic acid and antibiotics in E. coli. Bioorg. Med. Chem. Lett., 2018, 28(18), 3094-3098.
[http://dx.doi.org/10.1016/j.bmcl.2018.07.037] [PMID: 30082123]
[72]
Ghosh, S.; Saini, S.; Saraogi, I. Peptide nucleic acid mediated inhibition of the bacterial signal recognition particle. Chem. Commun. (Camb.), 2018, 54(59), 8257-8260.
[http://dx.doi.org/10.1039/C8CC04715D] [PMID: 29989112]
[73]
Hatamoto, M.; Nakai, K.; Ohashi, A.; Imachi, H. Sequence-specific bacterial growth inhibition by peptide nucleic acid targeted to the mRNA binding site of 16S rRNA. Appl. Microbiol. Biotechnol., 2009, 84(6), 1161-1168.
[http://dx.doi.org/10.1007/s00253-009-2099-0] [PMID: 19578844]
[74]
Kulik, M.; Markowska-Zagrajek, A.; Wojciechowska, M.; Grzela, R.; Wituła, T.; Trylska, J. Helix 69 of Escherichia coli 23S ribosomal RNA as a peptide nucleic acid target. Biochimie, 2017, 138, 32-42.
[http://dx.doi.org/10.1016/j.biochi.2017.04.001] [PMID: 28396015]
[75]
Huang, X.W.; Pan, J.; An, X.Y.; Zhuge, H.X. Inhibition of bacterial translation and growth by peptide nucleic acids targeted to domain II of 23S rRNA. J. Pept. Sci., 2007, 13(4), 220-226.
[http://dx.doi.org/10.1002/psc.835] [PMID: 17266023]
[76]
Gruegelsiepe, H.; Brandt, O.; Hartmann, R.K. Antisense inhibition of RNase P: mechanistic aspects and application to live bacteria. J. Biol. Chem., 2006, 281(41), 30613-30620.
[http://dx.doi.org/10.1074/jbc.M603346200] [PMID: 16901906]
[77]
Navon-Venezia, S.; Kondratyeva, K.; Carattoli, A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol. Rev., 2017, 41(3), 252-275.
[http://dx.doi.org/10.1093/femsre/fux013] [PMID: 28521338]
[78]
Bassetti, M.; Righi, E.; Carnelutti, A.; Graziano, E.; Russo, A. Multidrug-resistant Klebsiella pneumoniae: challenges for treatment, prevention and infection control. Expert Rev. Anti Infect. Ther., 2018, 16(10), 749-761.
[http://dx.doi.org/10.1080/14787210.2018.1522249] [PMID: 30207815]
[79]
Zhang, R.; Dong, N.; Huang, Y.; Zhou, H.; Xie, M.; Chan, E.W.; Hu, Y.; Cai, J.; Chen, S. Evolution of tigecycline- and colistin-resistant CRKP (carbapenem-resistant Klebsiella pneumoniae) in vivo and its persistence in the GI tract. Emerg. Microbes Infect., 2018, 7(1), 127.
[http://dx.doi.org/10.1038/s41426-018-0129-7] [PMID: 29985412]
[80]
Jeannin, P.; Magistrelli, G.; Goetsch, L.; Haeuw, J.F.; Thieblemont, N.; Bonnefoy, J.Y.; Delneste, Y. Outer membrane protein A (OmpA): a new pathogen-associated molecular pattern that interacts with antigen presenting cells-impact on vaccine strategies. Vaccine, 2002, 20(Suppl. 4), A23-A27.
[http://dx.doi.org/10.1016/S0264-410X(02)00383-3] [PMID: 12477424]
[81]
Kurupati, P.; Tan, K.S.; Kumarasinghe, G.; Poh, C.L. Inhibition of gene expression and growth by antisense peptide nucleic acids in a multiresistant beta-lactamase-producing Klebsiella pneumoniae strain. Antimicrob. Agents Chemother., 2007, 51(3), 805-811.
[http://dx.doi.org/10.1128/AAC.00709-06] [PMID: 17158940]
[82]
Chalker, R.B.; Blaser, M.J. A review of human salmonellosis: III. Magnitude of Salmonella infection in the United States. Rev. Infect. Dis., 1988, 10(1), 111-124.
[http://dx.doi.org/10.1093/clinids/10.1.111] [PMID: 2832925]
[83]
Kariuki, S.; Gordon, M.A.; Feasey, N.; Parry, C.M. Antimicrobial resistance and management of invasive Salmonella disease. Vaccine, 2015, 33(Suppl. 03), C21-C29.
[http://dx.doi.org/10.1016/j.vaccine.2015.03.102] [PMID: 25912288]
[84]
Soofi, M.A.; Seleem, M.N. Targeting essential genes in Salmonella enterica serovar typhimurium with antisense peptide nucleic acid. Antimicrob. Agents Chemother., 2012, 56(12), 6407-6409.
[http://dx.doi.org/10.1128/AAC.01437-12] [PMID: 23006748]
[85]
Mondhe, M.; Chessher, A.; Goh, S.; Good, L.; Stach, J.E. Species-selective killing of bacteria by antimicrobial peptide-PNAs. PLoS One, 2014, 9(2)e89082
[http://dx.doi.org/10.1371/journal.pone.0089082] [PMID: 24558473]
[86]
Silby, M.W.; Winstanley, C.; Godfrey, S.A.; Levy, S.B.; Jackson, R.W. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev., 2011, 35(4), 652-680.
[http://dx.doi.org/10.1111/j.1574-6976.2011.00269.x] [PMID: 21361996]
[87]
Gellatly, S.L.; Hancock, R.E. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog. Dis., 2013, 67(3), 159-173.
[http://dx.doi.org/10.1111/2049-632X.12033] [PMID: 23620179]
[88]
Cryer, J.; Schipor, I.; Perloff, J.R.; Palmer, J.N. Evidence of bacterial biofilms in human chronic sinusitis. ORL J. Otorhinolaryngol. Relat. Spec., 2004, 66(3), 155-158.
[http://dx.doi.org/10.1159/000079994] [PMID: 15316237]
[89]
Kerr, K.G.; Snelling, A.M. Pseudomonas aeruginosa: a formidable and ever-present adversary. J. Hosp. Infect., 2009, 73(4), 338-344.
[http://dx.doi.org/10.1016/j.jhin.2009.04.020] [PMID: 19699552]
[90]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[91]
Hu, J.; Xia, Y.; Xiong, Y.; Li, X.F.; Su, X.Y. Inhibition of biofilm formation by the antisense peptide nucleic acids targeted at the motA gene in Pseudomonas aeruginosa PAO1 strain. World J. Microbiol. Biotechnol., 2011, 27(9), 1981-1987.
[http://dx.doi.org/10.1007/s11274-011-0658-x]
[92]
Ghosal, A.; Nielsen, P.E. Potent antibacterial antisense peptide-peptide nucleic acid conjugates against Pseudomonas aeruginosa. Nucleic Acid Ther., 2012, 22(5), 323-334.
[http://dx.doi.org/10.1089/nat.2012.0370] [PMID: 23030590]
[93]
Montagner, G.; Bezzerri, V.; Cabrini, G.; Fabbri, E.; Borgatti, M.; Lampronti, I.; Finotti, A.; Nielsen, P.E.; Gambari, R. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system. Int. J. Biol. Macromol., 2017, 99, 492-498.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.02.011] [PMID: 28167114]
[94]
Maekawa, K.; Azuma, M.; Okuno, Y.; Tsukamoto, T.; Nishiguchi, K.; Setsukinai, K.; Maki, H.; Numata, Y.; Takemoto, H.; Rokushima, M. Antisense peptide nucleic acid–peptide conjugates for functional analyses of genes in Pseudomonas aeruginosa. Bioorg. Med. Chem., 2015, 23(22), 7234-7239.
[http://dx.doi.org/10.1016/j.bmc.2015.10.020] [PMID: 26602085]
[95]
Sievert, D.M.; Ricks, P.; Edwards, J.R.; Schneider, A.; Patel, J.; Srinivasan, A.; Kallen, A.; Limbago, B.; Fridkin, S. National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities. Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the national healthcare safety network at the centers for disease control and prevention, 2009-2010. Infect. Control Hosp. Epidemiol., 2013, 34(1), 1-14.
[http://dx.doi.org/10.1086/668770] [PMID: 23221186]
[96]
Nowak, J.; Zander, E.; Stefanik, D.; Higgins, P.G.; Roca, I.; Vila, J.; McConnell, M.J.; Cisneros, J.M.; Seifert, H. MagicBullet Working Group WP4. High incidence of pandrug-resistant Acinetobacter baumannii isolates collected from patients with ventilator-associated pneumonia in Greece, Italy and Spain as part of the MagicBullet clinical trial. J. Antimicrob. Chemother., 2017, 72(12), 3277-3282.
[http://dx.doi.org/10.1093/jac/dkx322] [PMID: 28961773]
[97]
Wang, H.; He, Y.; Xia, Y.; Wang, L.; Liang, S. Inhibition of gene expression and growth of multidrug-resistant Acinetobacter baumannii by antisense peptide nucleic acids. Mol. Biol. Rep., 2014, 41(11), 7535-7541.
[http://dx.doi.org/10.1007/s11033-014-3643-2] [PMID: 25091942]
[98]
Grubb, M.S.; Spaugh, D.C. Microbiology of acute otitis media, Puget Sound region, 2005-2009. Clin. Pediatr. (Phila.), 2010, 49(8), 727-730.
[http://dx.doi.org/10.1177/0009922810361365] [PMID: 20185479]
[99]
Takei, S.; Hotomi, M.; Yamanaka, N. Minimal biofilm eradication concentration of antimicrobial agents against nontypeable Haemophilus influenzae isolated from middle ear fluids of intractable acute otitis media. J. Infect. Chemother., 2013, 19(3), 504-509.
[http://dx.doi.org/10.1007/s10156-013-0592-y] [PMID: 23549738]
[100]
Uemura, Y.; Qin, L.; Gotoh, K.; Ohta, K.; Nakamura, K.; Watanabe, H. Comparison study of single and concurrent administrations of carbapenem, new quinolone, and macrolide against in vitro nontypeable Haemophilus influenzae mature biofilms. J. Infect. Chemother., 2013, 19(5), 902-908.
[http://dx.doi.org/10.1007/s10156-013-0598-5] [PMID: 23605250]
[101]
Hollett, R.B. Canine brucellosis: outbreaks and compliance. Theriogenology, 2006, 66(3), 575-587.
[http://dx.doi.org/10.1016/j.theriogenology.2006.04.011] [PMID: 16716382]
[102]
Seleem, M.N.; Boyle, S.M.; Sriranganathan, N. Brucellosis: a re-emerging zoonosis. Vet. Microbiol., 2010, 140(3-4), 392-398.
[http://dx.doi.org/10.1016/j.vetmic.2009.06.021] [PMID: 19604656]
[103]
Dean, A.S.; Crump, L.; Greter, H.; Hattendorf, J.; Schelling, E.; Zinsstag, J. Clinical manifestations of human brucellosis: a systematic review and meta-analysis. PLoS Negl. Trop. Dis., 2012, 6(12)e1929
[http://dx.doi.org/10.1371/journal.pntd.0001929] [PMID: 23236528]
[104]
Halling, S.M.; Jensen, A.E. Intrinsic and selected resistance to antibiotics binding the ribosome: analyses of Brucella 23S rrn, L4, L22, EF-Tu1, EF-Tu2, efflux and phylogenetic implications. BMC Microbiol., 2006, 6, 84.
[http://dx.doi.org/10.1186/1471-2180-6-84] [PMID: 17014718]
[105]
Hajishengallis, G.; Darveau, R.P.; Curtis, M.A. The keystone-pathogen hypothesis. Nat. Rev. Microbiol., 2012, 10(10), 717-725.
[http://dx.doi.org/10.1038/nrmicro2873] [PMID: 22941505]
[106]
Bahekar, A.A.; Singh, S.; Saha, S.; Molnar, J.; Arora, R. The prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am. Heart J., 2007, 154(5), 830-837.
[http://dx.doi.org/10.1016/j.ahj.2007.06.037] [PMID: 17967586]
[107]
Demmer, R.T.; Jacobs, D.R. Jr.; Desvarieux, M. Periodontal disease and incident type 2 diabetes: results from the First National Health and Nutrition Examination Survey and its epidemiologic follow-up study. Diabetes Care, 2008, 31(7), 1373-1379.
[http://dx.doi.org/10.2337/dc08-0026] [PMID: 18390797]
[108]
Joseph, R.; Rajappan, S.; Nath, S.G.; Paul, B.J. Association between chronic periodontitis and rheumatoid arthritis: a hospital-based case-control study. Rheumatol. Int., 2013, 33(1), 103-109.
[http://dx.doi.org/10.1007/s00296-011-2284-1] [PMID: 22228465]
[109]
Kudo, C.; Shin, W.S.; Minabe, M.; Harai, K.; Kato, K.; Seino, H.; Goke, E.; Sasaki, N.; Fujino, T.; Kuribayashi, N.; Pearce, Y.O.; Taira, M.; Maeda, H.; Takashiba, S. Periodontitis and atherosclerosis project-Tokyo and Chiba consortiums. Analysis of the relationship between periodontal disease and atherosclerosis within a local clinical system: a cross-sectional observational pilot study. Odontology, 2015, 103(3), 314-321.
[http://dx.doi.org/10.1007/s10266-014-0172-3] [PMID: 25119713]
[110]
Sugimoto, S.; Maeda, H.; Kitamatsu, M.; Nishikawa, I.; Shida, M. Selective growth inhibition of Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans by antisense peptide nucleic acids. Mol. Cell. Probes, 2019, 43, 45-49.
[http://dx.doi.org/10.1016/j.mcp.2018.11.006] [PMID: 30471338]
[111]
Jagielski, T.; Minias, A.; van Ingen, J.; Rastogi, N.; Brzostek, A.; Żaczek, A.; Dziadek, J. Methodological and clinical aspects of the molecular epidemiology of Mycobacterium tuberculosis and other mycobacteria. Clin. Microbiol. Rev., 2016, 29(2), 239-290.
[http://dx.doi.org/10.1128/CMR.00055-15] [PMID: 26912567]
[112]
Zumla, A.; George, A.; Sharma, V.; Herbert, R.H.; Oxley, A. Baroness Masham of Ilton, Oliver, M. The WHO 2014 global tuberculosis report--further to go. Lancet Glob. Health, 2015, 3(1), e10-e12.
[http://dx.doi.org/10.1016/S2214-109X(14)70361-4] [PMID: 25539957]
[113]
Orenstein, E.W.; Basu, S.; Shah, N.S.; Andrews, J.R.; Friedland, G.H.; Moll, A.P.; Gandhi, N.R.; Galvani, A.P. Treatment outcomes among patients with multidrug-resistant tuberculosis: systematic review and meta-analysis. Lancet Infect. Dis., 2009, 9(3), 153-161.
[http://dx.doi.org/10.1016/S1473-3099(09)70041-6] [PMID: 19246019]
[114]
Kulyté, A.; Nekhotiaeva, N.; Awasthi, S.K.; Good, L. Inhibition of Mycobacterium smegmatis gene expression and growth using antisense peptide nucleic acids. J. Mol. Microbiol. Biotechnol., 2005, 9(2), 101-109.
[http://dx.doi.org/10.1159/000088840] [PMID: 16319499]
[115]
Aldrian-Herrada, G.; Desarménien, M.G.; Orcel, H.; Boissin-Agasse, L.; Méry, J.; Brugidou, J.; Rabié, A. A peptide nucleic acid (PNA) is more rapidly internalized in cultured neurons when coupled to a retro-inverso delivery peptide. The antisense activity depresses the target mRNA and protein in magnocellular oxytocin neurons. Nucleic Acids Res., 1998, 26(21), 4910-4916.
[http://dx.doi.org/10.1093/nar/26.21.4910] [PMID: 9776752]
[116]
Pooga, M.; Soomets, U.; Hällbrink, M.; Valkna, A.; Saar, K.; Rezaei, K.; Kahl, U.; Hao, J.X.; Xu, X.J.; Wiesenfeld-Hallin, Z.; Hökfelt, T.; Bartfai, T.; Langel, U. Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat. Biotechnol., 1998, 16(9), 857-861.
[http://dx.doi.org/10.1038/nbt0998-857] [PMID: 9743120]
[117]
Fabani, M.M.; Gait, M.J. miR-122 targeting with LNA/2′-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA, 2008, 14(2), 336-346.
[http://dx.doi.org/10.1261/rna.844108] [PMID: 18073344]
[118]
Ghosal, A.; Vitali, A.; Stach, J.E.M.; Nielsen, P.E. Role of SbmA in the uptake of peptide nucleic acid (PNA)-peptide conjugates in E. coli. ACS Chem. Biol., 2013, 8(2), 360-367.
[http://dx.doi.org/10.1021/cb300434e] [PMID: 23138594]
[119]
Readman, J.B.; Dickson, G.; Coldham, N.G. Tetrahedral DNA nanoparticle vector for intracellular delivery of targeted peptide nucleic acid antisense agents to restore antibiotic sensitivity in cefotaxime-resistant Escherichia coli. Nucl Acid Ther., 2017, 27(3), 176-181.
[http://dx.doi.org/10.1089/nat.2016.0644] [PMID: 28080251]
[120]
Równicki, M.; Wojciechowska, M.; Wierzba, A.J.; Czarnecki, J.; Bartosik, D.; Gryko, D.; Trylska, J. Vitamin B12 as a carrier of peptide nucleic acid (PNA) into bacterial cells. Sci. Rep., 2017, 7(1), 7644.
[http://dx.doi.org/10.1038/s41598-017-08032-8] [PMID: 28794451]
[121]
Vives, E. Present and future of cell-penetrating peptide mediated delivery systems: “is the Trojan horse too wild to go only to Troy?”. J. Control. Release, 2005, 109(1-3), 77-85.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.032] [PMID: 16271792]
[122]
Puckett, S.E.; Reese, K.A.; Mitev, G.M.; Mullen, V.; Johnson, R.C.; Pomraning, K.R.; Mellbye, B.L.; Tilley, L.D.; Iversen, P.L.; Freitag, M.; Geller, B.L. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother., 2012, 56(12), 6147-6153.
[http://dx.doi.org/10.1128/AAC.00850-12] [PMID: 22985881]
[123]
Sforza, S.; Tedeschi, T.; Corradini, R.; Marchelli, R. Induction of helical handedness and DNA binding properties of peptide nucleic acids (PNAs) with two stereogenic centres. Eur. J. Org. Chem., 2007, 2007(35), 5879-5885.
[http://dx.doi.org/10.1002/ejoc.200700644]
[124]
Braasch, D.A.; Corey, D.R. Synthesis, analysis, purification, and intracellular delivery of peptide nucleic acids. Methods, 2001, 23(2), 97-107.
[http://dx.doi.org/10.1006/meth.2000.1111] [PMID: 11181029]
[125]
Boyarskaya, N.P.; Kirillova, Y.G.; Stotland, E.A.; Prokhorov, D.I.; Zvonkova, E.N.; Shvets, V.I. Synthesis of two new thymine-containing negatively charged PNA monomers. Dokl. Chem., 2006, 408(1), 57-60.
[http://dx.doi.org/10.1134/S0012500806050016]
[126]
Bonora, G.M.; Drioli, S.; Ballico, M.; Faccini, A.; Corradini, R.; Cogoi, S.; Xodo, L. PNA conjugated to high-molecular weight poly(ethylene glycol): synthesis and properties. Nucleosides Nucleotides Nucleic Acids, 2007, 26(6-7), 661-664.
[http://dx.doi.org/10.1080/15257770701490548] [PMID: 18066875]
[127]
Rapireddy, S.; Bahal, R.; Ly, D.H. Strand invasion of mixed-sequence, double-helical B-DNA by γ-peptide nucleic acids containing G-clamp nucleobases under physiological conditions. Biochemistry, 2011, 50(19), 3913-3918.
[http://dx.doi.org/10.1021/bi2002554] [PMID: 21476606]
[128]
Bahal, R.; Sahu, B.; Rapireddy, S.; Lee, C.M.; Ly, D.H. Sequence-unrestricted, Watson-Crick recognition of double helical B-DNA by (R)-miniPEG-γPNAs. ChemBioChem, 2012, 13(1), 56-60.
[http://dx.doi.org/10.1002/cbic.201100646] [PMID: 22135012]
[129]
Dong, B.; Nie, K.X.; Shi, H.H.; Yao, X.X.; Chao, L.M.; Liang, B.; Liu, Z.C. Synthesis and characterization of (R)-miniPEG-containing chiral γ-peptide nucleic acids using the Fmoc strategy. Tetrahedron Lett., 2019, 60(21), 1430-1433.
[http://dx.doi.org/10.1016/j.tetlet.2019.04.038]
[130]
Dong, B.; Nie, K.; Shi, H.; Chao, L.; Ma, M.; Gao, F.; Liang, B.; Chen, W.; Long, M.; Liu, Z. Film-spotting chiral miniPEG-γPNA array for BRCA1 gene mutation detection. Biosens. Bioelectron., 2019, 136, 1-7.
[http://dx.doi.org/10.1016/j.bios.2019.04.027] [PMID: 31026759]
[131]
McMahon, B.M.; Mays, D.; Lipsky, J.; Stewart, J.A.; Fauq, A.; Richelson, E. Pharmacokinetics and tissue distribution of a peptide nucleic acid after intravenous administration. Antisense Nucleic Acid Drug Dev., 2002, 12(2), 65-70.
[http://dx.doi.org/10.1089/108729002760070803] [PMID: 12074366]
[132]
Quijano, E.; Bahal, R.; Ricciardi, A.; Saltzman, W.M.; Glazer, P.M. Therapeutic Peptide Nucleic Acids: Principles, Limitations, and Opportunities. Yale J. Biol. Med., 2017, 90(4), 583-598.
[PMID: 29259523]
[133]
Hwang, D.; Lim, Y.H. Resveratrol antibacterial activity against Escherichia coli is mediated by Z-ring formation inhibition via suppression of FtsZ expression. Sci. Rep., 2015, 5(5), 10029.
[http://dx.doi.org/10.1038/srep10029] [PMID: 25942564]
[134]
Tyler, B.M.; Jansen, K.; McCormick, D.J.; Douglas, C.L.; Boules, M.; Stewart, J.A.; Zhao, L.; Lacy, B.; Cusack, B.; Fauq, A.; Richelson, E. Peptide nucleic acids targeted to the neurotensin receptor and administered i.p. cross the blood-brain barrier and specifically reduce gene expression. Proc. Natl. Acad. Sci. USA, 1999, 96(12), 7053-7058.
[http://dx.doi.org/10.1073/pnas.96.12.7053] [PMID: 10359837]
[135]
Nielsen, P.E. Peptide nucleic acids as antibacterial agents via the antisense principle. Expert Opin. Investig. Drugs,, 2001, 10(2), 331-341.
[http://dx.doi.org/10.1517/13543784.10.2.331] [PMID: 11178345]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy