Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Radioactive Gold Nanoparticle in Two Forms (19879Au GNPs and 99mTc-GNPs) for Lung Cancer Antiproliferative Induction and Intralesional Imaging: A Proof of Concept

Author(s): Hongwei Xu, Shengpan Jiang, Jimin Wang, Xuebing Li, Tingwei Wu, Pengfei Xu, Ralph Santos-Oliveira and Aohua Zhang*

Volume 20, Issue 14, 2020

Page: [1648 - 1653] Pages: 6

DOI: 10.2174/1871520620666200529113818

Price: $65

Abstract

Background: Lung cancer is among the most common cancers worldwide, responsible for 13% of all new cancer cases. Also, it is the leading cause of cancer death among both men and women. In this scenario, an effective and efficient treatment is required.

Objective: Production of two gold nanoparticles: 198Au and 99mTc-Au. The first one has been produced from irradiation of the 197Au in order to produce a beta-emitter gold nanoparticle for cancer therapy. The second one has been produced from the radiolabeling of gold nanoparticles with technetium 99 metastable in order to produce imaging nanoagent.

Methods: The 198Au nanoparticles were produced by irradiation and identified by hyper-purity germanium (HPGe). They were then evaluated in vitro in order to confirm the behavior on cell proliferation of lung cancer cell lines by the MTT methodology using A549 cells. The 99mTc-Au nanoparticles were produced by directradiolabeling with 99mTc and evaluated in vivo as intralesional nanoagent.

Results: The results showed that in both cases, all the nanoparticles have performed their duties with excellence. The 198Au nanoparticles were capable to kill lung cancer cells, while 99mTc-Au was capable to image the tumor after intralesional injection. In addition, 99mTc-Au nanoparticles were useful for biodistribution assay imaging, showing the main organs responsible for the nanoparticle uptake in healthy animals.

Conclusion: Both gold nanoparticles showed to be a highly efficient nanoagent for both: therapy and diagnosing of lung cancer.

Keywords: Radioactive gold, lung cancer, nanoparticles, theranostic, imaging, cancer therapy.

Graphical Abstract

[1]
World Health Organization . (2018).; Latest global cancer data: Cancer burden rises to 18.1 million new cases and 9.6 million cancer deaths in 2018. Available at:. https://www.iarc.fr/wp-content/uploads/2018/09/pr263_E.pdf Last access in: Nov, 2019.
[2]
Torre, L.A.; Siegel, R.L.; Jemal, A. Lung Cancer Statistics. Adv. Exp. Med. Biol., 2016, 893, 1-19.
[http://dx.doi.org/10.1007/978-3-319-24223-1_1] [PMID: 26667336]
[3]
The Global Burden of Disease 2015 Mortality and Causes of Death Collaborators. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet, 2016, 388(10053), 1459-1544.
[4]
Institute for Health Metrics and Evaluation (IHME). Findings from the Global Burden of Disease Study 2017; IHME: Seattle, WA, 2018.
[5]
Tannock, I. Cell kinetics and chemotherapy: A critical review. Cancer Treat. Rep., 1978, 62(8), 1117-1133.
[PMID: 356975]
[6]
Bahl, A.; Falk, S. Meta-analysis of single agents in the chemotherapy of NSCLC: what do we want to know? Br. J. Cancer, 2001, 84(9), 1143-1145.
[http://dx.doi.org/10.1054/bjoc.2000.1740] [PMID: 11336462]
[7]
Sriraman, S.K.; Aryasomayajula, B.; Torchilin, V.P. Barriers to drug delivery in solid tumors. Tissue Barriers, 2014, 2(3) e29528
[http://dx.doi.org/10.4161/tisb.29528] [PMID: 25068098]
[8]
Mangal, S.; Gao, W.; Li, T.; Zhou, Q.T. Pulmonary delivery of nanoparticle chemotherapy for the treatment of lung cancers: Challenges and opportunities. Acta Pharmacol. Sin., 2017, 38(6), 782-797.
[http://dx.doi.org/10.1038/aps.2017.34] [PMID: 28504252]
[9]
Cobley, C.M.; Chen, J.; Cho, E.C.; Wang, L.V.; Xia, Y. Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev., 2011, 40(1), 44-56.
[http://dx.doi.org/10.1039/B821763G] [PMID: 20818451]
[10]
Kumar, D.; Saini, N.; Jain, N.; Sareen, R.; Pandit, V. Gold nanoparticles: An era in bionanotechnology. Expert Opin. Drug Deliv., 2013, 10(3), 397-409.
[http://dx.doi.org/10.1517/17425247.2013.749854] [PMID: 23289421]
[11]
Meir, R.; Motiei, M.; Popovtzer, R. Gold nanoparticles for in vivo cell tracking. Nanomedicine (Lond.), 2014, 9(13), 2059-2069.
[http://dx.doi.org/10.2217/nnm.14.129] [PMID: 25343353]
[12]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[13]
Sah, B.; Shrestha, S.; Wu, J.; Vanasse, A.; Cooper, L.N.; Antosh, M. Gold nanoparticles enhance radiation therapy at low concentrations, and remain in tumors for days. J. Biomed. Nanotechnol., 2019, 15(9), 1960-1967.
[http://dx.doi.org/10.1166/jbn.2019.2816] [PMID: 31387682]
[14]
Kassis, A.I. Therapeutic radionuclides: Biophysical and radiobiologic principles. Semin. Nucl. Med., 2008, 38(5), 358-366.
[http://dx.doi.org/10.1053/j.semnuclmed.2008.05.002] [PMID: 18662557]
[15]
Müller, C.; van der Meulen, N.P.; Benešová, M.; Schibli, R. Therapeutic radiometals beyond 177Lu and 90Y: Production and application of promising α-particle, β-particle, and auger electron emitters. J. Nucl. Med., 2017, 58(Suppl. 2), 91S-96S.
[http://dx.doi.org/10.2967/jnumed.116.186825] [PMID: 28864619]
[16]
McQuaid, H.N.; Muir, M.F.; Taggart, L.E.; McMahon, S.J.; Coulter, J.A.; Hyland, W.B.; Jain, S.; Butterworth, K.T.; Schettino, G.; Prise, K.M.; Hirst, D.G.; Botchway, S.W.; Currell, F.J. Imaging and radiation effects of gold nanoparticles in tumour cells. Sci. Rep., 2016, 6(1), 19442.
[http://dx.doi.org/10.1038/srep19442] [PMID: 26787230]
[17]
Toro, M.C.; Schlegel, J.P.; Giraldo, C.H.C. Direct synthesis of radioactive gold nanoparticles using a research nuclear reactor. J. Nucl. Med. Technol., 2018, 117 206367
[18]
Junior, J.A.S.; Cardoso, J.R.F.; Silva, C.M.; Silveira, S.V.; Amaral, R.S. Analysis of the 40K levels in soil using gamma spectrometry. Braz. Arch. Biol. Technol., 2005, 48(2)
[19]
Portilho, F.L.; Pinto, S.R.; De Barros, A.O.S.; Helal-Neto, E.; Dos Santos, S.N.; Bernardes, E.S. In loco retention effect of magnetic core mesoporous sílica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer. Artif. Cells Nanomed. Biotechnol., 2018, 46, 725-733.
[20]
Almeida, Junior, J.C.; Helal-Neto, E.; Pinto, S.R.; Dos Santos, S.N.; Bernardes, E.S.; Al-Qahtani, M.; Nigro, F.; Alencar, L.M.R.; Ricci-Junior, E.; Santos-Oliveira, R. Colorectal adenocarcinoma: Imaging using 5-fluoracil nanoparticles labeled with technetium 99 metastable. Curr. Pharm. Des., 2019, 25(30), 3282-3288.
[http://dx.doi.org/10.2174/1381612825666190816235147] [PMID: 31419931]
[21]
Santos do Carmo, F.; Ricci-Junior, E.; Cerqueira-Coutinho, C.; Albernaz, M.S.; Bernardes, E.S.; Missailidis, S.; Santos-Oliveira, R. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int. J. Nanomed, 2016, 12, 53-60.
[http://dx.doi.org/10.2147/IJN.S118482] [PMID: 28053523]
[22]
Salvi, R.; Cerqueira-Coutinho, C.; Ricci-Junior, E.; Dos Santos, S.N.; Pinto, S.R.; Bernardes, E.S.; Barros de Araujo, P.L.; Santos-Oliveira, R. Diagnosing lung cancer using etoposide microparticles labeled with 99mTc. Artif. Cells Nanomed. Biotechnol., 2018, 46(2), 341-345.
[http://dx.doi.org/10.1080/21691401.2017.1307848] [PMID: 28355888]
[23]
Braga, T.L.; Pinto, S.R.; Dos Reis, S.R.R.; Portilho, F.L.; da Silva de Barros, A.O.; Bernardes, E.S.; Dos Santos, S.N.; Alencar, L.M.R.; Ricci-Junior, E.; Santos-Oliveira, R. Octreotide nanoparticles showed affinity for in vivo MIA Paca-2 inducted pancreas ductal adenocarcinoma mimicking pancreatic polypetide-secreting tumor of the distal pancreas (PPoma). Pharm. Res., 2019, 36(10), 143.
[http://dx.doi.org/10.1007/s11095-019-2678-4] [PMID: 31385111]
[24]
Kennedy, L.C.; Bickford, L.R.; Lewinski, N.A.; Coughlin, A.J.; Hu, Y.; Day, E.S.; West, J.L.; Drezek, R.A. A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small, 2011, 7(2), 169-183.
[http://dx.doi.org/10.1002/smll.201000134] [PMID: 21213377]
[25]
Almeida, J.P.M.; Figueroa, E.R.; Drezek, R.A. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine (Lond.), 2014, 10(3), 503-514.
[http://dx.doi.org/10.1016/j.nano.2013.09.011] [PMID: 24103304]
[26]
Lim, Z.Z.; Li, J.E.; Ng, C.T.; Yung, L.Y.; Bay, B.H. Gold nanoparticles in cancer therapy. Acta Pharmacol. Sin., 2011, 32(8), 983-990.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[27]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[28]
Kudgus, R.A.; Bhattacharya, R.; Mukherjee, P. Cancer nanotechnology: Emerging role of gold nanoconjugates. Anticancer. Agents Med. Chem., 2011, 11(10), 965-973.
[http://dx.doi.org/10.2174/187152011797927652] [PMID: 21864234]
[29]
Bergonié, J.; Tribondeau, L. Interpretation of some results from radiotherapy and an attempt to determine a rational treatment technique. Yale J. Biol. Med., 2003, 76(4-6), 181-182.
[PMID: 15482657]
[30]
Schaller, B. Molecular Imaging; InTech: UK, 2012.
[31]
Costa, B.; Ilem-Ozdemir, D.; Santos-Oliveira, R. Technetium-99m metastable radiochemistry for pharmaceutical applications: Old chemistry for new products. J. Coord. Chem., 2019, 72(11), 1759-1784.
[http://dx.doi.org/10.1080/00958972.2019.1632838]
[32]
Same, S.; Aghanejad, A.; Akbari Nakhjavani, S.; Barar, J.; Omidi, Y. Radiolabeled theranostics: Magnetic and gold nanoparticles. Bioimpacts, 2016, 6(3), 169-181.
[http://dx.doi.org/10.15171/bi.2016.23] [PMID: 27853680]
[33]
Gholami, Y.H.; Maschmeyer, R.; Kuncic, Z. Radio-enhancement effects by radiolabeled nanoparticles. Sci. Rep., 2019, 9(1), 14346.
[http://dx.doi.org/10.1038/s41598-019-50861-2] [PMID: 31586146]
[34]
Peng, J.; Liang, X. Progress in research on gold nanoparticles in cancer management. Medicine (Baltimore), 2019, 98(18) e15311
[http://dx.doi.org/10.1097/MD.0000000000015311] [PMID: 31045767]
[35]
Garcia Toro, M.C.; Schlegel, J.P.; Castano Giraldo, C.H. Direct synthesis of radioactive gold nanoparticles using a research nuclear reactor. J. Nucl. Med. Technol., 2018, 46(3), 280-284.
[http://dx.doi.org/10.2967/jnmt.117.206367] [PMID: 29724801]
[36]
Chanda, N.; Kan, P.; Watkinson, L.D.; Shukla, R.; Zambre, A.; Carmack, T.L.; Engelbrecht, H.; Lever, J.R.; Katti, K.; Fent, G.M.; Casteel, S.W.; Smith, C.J.; Miller, W.H.; Jurisson, S.; Boote, E.; Robertson, J.D.; Cutler, C.; Dobrovolskaia, M.; Kannan, R.; Katti, K.V. Radioactive gold nanoparticles in cancer therapy: Therapeutic efficacy studies of GA-198AuNP nanoconstruct in prostate tumor-bearing mice. Nanomedicine (Lond.), 2010, 6(2), 201-209.
[http://dx.doi.org/10.1016/j.nano.2009.11.001] [PMID: 19914401]
[37]
Kannan, R.; Zambre, A.; Chanda, N.; Kulkarni, R.; Shukla, R.; Katti, K.; Upendran, A.; Cutler, C.; Boote, E.; Katti, K.V. Functionalized radioactive gold nanoparticles in tumor therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2012, 4(1), 42-51.
[http://dx.doi.org/10.1002/wnan.161] [PMID: 21953803]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy