Review Article

肺动脉高压中的一氧化氮途径:发病机制,生物标志物和药物目标。

卷 27, 期 42, 2020

页: [7168 - 7188] 页: 21

弟呕挨: 10.2174/0929867327666200522215047

价格: $65

摘要

肺内皮中一氧化氮(NO)通路的改变导致血管平滑肌张力增加和血管重塑,从而促进了肺动脉高压(PAH)的发展和进展。内皮NO合酶(eNOS)的表达减少和功能障碍以及阻止eNOS功能的因素的积累消除了肺NO信号传导。可以通过检测呼出气中的一氧化氮或测量血液或尿液中NO的降解产物(亚硝酸盐,硝酸盐,S-亚硝基硫醇)来评估肺血管系统的NO缺乏症。这些非侵入性生物标志物可能显示出与肺血流动力学变化相关并预测对治疗反应的潜力。当前的药物疗法旨在通过抑制NO的降解(磷酸二酯酶-5抑制剂)或增加内皮环鸟苷单磷酸的形成来刺激肺部NO信号传导,后者介导该途径的下游作用(可溶性鸟苷酸环化酶敏化剂)。最新数据支持亚硝酸盐化合物和富含硝酸盐的膳食补充剂可能会增加肺NO的利用率并降低血管阻力。这篇综述总结了关于NO途径参与PAH发病机制的当前知识,探索了肺NO的新颖且易于检测的生物标志物。

关键词: 肺动脉高压,一氧化氮,一氧化氮合酶,FENO,生物标志物,系统性硬化症。

[1]
Galiè, N.; Humbert, M.; Vachiery, J.L.; Gibbs, S.; Lang, I.; Torbicki, A.; Simonneau, G.; Peacock, A.; Vonk Noordegraaf, A.; Beghetti, M.; Ghofrani, A.; Gomez Sanchez, M.A.; Hansmann, G.; Klepetko, W.; Lancellotti, P.; Matucci, M.; McDonagh, T.; Pierard, L.A.; Trindade, P.T.; Zompatori, M.; Hoeper, M. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension: the joint task force for the diagnosis and treatment of pulmonary hypertension of the European society of cardiology (ESC) and the European respiratory society (ERS): endorsed by: association for European paediatric and congenital cardiology (AEPC), international society for heart and lung transplantation (ISHLT). Eur. Respir. J., 2015, 46(4), 903-975.
[http://dx.doi.org/10.1183/13993003.01032-2015] [PMID: 26318161]
[2]
D’Alonzo, G.E.; Barst, R.J.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Kernis, J.T. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann. Intern. Med., 1991, 115(5), 343-349.
[http://dx.doi.org/10.7326/0003-4819-115-5-343] [PMID: 1863023]
[3]
Humbert, M.; Guignabert, C.; Bonnet, S.; Dorfmüller, P.; Klinger, J.R.; Nicolls, M.R.; Olschewski, A.J.; Pullamsetti, S.S.; Schermuly, R.T.; Stenmark, K.R.; Rabinovitch, M. Pathology and pathobiology of pulmonary hypertension: state of the art and research perspectives. Eur. Respir. J., 2019, 53(1)1801887
[http://dx.doi.org/10.1183/13993003.01887-2018] [PMID: 30545970]
[4]
Vonk Noordegraaf, A.; Chin, K.M.; Haddad, F.; Hassoun, P.M.; Hemnes, A.R.; Hopkins, S.R.; Kawut, S.M.; Langleben, D.; Lumens, J.; Naeije, R. Pathophysiology of the right ventricle and of the pulmonary circulation in pulmonary hypertension: an update. Eur. Respir. J., 2019, 53(1)1801900
[http://dx.doi.org/10.1183/13993003.01900-2018] [PMID: 30545976]
[5]
Dorfmüller, P. Pathology of pulmonary vascualr diseases.Pulmonary circulation: diseases and their treatment; Peacock, A.; Naeije, R., Eds.; Taylor & Francis Group: Boca Raton, FL, 2016, Vol. 4, pp. 61-78.
[6]
Li, G-W.; Wang, Q-S.; Hao, J-H.; Xing, W-J.; Guo, J.; Li, H-Z.; Bai, S-Z.; Li, H-X.; Zhang, W-H.; Yang, B-F.; Yang, G-D.; Wu, L-Y.; Wang, R.; Xu, C-Q. The functional expression of extracellular calcium-sensing receptor in rat pulmonary artery smooth muscle cells. J. Biomed. Sci., 2011, 18(1), 16-16.
[http://dx.doi.org/10.1186/1423-0127-18-16] [PMID: 21314926]
[7]
Yamamura, A.; Guo, Q.; Yamamura, H.; Zimnicka, A.M.; Pohl, N.M.; Smith, K.A.; Fernandez, R.A.; Zeifman, A.; Makino, A.; Dong, H.; Yuan, J.X.J. Enhanced Ca(2+)-sensing receptor function in idiopathic pulmonary arterial hypertension. Circ. Res., 2012, 111(4), 469-481.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.266361] [PMID: 22730443]
[8]
Rich, S.; Dantzker, D.R.; Ayres, S.M.; Bergofsky, E.H.; Brundage, B.H.; Detre, K.M.; Fishman, A.P.; Goldring, R.M.; Groves, B.M.; Koerner, S.K. Primary pulmonary hypertension. A national prospective study. Ann. Intern. Med., 1987, 107(2), 216-223.
[http://dx.doi.org/10.7326/0003-4819-107-2-216] [PMID: 3605900]
[9]
McGoon, M.D.; Benza, R.L.; Escribano-Subias, P.; Jiang, X.; Miller, D.P.; Peacock, A.J.; Pepke-Zaba, J.; Pulido, T.; Rich, S.; Rosenkranz, S.; Suissa, S.; Humbert, M. Pulmonary arterial hypertension: epidemiology and registries. J. Am. Coll. Cardiol., 2013, 62(25)(Suppl.), D51-D59.
[http://dx.doi.org/10.1016/j.jacc.2013.10.023] [PMID: 24355642]
[10]
Mathai, S.C.; Hassoun, P.M.; Puhan, M.A.; Zhou, Y.; Wise, R.A. Sex differences in response to tadalafil in pulmonary arterial hyper-tension. Chest, 2015, 147(1), 188-197.
[http://dx.doi.org/10.1378/chest.14-0263] [PMID: 25122150]
[11]
Coggins, M.P.; Bloch, K.D. Nitric oxide in the pulmonary vasculature. Arterioscler. Thromb. Vasc. Biol., 2007, 27(9), 1877-1885.
[http://dx.doi.org/10.1161/ATVBAHA.107.142943] [PMID: 17541026]
[12]
Miles, P.R.; Bowman, L.; Rengasamy, A.; Huffman, L. Alveolar type II cell cNOS activity and ATP levels are increased by lung sur-factant or DPPC vesicles. Am. J. Physiol., 1997, 273(2 Pt 1), L339-L346.
[http://dx.doi.org/10.1152/ajplung.1997.273.2.L339 ] [PMID: 9277445]
[13]
Miles, P.R.; Bowman, L.; Rengasamy, A.; Huffman, L. Constitutive nitric oxide production by rat alveolar macrophages. Am. J. Physiol., 1998, 274(3), L360-L368.
[http://dx.doi.org/10.1152/ajplung.1998.274.3.L360 ] [PMID: 9530171]
[14]
Ward, J.K.; Belvisi, M.G.; Fox, A.J.; Miura, M.; Tadjkarimi, S.; Yacoub, M.H.; Barnes, P.J. Modulation of cholinergic neural bron-choconstriction by endogenous nitric oxide and vasoactive intestinal peptide in human airways in vitro. J. Clin. Invest., 1993, 92(2), 736-742.
[http://dx.doi.org/10.1172/JCI116644] [PMID: 8349813]
[15]
Zeidler, P.C.; Castranova, V. Role of nitric oxide in pathological responses of the lung to exposure to environmental/occupational agents. Redox Rep., 2004, 9(1), 7-18.
[http://dx.doi.org/10.1179/135100004225003879] [PMID: 15035823]
[16]
Förstermann, U.; Boissel, J.P.; Kleinert, H. Expressional control of the ‘constitutive’ isoforms of nitric oxide synthase (NOS I and NOS III). FASEB J., 1998, 12(10), 773-790.
[http://dx.doi.org/10.1096/fasebj.12.10.773] [PMID: 9657518]
[17]
Barnes, P.J.; Belvisi, M.G. Nitric oxide and lung disease. Thorax, 1993, 48(10), 1034-1043.
[http://dx.doi.org/10.1136/thx.48.10.1034] [PMID: 7903007]
[18]
Hampl, V.; Herget, J. Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol. Rev., 2000, 80(4), 1337-1372.
[http://dx.doi.org/10.1152/physrev.2000.80.4.1337] [PMID: 11015616]
[19]
Tejero, J.; Shiva, S.; Gladwin, M.T. Sources of vascular nitric oxide and reactive oxygen species and their regulation. Physiol. Rev., 2019, 99(1), 311-379.
[http://dx.doi.org/10.1152/physrev.00036.2017] [PMID: 30379623]
[20]
Klinger, J.R.; Kadowitz, P.J. The nitric oxide pathway in pulmonary vascular disease. Am. J. Cardiol., 2017, 120(8S), S71-S79.
[http://dx.doi.org/10.1016/j.amjcard.2017.06.012] [PMID: 29025573]
[21]
Giaid, A.; Saleh, D. Reduced expression of endothelial nitric oxide synthase in the lungs of patients with pulmonary hypertension. N. Engl. J. Med., 1995, 333(4), 214-221.
[http://dx.doi.org/10.1056/NEJM199507273330403] [PMID: 7540722]
[22]
Adnot, S.; Raffestin, B.; Eddahibi, S.; Braquet, P.; Chabrier, P.E. Loss of endothelium-dependent relaxant activity in the pulmonary circulation of rats exposed to chronic hypoxia. J. Clin. Invest., 1991, 87(1), 155-162.
[http://dx.doi.org/10.1172/JCI114965] [PMID: 1985092]
[23]
Dinh-Xuan, A.T.; Pepke-Zaba, J.; Butt, A.Y.; Cremona, G.; Higenbottam, T.W. Impairment of pulmonary-artery endothelium-dependent relaxation in chronic obstructive lung disease is not due to dysfunction of endothelial cell membrane receptors nor to L-arginine deficiency. Br. J. Pharmacol., 1993, 109(2), 587-591.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13611.x] [PMID: 7689396]
[24]
Schermuly, R.T.; Ghofrani, H.A.; Wilkins, M.R.; Grimminger, F. Mechanisms of disease: pulmonary arterial hypertension. Nat. Rev. Cardiol., 2011, 8(8), 443-455.
[http://dx.doi.org/10.1038/nrcardio.2011.87] [PMID: 21691314]
[25]
Steudel, W.; Ichinose, F.; Huang, P.L.; Hurford, W.E.; Jones, R.C.; Bevan, J.A.; Fishman, M.C.; Zapol, W.M. Pulmonary vasocon-striction and hypertension in mice with targeted disruption of the endothelial nitric oxide synthase (NOS 3) gene. Circ. Res., 1997, 81(1), 34-41.
[http://dx.doi.org/10.1161/01.RES.81.1.34] [PMID: 9201025]
[26]
Østergaard, L.; Stankevicius, E.; Andersen, M.R.; Eskildsen-Helmond, Y.; Ledet, T.; Mulvany, M.J.; Simonsen, U. Diminished NO release in chronic hypoxic human endothelial cells. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(5), H2894-H2903.
[http://dx.doi.org/10.1152/ajpheart.01230.2006] [PMID: 17720765]
[27]
Ziesche, R.; Petkov, V.; Williams, J.; Zakeri, S.M.; Mosgöller, W.; Knöfler, M.; Block, L.H. Lipopolysaccharide and interleukin 1 augment the effects of hypoxia and inflammation in human pulmonary arterial tissue. Proc. Natl. Acad. Sci. USA, 1996, 93(22), 12478-12483.
[http://dx.doi.org/10.1073/pnas.93.22.12478] [PMID: 8901607]
[28]
Fagan, K.A.; Morrissey, B.; Fouty, B.W.; Sato, K.; Harral, J.W.; Morris, K.G. Jr.; Hoedt-Miller, M.; Vidmar, S.; McMurtry, I.F.; Rodman, D.M. Upregulation of nitric oxide synthase in mice with severe hypoxia-induced pulmonary hypertension. Respir. Res., 2001, 2(5), 306-313.
[http://dx.doi.org/10.1186/rr74] [PMID: 11686901]
[29]
Ward, M.E.; Toporsian, M.; Scott, J.A.; Teoh, H.; Govindaraju, V.; Quan, A.; Wener, A.D.; Wang, G.; Bevan, S.C.; Newton, D.C.; Marsden, P.A. Hypoxia induces a functionally significant and translationally efficient neuronal NO synthase mRNA variant. J. Clin. Invest., 2005, 115(11), 3128-3139.
[http://dx.doi.org/10.1172/JCI20806] [PMID: 16276418]
[30]
Tyler, R.C.; Muramatsu, M.; Abman, S.H.; Stelzner, T.J.; Rodman, D.M.; Bloch, K.D.; McMurtry, I.F. Variable expression of endo-thelial NO synthase in three forms of rat pulmonary hypertension. Am. J. Physiol., 1999, 276(2), L297-L303.
[http://dx.doi.org/10.1152/ajplung.1999.276.2.L297 ] [PMID: 9950892]
[31]
Fagan, K.A.; Tyler, R.C.; Sato, K.; Fouty, B.W.; Morris, K.G. Jr.; Huang, P.L.; McMurtry, I.F.; Rodman, D.M. Relative contributions of endothelial, inducible, and neuronal NOS to tone in the murine pulmonary circulation. Am. J. Physiol., 1999, 277(3), L472-L478.
[http://dx.doi.org/10.1152/ajplung.1999.277.3.L472 ] [PMID: 10484454]
[32]
Cook, S.; Vollenweider, P.; Ménard, B.; Egli, M.; Nicod, P.; Scherrer, U. Increased eNO and pulmonary iNOS expression in eNOS null mice. Eur. Respir. J., 2003, 21(5), 770-773.
[http://dx.doi.org/10.1183/09031936.03.00121203] [PMID: 12765418]
[33]
Mason, N.A.; Springall, D.R.; Burke, M.; Pollock, J.; Mikhail, G.; Yacoub, M.H.; Polak, J.M. High expression of endothelial nitric oxide synthase in plexiform lesions of pulmonary hypertension. J. Pathol., 1998, 185(3), 313-318.
[http://dx.doi.org/10.1002/(SICI)1096-9896(199807)185: 3<313:AID-PATH93>3.0.CO;2-8] [PMID: 9771486]
[34]
Aytekin, M.; Aulak, K.S.; Haserodt, S.; Chakravarti, R.; Cody, J.; Minai, O.A.; Dweik, R.A. Abnormal platelet aggregation in idiopathic pulmonary arterial hypertension: role of nitric oxide. Am. J. Physiol. Lung Cell. Mol. Physiol., 2012, 302(6), L512-L520.
[http://dx.doi.org/10.1152/ajplung.00289.2011] [PMID: 22246002]
[35]
Takaya, J.; Teraguchi, M.; Nogi, S.; Ikemoto, Y.; Kobayashi, Y. Relation between plasma nitrate and mean pulmonary arterial pressure in ventricular septal defect. Arch. Dis. Child., 1998, 79(6), 498-501.
[http://dx.doi.org/10.1136/adc.79.6.498] [PMID: 10210994]
[36]
Vijay, P.; Szekely, L.; Sharp, T.G.; Miller, A.; Bando, K.; Brown, J.W. Adrenomedullin in patients at high risk for pulmonary hyper-tension. Ann. Thorac. Surg., 1998, 66(2), 500-505.
[http://dx.doi.org/10.1016/S0003-4975(98)00523-2] [PMID: 9725392]
[37]
Tuder, R.M.; Cool, C.D.; Geraci, M.W.; Wang, J.; Abman, S.H.; Wright, L.; Badesch, D.; Voelkel, N.F. Prostacyclin synthase expres-sion is decreased in lungs from patients with severe pulmonary hypertension. Am. J. Respir. Crit. Care Med., 1999, 159(6), 1925-1932.
[http://dx.doi.org/10.1164/ajrccm.159.6.9804054] [PMID: 10351941]
[38]
Barberà, J.A.; Peinado, V.I.; Santos, S.; Ramirez, J.; Roca, J.; Rodriguez-roisin, R. Reduced expression of endothelial nitric oxide synthase in pulmonary arteries of smokers. Am. J. Respir. Crit. Care Med., 2001, 164(4), 709-713.
[http://dx.doi.org/10.1164/ajrccm.164.4.2101023] [PMID: 11520741]
[39]
Yang, Q. Shigemura, N.; Underwood, M.J.; Hsin, M.; Xue, H.M.; Huang, Y.; He, G.W.; Yu, C.M. NO and EDHF pathways in pul-monary arteries and veins are impaired in COPD patients. Vascul. Pharmacol., 2012, 57(2-4), 113-118.
[http://dx.doi.org/10.1016/j.vph.2012.05.004] [PMID: 22609132]
[40]
Mata-Greenwood, E.; Liao, W.X.; Zheng, J.; Chen, D.B. Differential activation of multiple signalling pathways dictates eNOS upreg-ulation by FGF2 but not VEGF in placental artery endothelial cells. Placenta, 2008, 29(8), 708-717.
[http://dx.doi.org/10.1016/j.placenta.2008.05.005] [PMID: 18571718]
[41]
Iwabayashi, M.; Taniyama, Y.; Sanada, F.; Azuma, J.; Iekushi, K.; Kusunoki, H.; Chatterjee, A.; Okayama, K.; Rakugi, H.; Morishita, R. Role of serotonin in angiogenesis: induction of angiogenesis by sarpogrelate via endothelial 5-HT1B/Akt/eNOS pathway in diabetic mice. Atherosclerosis, 2012, 220(2), 337-342.
[http://dx.doi.org/10.1016/j.atherosclerosis.2011.10.042] [PMID: 22172591]
[42]
Ye, Q.; Chen, S.; Gardner, D.G. Endothelin inhibits NPR-A and stimulates eNOS gene expression in rat IMCD cells. Hypertension, 2003, 41(3), 675-681.
[http://dx.doi.org/10.1161/01.HYP.0000047204.72286.34 ] [PMID: 12623978 ]
[43]
Jozkowicz, A.; Cooke, J.P.; Guevara, I.; Huk, I.; Funovics, P.; Pachinger, O.; Weidinger, F.; Dulak, J. Genetic augmentation of nitric oxide synthase increases the vascular generation of VEGF. Cardiovasc. Res., 2001, 51(4), 773-783.
[http://dx.doi.org/10.1016/S0008-6363(01)00344-3] [PMID: 11530111]
[44]
Machado, R.D.; Aldred, M.A.; James, V.; Harrison, R.E.; Patel, B.; Schwalbe, E.C.; Gruenig, E.; Janssen, B.; Koehler, R.; Seeger, W.; Eickelberg, O.; Olschewski, H.; Elliott, C.G.; Glissmeyer, E.; Carlquist, J.; Kim, M.; Torbicki, A.; Fijalkowska, A.; Szewczyk, G.; Parma, J.; Abramowicz, M.J.; Galie, N.; Morisaki, H.; Kyotani, S.; Nakanishi, N.; Morisaki, T.; Humbert, M.; Simonneau, G.; Sitbon, O.; Soubrier, F.; Coulet, F.; Morrell, N.W.; Trembath, R.C. Mutations of the TGF-beta type II receptor BMPR2 in pulmonary arterial hypertension. Hum. Mutat., 2006, 27(2), 121-132.
[http://dx.doi.org/10.1002/humu.20285] [PMID: 16429395]
[45]
Gangopahyay, A.; Oran, M.; Bauer, E.M.; Wertz, J.W.; Comhair, S.A.; Erzurum, S.C.; Bauer, P.M. Bone morphogenetic protein re-ceptor II is a novel mediator of endothelial nitric-oxide synthase activation. J. Biol. Chem., 2011, 286(38), 33134-33140.
[http://dx.doi.org/10.1074/jbc.M111.274100] [PMID: 21808054]
[46]
Flowers, M.A.; Wang, Y.; Stewart, R.J.; Patel, B.; Marsden, P.A. Reciprocal regulation of endothelin-1 and endothelial constitutive NOS in proliferating endothelial cells. Am. J. Physiol., 1995, 269(6 Pt 2), H1988-H1997.
[http://dx.doi.org/10.1152/ajpheart.1995.269.6.H1988 ] [PMID: 8594908]
[47]
Karbach, S.; Wenzel, P.; Waisman, A.; Munzel, T.; Daiber, A. eNOS uncoupling in cardiovascular diseases--the role of oxidative stress and inflammation. Curr. Pharm. Des., 2014, 20(22), 3579-3594.
[http://dx.doi.org/10.2174/13816128113196660748] [PMID: 24180381]
[48]
Förstermann, U.; Münzel, T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation, 2006, 113(13), 1708-1714.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.602532] [PMID: 16585403]
[49]
Landmesser, U.; Dikalov, S.; Price, S.R.; McCann, L.; Fukai, T.; Holland, S.M.; Mitch, W.E.; Harrison, D.G. Oxidation of tetrahy-drobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension. J. Clin. Invest., 2003, 111(8), 1201-1209.
[http://dx.doi.org/10.1172/JCI200314172] [PMID: 12697739]
[50]
Khoo, J.P.; Zhao, L.; Alp, N.J.; Bendall, J.K.; Nicoli, T.; Rockett, K.; Wilkins, M.R.; Channon, K.M. Pivotal role for endothelial tet-rahydrobiopterin in pulmonary hypertension. Circulation, 2005, 111(16), 2126-2133.
[http://dx.doi.org/10.1161/01.CIR.0000162470.26840.89] [PMID: 15824200]
[51]
Nandi, M.; Miller, A.; Stidwill, R.; Jacques, T.S.; Lam, A.A.J.; Haworth, S.; Heales, S.; Vallance, P. Pulmonary hypertension in a GTP-cyclohydrolase 1-deficient mouse. Circulation, 2005, 111(16), 2086-2090.
[http://dx.doi.org/10.1161/01.CIR.0000163268.32638.F4] [PMID: 15824199]
[52]
Berkowitz, D.E.; White, R.; Li, D.; Minhas, K.M.; Cernetich, A.; Kim, S.; Burke, S.; Shoukas, A.A.; Nyhan, D.; Champion, H.C.; Hare, J.M. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation, 2003, 108(16), 2000-2006.
[http://dx.doi.org/10.1161/01.CIR.0000092948.04444.C7] [PMID: 14517171]
[53]
Nguyen, M.C.; Park, J.T.; Jeon, Y.G.; Jeon, B.H.; Hoe, K.L.; Kim, Y.M.; Lim, H.K.; Ryoo, S. Arginase inhibition restores peroxyni-trite-induced endothelial dysfunction via l-arginine-dependent endothelial nitric oxide synthase phosphorylation. Yonsei Med. J., 2016, 57(6), 1329-1338.
[http://dx.doi.org/10.3349/ymj.2016.57.6.1329] [PMID: 27593859]
[54]
Tain, Y-L.; Hsu, C-N. Toxic dimethylarginines: asymmetric dimethylarginine (ADMA) and symmetric dimethylarginine (SDMA). Toxins (Basel), 2017, 9(3), 92.
[http://dx.doi.org/10.3390/toxins9030092] [PMID: 28272322]
[55]
Dimmeler, S.; Fleming, I.; Fisslthaler, B.; Hermann, C.; Busse, R.; Zeiher, A.M. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature, 1999, 399(6736), 601-605.
[http://dx.doi.org/10.1038/21224] [PMID: 10376603]
[56]
Fulton, D.; Gratton, J.P.; McCabe, T.J.; Fontana, J.; Fujio, Y.; Walsh, K.; Franke, T.F.; Papapetropoulos, A.; Sessa, W.C. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 1999, 399(6736), 597-601.
[http://dx.doi.org/10.1038/21218] [PMID: 10376602]
[57]
Ghosh, S.; Gupta, M.; Xu, W.; Mavrakis, D.A.; Janocha, A.J.; Comhair, S.A.A.; Haque, M.M.; Stuehr, D.J.; Yu, J.; Polgar, P.; Naga Prasad, S.V.; Erzurum, S.C. Phosphorylation inactivation of endothelial nitric oxide synthesis in pulmonary arterial hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2016, 310(11), L1199-L1205.
[http://dx.doi.org/10.1152/ajplung.00092.2016] [PMID: 27130529]
[58]
Schneider, J-C.; El Kebir, D.; Chéreau, C.; Lanone, S.; Huang, X-L.; De Buys Roessingh, A.S.; Mercier, J-C.; Dall’Ava-Santucci, J.; Dinh-Xuan, A.T. Involvement of Ca2+/calmodulin-dependent protein kinase II in endothelial NO production and endothelium-dependent relaxation. Am. J. Physiol. Heart Circ. Physiol., 2003, 284(6), H2311-H2319.
[http://dx.doi.org/10.1152/ajpheart.00932.2001] [PMID: 12560211]
[59]
Zhou, T.; Tang, H.; Han, Y.; Fraidenburg, D.; Kim, Y-W.; Lee, D.; Choi, J.; Bang, H.; Ko, J-H. Expression profile of mitochondrial voltage-dependent anion channel-1 (VDAC1) influenced genes is associated with pulmonary hypertension. Korean J. Physiol. Pharmacol., 2017, 21(3), 353-360.
[http://dx.doi.org/10.4196/kjpp.2017.21.3.353] [PMID: 28461778]
[60]
Pako, J.; Bikov, A.; Karlocai, K.; Csosza, G.; Kunos, L.; Losonczy, G.; Horvath, I. Plasma VEGF levels and their relation to right ventricular function in pulmonary hypertension. Clin. Exp. Hypertens., 2015, 37(4), 340-344.
[http://dx.doi.org/10.3109/10641963.2014.972561] [PMID: 25347703]
[61]
Marcondes, S.; Cardoso, M.H.; Morganti, R.P.; Thomazzi, S.M.; Lilla, S.; Murad, F.; De Nucci, G.; Antunes, E. Cyclic GMP-independent mechanisms contribute to the inhibition of platelet adhesion by nitric oxide donor: a role for alpha-actinin nitration. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3434-3439.
[http://dx.doi.org/10.1073/pnas.0509397103] [PMID: 16492779]
[62]
Jin, C.; Guo, J.; Qiu, X.; Ma, K.; Xiang, M.; Zhu, X.; Guo, J. IGF-1 induces iNOS expression via the p38 MAPK signal pathway in the anti-apoptotic process in pulmonary artery smooth muscle cells during PAH. J. Recept. Signal Transduct. Res., 2014, 34(4), 325-331.
[http://dx.doi.org/10.3109/10799893.2014.903417] [PMID: 24673524]
[63]
Chen, L.L.; Yin, H.; Huang, J. Inhibition of TGF-beta1 signaling by eNOS gene transfer improves ventricular remodeling after myo-cardial infarction through angiogenesis and reduction of apoptosis. Cardiovasc. Pathol., 2007, 16(4), 221-230.
[http://dx.doi.org/10.1016/j.carpath.2007.02.007] [PMID: 17637430]
[64]
Jaitovich, A.; Jourd’heuil, D. A brief overview of nitric oxide and reactive oxygen species signaling in hypoxia-induced pulmonary hypertension. Adv. Exp. Med. Biol., 2017, 967, 71-81.
[http://dx.doi.org/10.1007/978-3-319-63245-2_6] [PMID: 29047082]
[65]
Gao, Y.; Chen, T.; Raj, J.U. Endothelial and smooth muscle cell interactions in the pathobiology of pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2016, 54(4), 451-460.
[http://dx.doi.org/10.1165/rcmb.2015-0323TR] [PMID: 26744837]
[66]
Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; Boots, A.W.; Bos, L.D.; Brinkman, P.; Bucca, C.; Carpagnano, G.E.; Corradi, M.; Cristescu, S.; de Jongste, J.C.; Dinh-Xuan, A.T.; Dompeling, E.; Fens, N.; Fowler, S.; Hohlfeld, J.M.; Holz, O.; Jöbsis, Q.; Van De Kant, K.; Knobel, H.H.; Kostikas, K.; Lehtimäki, L.; Lundberg, J.; Montuschi, P.; Van Muylem, A.; Pennazza, G.; Reinhold, P.; Ricciardolo, F.L.M.; Rosias, P.; Santonico, M.; van der Schee, M.P.; van Schooten, F.J.; Spanevello, A.; Tonia, T.; Vink, T.J. A European respiratory society technical standard: exhaled biomarkers in lung disease. Eur. Respir. J., 2017, 49(4)1600965
[http://dx.doi.org/10.1183/13993003.00965-2016] [PMID: 28446552]
[67]
Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.G.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.E.; Taylor, D.R.; Zamel, N. Exhaled nitric oxide in pulmonary diseases: a comprehensive review. Chest, 2010, 138(3), 682-692.
[http://dx.doi.org/10.1378/chest.09-2090] [PMID: 20822990]
[68]
Dweik, R.A.; Laskowski, D.; Abu-Soud, H.M.; Kaneko, F.; Hutte, R.; Stuehr, D.J.; Erzurum, S.C. Nitric oxide synthesis in the lung. Regulation by oxygen through a kinetic mechanism. J. Clin. Invest., 1998, 101(3), 660-666.
[http://dx.doi.org/10.1172/JCI1378] [PMID: 9449700]
[69]
Silkoff, P.E.; McClean, P.A.; Slutsky, A.S.; Furlott, H.G.; Hoffstein, E.; Wakita, S.; Chapman, K.R.; Szalai, J.P.; Zamel, N. Marked flow-dependence of exhaled nitric oxide using a new technique to exclude nasal nitric oxide. Am. J. Respir. Crit. Care Med., 1997, 155(1), 260-267.
[http://dx.doi.org/10.1164/ajrccm.155.1.9001322] [PMID: 9001322]
[70]
ATS/ERS recommendations for standardized procedures for the online and offline measurement of exhaled lower respiratory nitric oxide and nasal nitric oxide, 2005. Am. J. Respir. Crit. Care Med., 2005, 171(8), 912-930.
[http://dx.doi.org/10.1164/rccm.200406-710ST] [PMID: 15817806]
[71]
Kaneko, F.T.; Arroliga, A.C.; Dweik, R.A.; Comhair, S.A.; Laskowski, D.; Oppedisano, R.; Thomassen, M.J.; Erzurum, S.C. Bio-chemical reaction products of nitric oxide as quantitative markers of primary pulmonary hypertension. Am. J. Respir. Crit. Care Med., 1998, 158(3), 917-923.
[http://dx.doi.org/10.1164/ajrccm.158.3.9802066] [PMID: 9731026]
[72]
Ozkan, M.; Dweik, R.A.; Laskowski, D.; Arroliga, A.C.; Erzurum, S.C. High levels of nitric oxide in individuals with pulmonary hypertension receiving epoprostenol therapy. Lung, 2001, 179(4), 233-243.
[http://dx.doi.org/10.1007/s004080000064] [PMID: 11891614]
[73]
Kharitonov, S.A.; Cailes, J.B.; Black, C.M.; du Bois, R.M.; Barnes, P.J. Decreased nitric oxide in the exhaled air of patients with sys-temic sclerosis with pulmonary hypertension. Thorax, 1997, 52(12), 1051-1055.
[http://dx.doi.org/10.1136/thx.52.12.1051] [PMID: 9516898]
[74]
Cao, Z.; Mathai, S.C.; Hummers, L.K.; Shah, A.A.; Wigley, F.M.; Lechtzin, N.; Hassoun, P.M.; Girgis, R.E. Exhaled nitric oxide in pulmonary arterial hypertension associated with systemic sclerosis. Pulm. Circ., 2016, 6(4), 545-550.
[http://dx.doi.org/10.1086/688768] [PMID: 28090297]
[75]
Girgis, R.E.; Gugnani, M.K.; Abrams, J.; Mayes, M.D. Partitioning of alveolar and conducting airway nitric oxide in scleroderma lung disease. Am. J. Respir. Crit. Care Med., 2002, 165(12), 1587-1591.
[http://dx.doi.org/10.1164/rccm.2104003] [PMID: 12070057]
[76]
Girgis, R.E.; Champion, H.C.; Diette, G.B.; Johns, R.A.; Permutt, S.; Sylvester, J.T. Decreased exhaled nitric oxide in pulmonary arterial hypertension: response to bosentan therapy. Am. J. Respir. Crit. Care Med., 2005, 172(3), 352-357.
[http://dx.doi.org/10.1164/rccm.200412-1684OC] [PMID: 15879413]
[77]
Bikov, A.; Meszaros, M.; Lazar, Z. Exhaled nitric oxide in COPD. Curr. Resp. Med. Rev., 2019, 15(2)
[http://dx.doi.org/10.2174/1573398X14666181025150537]
[78]
Bikov, A.; Hull, J.H.; Kunos, L. Exhaled breath analysis, a simple tool to study the pathophysiology of obstructive sleep apnoea. Sleep Med. Rev., 2016, 27, 1-8.
[http://dx.doi.org/10.1016/j.smrv.2015.07.005] [PMID: 26426372]
[79]
Högman, M.; Thornadtsson, A.; Liv, P.; Hua-Huy, T.; Dinh-Xuan, A.T.; Tufvesson, E.; Dressel, H.; Janson, C.; Koskela, K.; Oksa, P.; Sauni, R.; Uitti, J.; Moilanen, E.; Lehtimäki, L. Effects of growth and aging on the reference values of pulmonary nitric oxide dynamics in healthy subjects. J. Breath Res., 2017, 11(4)047103
[http://dx.doi.org/10.1088/1752-7163/aa7957] [PMID: 28612760]
[80]
Travers, J.; Marsh, S.; Aldington, S.; Williams, M.; Shirtcliffe, P.; Pritchard, A.; Weatherall, M.; Beasley, R. Reference ranges for exhaled nitric oxide derived from a random community survey of adults. Am. J. Respir. Crit. Care Med., 2007, 176(3), 238-242.
[http://dx.doi.org/10.1164/rccm.200609-1346OC] [PMID: 17478616]
[81]
Olin, A.C.; Rosengren, A.; Thelle, D.S.; Lissner, L.; Bake, B.; Torén, K. Height, age and atopy are associated with fraction of exhaled nitric oxide in a large adult general population sample. Chest, 2006, 130(5), 1319-1325.
[http://dx.doi.org/10.1378/chest.130.5.1319] [PMID: 17099006]
[82]
Iwamoto, J.; Pendergast, D.R.; Suzuki, H.; Krasney, J.A. Effect of graded exercise on nitric oxide in expired air in humans. Respir. Physiol., 1994, 97(3), 333-345.
[http://dx.doi.org/10.1016/0034-5687(94)90069-8] [PMID: 7973137]
[83]
Zetterquist, W.; Pedroletti, C.; Lundberg, J.O.; Alving, K. Salivary contribution to exhaled nitric oxide. Eur. Respir. J., 1999, 13(2), 327-333.
[http://dx.doi.org/10.1034/j.1399-3003.1999.13b18.x] [PMID: 10065676]
[84]
Mandhane, P.J.; Hanna, S.E.; Inman, M.D.; Duncan, J.M.; Greene, J.M.; Wang, H.Y.; Sears, M.R. Changes in exhaled nitric oxide related to estrogen and progesterone during the menstrual cycle. Chest, 2009, 136(5), 1301-1307.
[http://dx.doi.org/10.1378/chest.09-0604] [PMID: 19617403]
[85]
Dummer, J.F.; Epton, M.J.; Cowan, J.O.; Cook, J.M.; Condliffe, R.; Landhuis, C.E.; Smith, A.D.; Taylor, D.R. Predicting corticosteroid response in chronic obstructive pulmonary disease using exhaled nitric oxide. Am. J. Respir. Crit. Care Med., 2009, 180(9), 846-852.
[http://dx.doi.org/10.1164/rccm.200905-0685OC] [PMID: 19661244]
[86]
Tamasi, L.; Bohacs, A.; Bikov, A.; Andorka, C.; Rigo, J., Jr; Losonczy, G.; Horvath, I. Exhaled nitric oxide in pregnant healthy and asthmatic women. J. Asthma, 2009, 46(8), 786-791.
[http://dx.doi.org/10.1080/02770900903090004] [PMID: 19863281]
[87]
Antus, B.; Horvath, I.; Barta, I. Assessment of exhaled nitric oxide by a new hand-held device. Respir. Med., 2010, 104(9), 1377-1380.
[http://dx.doi.org/10.1016/j.rmed.2010.06.005] [PMID: 20594818]
[88]
Kapande, K.M.; McConaghy, L.A.; Douglas, I.; McKenna, S.; Hughes, J.L.; McCance, D.R.; Ennis, M.; Shields, M.D. Comparative repeatability of two handheld fractional exhaled nitric oxide monitors. Pediatr. Pulmonol., 2012, 47(6), 546-550.
[http://dx.doi.org/10.1002/ppul.21591] [PMID: 22038831]
[89]
Cremona, G.; Higenbottam, T.; Borland, C.; Mist, B. Mixed expired nitric oxide in primary pulmonary hypertension in relation to lung diffusion capacity. QJM, 1994, 87(9), 547-551.
[PMID: 7953503]
[90]
Riley, M.S.; Pórszász, J.; Miranda, J.; Engelen, M.P.; Brundage, B.; Wasserman, K. Exhaled nitric oxide during exercise in primary pulmonary hypertension and pulmonary fibrosis. Chest, 1997, 111(1), 44-50.
[http://dx.doi.org/10.1378/chest.111.1.44] [PMID: 8995991]
[91]
Archer, S.L.; Djaballah, K.; Humbert, M.; Weir, K.E.; Fartoukh, M.; Dall’ava-Santucci, J.; Mercier, J.C.; Simonneau, G.; Dinh-Xuan, A.T. Nitric oxide deficiency in fenfluramine- and dexfenfluramine-induced pulmonary hypertension. Am. J. Respir. Crit. Care Med., 1998, 158(4), 1061-1067.
[http://dx.doi.org/10.1164/ajrccm.158.4.9802113] [PMID: 9769261]
[92]
Malerba, M.; Radaeli, A.; Ragnoli, B.; Airo’, P.; Corradi, M.; Ponticiello, A.; Zambruni, A.; Grassi, V. Exhaled nitric oxide levels in systemic sclerosis with and without pulmonary involvement. Chest, 2007, 132(2), 575-580.
[http://dx.doi.org/10.1378/chest.06-2929] [PMID: 17550935]
[93]
Rolla, G.; Colagrande, P.; Scappaticci, E.; Chiavassa, G.; Dutto, L.; Cannizzo, S.; Bucca, C.; Morello, M.; Bergerone, S.; Bardini, D.; Zaccagna, A.; Puiatti, P.; Fava, C.; Cortese, G. Exhaled nitric oxide in systemic sclerosis: relationships with lung involvement and pulmonary hypertension. J. Rheumatol., 2000, 27(7), 1693-1698.
[PMID: 10914853]
[94]
Akbay, N.O.; Bingol, Z.; Kiyan, E.; Karaayvaz, E.B.; Bilge, A.K.; Issever, H.; Okumus, G. Fractional exhaled nitric oxide meas-urement in pulmonary hypertension: a follow-up. Study. Clin. Appl. Thromb. Hemost., 2018, 24(3), 483-488.
[http://dx.doi.org/10.1177/1076029617702243] [PMID: 28393619]
[95]
Malinovschi, A.; Henrohn, D.; Eriksson, A.; Lundberg, J.O.; Alving, K.; Wikström, G. Increased plasma and salivary nitrite and de-creased bronchial contribution to exhaled NO in pulmonary arterial hypertension. Eur. J. Clin. Invest., 2011, 41(8), 889-897.
[http://dx.doi.org/10.1111/j.1365-2362.2011.02488.x] [PMID: 21554268]
[96]
Carpagnano, G.E.; Radaeli, A.; Lacedonia, D.; Correale, M.; Carpagnano, G.; Palmiotti, A.; Barbaro, M.P.F.; Di Biase, M.; Brunetti, N.; Scioscia, G.; Malerba, M. Exhaled nitric oxide and exhaled breath temperature as potential biomarkers in patients with pulmonary hypertension. BioMed Res. Int., 2018, 20187292045
[http://dx.doi.org/10.1155/2018/7292045] [PMID: 30225263]
[97]
Machado, R.F.; Londhe Nerkar, M.V.; Dweik, R.A.; Hammel, J.; Janocha, A.; Pyle, J.; Laskowski, D.; Jennings, C.; Arroliga, A.C.; Erzurum, S.C. Nitric oxide and pulmonary arterial pressures in pulmonary hypertension. Free Radic. Biol. Med., 2004, 37(7), 1010-1017.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.06.039] [PMID: 15336317]
[98]
McMahon, T.J.; Bryan, N.S. Biomarkers in pulmonary vascular disease: gauging response to therapy. Am. J. Cardiol., 2017, 120(8S), S89-S95.
[http://dx.doi.org/10.1016/j.amjcard.2017.06.014] [PMID: 29025575]
[99]
Steudel, W.; Kirmse, M.; Weimann, J.; Ullrich, R.; Hromi, J.; Zapol, W.M. Exhaled nitric oxide production by nitric oxide synthase-deficient mice. Am. J. Respir. Crit. Care Med., 2000, 162(4 Pt 1), 1262-1267.
[http://dx.doi.org/10.1164/ajrccm.162.4.9909037] [PMID: 11029328]
[100]
Birrell, M.A.; McCluskie, K.; Hardaker, E.; Knowles, R.; Belvisi, M.G. Utility of exhaled nitric oxide as a noninvasive biomarker of lung inflammation in a disease model. Eur. Respir. J., 2006, 28(6), 1236-1244.
[http://dx.doi.org/10.1183/09031936.00048506] [PMID: 17005583]
[101]
Ahmad, T.; Mabalirajan, U.; Joseph, D.A.; Makhija, L.; Singh, V.P.; Ghosh, B.; Agrawal, A. Exhaled nitric oxide estimation by a simple and efficient noninvasive technique and its utility as a marker of airway inflammation in mice. J. Appl. Physiol., 2009, 107(1), 295-301.
[http://dx.doi.org/10.1152/japplphysiol.00235.2009] [PMID: 19407252]
[102]
Le Pavec, J.; Perros, F.; Eddahibi, S.; Decante, B.; Dorfmuller, P.; Sitbon, O.; Lebrec, D.; Humbert, M.; Mazmanian, M.; Herve, P. Cirrhosis ameliorates monocrotaline-induced pulmonary hypertension in rats. Eur. Respir. J., 2009, 34(3), 731-739.
[http://dx.doi.org/10.1183/09031936.00006508] [PMID: 19324959]
[103]
Strobl, M.; Schreiber, C.; Panzenböck, A.; Winter, M-P.; Bergmeister, H.; Jakowitsch, J.; Mascherbauer, J.; Lang, I.M.; Wexberg, P.; Bonderman, D. Exhaled nitric oxide measurement to monitor pulmonary hypertension in a pneumonectomy-monocrotaline rat model. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(7), L485-L490.
[http://dx.doi.org/10.1152/ajplung.00087.2013] [PMID: 23893296]
[104]
Csoma, B.; Bikov, A.; Nagy, L.; Tóth, B.; Tábi, T.; Szűcs, G.; Komlósi, Z.I.; Müller, V.; Losonczy, G.; Lázár, Z. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respir. Res., 2019, 20(1), 156.
[http://dx.doi.org/10.1186/s12931-019-1133-8] [PMID: 31311549]
[105]
Bulau, P.; Zakrzewicz, D.; Kitowska, K.; Leiper, J.; Gunther, A.; Grimminger, F.; Eickelberg, O. Analysis of methylarginine metabolism in the cardiovascular system identifies the lung as a major source of ADMA. Am. J. Physiol. Lung Cell. Mol. Physiol., 2007, 292(1), L18-L24.
[http://dx.doi.org/10.1152/ajplung.00076.2006] [PMID: 16891395]
[106]
Zhang, S.; Yang, T.; Xu, X.; Wang, M.; Zhong, L.; Yang, Y.; Zhai, Z.; Xiao, F.; Wang, C. Oxidative stress and nitric oxide signaling related biomarkers in patients with pulmonary hypertension: a case control study. BMC Pulm. Med., 2015, 15, 50.
[http://dx.doi.org/10.1186/s12890-015-0045-8] [PMID: 25934483]
[107]
Kielstein, J.T.; Bode-Böger, S.M.; Hesse, G.; Martens-Lobenhoffer, J.; Takacs, A.; Fliser, D.; Hoeper, M.M. Asymmetrical dime-thylarginine in idiopathic pulmonary arterial hypertension. Arterioscler. Thromb. Vasc. Biol., 2005, 25(7), 1414-1418.
[http://dx.doi.org/10.1161/01.ATV.0000168414.06853.f0] [PMID: 15860741]
[108]
Giannakoulas, G.; Mouratoglou, S.A.; Gatzoulis, M.A.; Karvounis, H. Blood biomarkers and their potential role in pulmonary arterial hypertension associated with congenital heart disease. a systematic review. Int. J. Cardiol., 2014, 174(3), 618-623.
[http://dx.doi.org/10.1016/j.ijcard.2014.04.156] [PMID: 24814894]
[109]
Diller, G.P.; van Eijl, S.; Okonko, D.O.; Howard, L.S.; Ali, O.; Thum, T.; Wort, S.J.; Bédard, E.; Gibbs, J.S.; Bauersachs, J.; Hobbs, A.J.; Wilkins, M.R.; Gatzoulis, M.A.; Wharton, J. Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary arterial hypertension. Circulation, 2008, 117(23), 3020-3030.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.769646] [PMID: 18519847]
[110]
Fang, Z-F.; Huang, Y-Y.; Tang, L.; Hu, X-Q.; Shen, X-Q.; Tang, J-J.; Zhou, S-H. Asymmetric dimethyl-L-arginine is a biomarker for disease stage and follow-up of pulmonary hypertension associated with congenital heart disease. Pediatr. Cardiol., 2015, 36(5), 1062-1069.
[http://dx.doi.org/10.1007/s00246-015-1127-3] [PMID: 25737007]
[111]
Thakkar, V.; Stevens, W.; Prior, D.; Rabusa, C.; Sahhar, J.; Walker, J.G.; Roddy, J.; Lester, S.; Rischmueller, M.; Zochling, J.; Nash, P.; Gabbay, E.; Youssef, P.; Proudman, S.M.; Nikpour, M. The role of asymmetric dimethylarginine alone and in combination with N-terminal pro-B-type natriuretic peptide as a screening biomarker for systemic sclerosis-related pulmonary arterial hypertension: a case control study. Clin. Exp. Rheumatol., 2016, 34(5), 129-136.
[PMID: 27214686]
[112]
Parikh, R.V.; Scherzer, R.; Nitta, E.M.; Leone, A.; Hur, S.; Mistry, V.; Macgregor, J.S.; Martin, J.N.; Deeks, S.G.; Ganz, P.; Hsue, P.Y. Increased levels of asymmetric dimethylarginine are associated with pulmonary arterial hypertension in HIV infection. AIDS, 2014, 28(4), 511-519.
[http://dx.doi.org/10.1097/QAD.0000000000000124] [PMID: 24469026]
[113]
Millatt, L.J.; Whitley, G.S.; Li, D.; Leiper, J.M.; Siragy, H.M.; Carey, R.M.; Johns, R.A. Evidence for dysregulation of dimethylarginine dimethylaminohydrolase I in chronic hypoxia-induced pulmonary hypertension. Circulation, 2003, 108(12), 1493-1498.
[http://dx.doi.org/10.1161/01.CIR.0000089087.25930.FF] [PMID: 12952847]
[114]
Pullamsetti, S.; Kiss, L.; Ghofrani, H.A.; Voswinckel, R.; Haredza, P.; Klepetko, W.; Aigner, C.; Fink, L.; Muyal, J.P.; Weissmann, N.; Grimminger, F.; Seeger, W.; Schermuly, R.T. Increased levels and reduced catabolism of asymmetric and symmetric dimethylarginines in pulmonary hypertension. FASEB J., 2005, 19(9), 1175-1177.
[http://dx.doi.org/10.1096/fj.04-3223fje] [PMID: 15827267]
[115]
Sandqvist, A.; Schneede, J.; Kylhammar, D.; Henrohn, D.; Lundgren, J.; Hedeland, M.; Bondesson, U.; Rådegran, G.; Wikström, G. Plasma L-arginine levels distinguish pulmonary arterial hypertension from left ventricular systolic dysfunction. Heart Vessels, 2018, 33(3), 255-263.
[http://dx.doi.org/10.1007/s00380-017-1055-7] [PMID: 28975394]
[116]
Beyer, J.; Kolditz, M.; Ewert, R.; Rubens, C.; Opitz, C.; Schellong, S.; Hoeffken, G.; Halank, M. L-arginine plasma levels and severity of idiopathic pulmonary arterial hypertension. Vasa, 2008, 37(1), 61-67.
[http://dx.doi.org/10.1024/0301-1526.37.1.61] [PMID: 18512543]
[117]
Zhang, R.; Wang, X-J.; Zhang, H-D.; Sun, X-Q.; Zhao, Q-H.; Wang, L.; He, J.; Jiang, X.; Liu, J-M.; Jing, Z-C. Profiling nitric oxide metabolites in patients with idiopathic pulmonary arterial hypertension. Eur. Respir. J., 2016, 48(5), 1386-1395.
[http://dx.doi.org/10.1183/13993003.00245-2016] [PMID: 27660508]
[118]
Swaminathan, A.C.; Dusek, A.C.; McMahon, T.J. Treatment-related biomarkers in pulmonary hypertension. Am. J. Respir. Cell Mol. Biol., 2015, 52(6), 663-673.
[http://dx.doi.org/10.1165/rcmb.2014-0438TR] [PMID: 25611885]
[119]
Toshner, M.; Pepke-Zaba, J. Phospodiesterase type-5 inihibitors in: Pulmonary circulation: diseases and their treatment; Peacock, A; Naeije, R., Ed.; Taylor & Francis Group: Boca Raton, FL, 2016, Vol. 4, pp. 343-350.
[http://dx.doi.org/10.1201/9781315382753]
[120]
Schermuly, R.T.; Stasch, J.P.; Pullamsetti, S.S.; Middendorff, R.; Müller, D.; Schlüter, K.D.; Dingendorf, A.; Hackemack, S.; Ko-losionek, E.; Kaulen, C.; Dumitrascu, R.; Weissmann, N.; Mittendorf, J.; Klepetko, W.; Seeger, W.; Ghofrani, H.A.; Grimminger, F. Expression and function of soluble guanylate cyclase in pulmonary arterial hypertension. Eur. Respir. J., 2008, 32(4), 881-891.
[http://dx.doi.org/10.1183/09031936.00114407] [PMID: 18550612]
[121]
McMahon, T.J.; Ahearn, G.S.; Moya, M.P.; Gow, A.J.; Huang, Y.C.; Luchsinger, B.P.; Nudelman, R.; Yan, Y.; Krichman, A.D.; Ba-shore, T.M.; Califf, R.M.; Singel, D.J.; Piantadosi, C.A.; Tapson, V.F.; Stamler, J.S. A nitric oxide processing defect of red blood cells created by hypoxia: deficiency of S-nitrosohemoglobin in pulmonary hypertension. Proc. Natl. Acad. Sci. USA, 2005, 102(41), 14801-14806.
[http://dx.doi.org/10.1073/pnas.0506957102] [PMID: 16203976]
[122]
Wallis, R.M.; Corbin, J.D.; Francis, S.H.; Ellis, P. Tissue distribution of phosphodiesterase families and the effects of sildenafil on tissue cyclic nucleotides, platelet function, and the contractile responses of trabeculae carneae and aortic rings in vitro. Am. J. Cardiol., 1999, 83(5A), 3C-12C.
[http://dx.doi.org/10.1016/S0002-9149(99)00042-9] [PMID: 10078537]
[123]
Corbin, J.D.; Beasley, A.; Blount, M.A.; Francis, S.H. High lung PDE5: a strong basis for treating pulmonary hypertension with PDE5 inhibitors. Biochem. Biophys. Res. Commun., 2005, 334(3), 930-938.
[http://dx.doi.org/10.1016/j.bbrc.2005.06.183] [PMID: 16023993]
[124]
Soderling, S.H.; Beavo, J.A. Regulation of cAMP and cGMP signaling: new phosphodiesterases and new functions. Curr. Opin. Cell Biol., 2000, 12(2), 174-179.
[http://dx.doi.org/10.1016/S0955-0674(99)00073-3] [PMID: 10712916]
[125]
Corbin, J.D.; Francis, S.H. Cyclic GMP phosphodiesterase-5: target of sildenafil. J. Biol. Chem., 1999, 274(20), 13729-13732.
[http://dx.doi.org/10.1074/jbc.274.20.13729] [PMID: 10318772]
[126]
Black, S.M.; Sanchez, L.S.; Mata-Greenwood, E.; Bekker, J.M.; Steinhorn, R.H.; Fineman, J.R. sGC and PDE5 are elevated in lambs with increased pulmonary blood flow and pulmonary hypertension. Am. J. Physiol. Lung Cell. Mol. Physiol., 2001, 281(5), L1051-L1057.
[http://dx.doi.org/10.1152/ajplung.2001.281.5.L1051] [PMID: 11597895]
[127]
Cockrill, B.A.; Waxman, A.B. Phosphodiesterase-5 inhibitors. Handb. Exp. Pharmacol., 2013, 218, 229-255.
[http://dx.doi.org/10.1007/978-3-662-45805-1_10] [PMID: 24092343]
[128]
Montani, D.; Chaumais, M.C.; Savale, L.; Natali, D.; Price, L.C.; Jaïs, X.; Humbert, M.; Simonneau, G.; Sitbon, O. Phosphodiesterase type 5 inhibitors in pulmonary arterial hypertension. Adv. Ther., 2009, 26(9), 813-825.
[http://dx.doi.org/10.1007/s12325-009-0064-z] [PMID: 19768639]
[129]
Andersson, K.E. PDE5 inhibitors - pharmacology and clinical applications 20 years after sildenafil discovery. Br. J. Pharmacol., 2018, 175(13), 2554-2565.
[http://dx.doi.org/10.1111/bph.14205] [PMID: 29667180]
[130]
Hill, N.S.; Cawley, M.J.; Heggen-Peay, C.L. New therapeutic paradigms and guidelines in the management of pulmonary arterial hypertension. J. Manag. Care Spec. Pharm., 2016, 22(3)(Suppl. A), S3-S21.
[http://dx.doi.org/10.18553/jmcp.2016.22.3-a.s3] [PMID: 27003666]
[131]
Wharton, J.; Strange, J.W.; Møller, G.M.; Growcott, E.J.; Ren, X.; Franklyn, A.P.; Phillips, S.C.; Wilkins, M.R. Antiproliferative effects of phosphodiesterase type 5 inhibition in human pulmonary artery cells. Am. J. Respir. Crit. Care Med., 2005, 172(1), 105-113.
[http://dx.doi.org/10.1164/rccm.200411-1587OC] [PMID: 15817798]
[132]
Yamamura, A.; Fujitomi, E.; Ohara, N.; Tsukamoto, K.; Sato, M.; Yamamura, H. Tadalafil induces antiproliferation, apoptosis, and phosphodiesterase type 5 downregulation in idiopathic pulmonary arterial hypertension in vitro. Eur. J. Pharmacol., 2017, 810, 44-50.
[http://dx.doi.org/10.1016/j.ejphar.2017.06.010] [PMID: 28603047]
[133]
Galiè, N.; Ghofrani, H.A.; Torbicki, A.; Barst, R.J.; Rubin, L.J.; Badesch, D.; Fleming, T.; Parpia, T.; Burgess, G.; Branzi, A.; Grim-minger, F.; Kurzyna, M.; Simonneau, G. Sildenafil use in pulmonary arterial hypertension (SUPER) study group. Sildenafil citrate therapy for pulmonary arterial hypertension. N. Engl. J. Med., 2005, 353(20), 2148-2157.
[http://dx.doi.org/10.1056/NEJMoa050010] [PMID: 16291984]
[134]
Rubin, L.J.; Badesch, D.B.; Fleming, T.R.; Galiè, N.; Simonneau, G.; Ghofrani, H.A.; Oakes, M.; Layton, G.; Serdarevic-Pehar, M.; McLaughlin, V.V.; Barst, R.J. SUPER-2 study group Long-term treatment with sildenafil citrate in pulmonary arterial hypertension: the SUPER-2 study. Chest, 2011, 140(5), 1274-1283.
[http://dx.doi.org/10.1378/chest.10-0969] [PMID: 21546436]
[135]
Galiè, N.; Brundage, B.H.; Ghofrani, H.A.; Oudiz, R.J.; Simonneau, G.; Safdar, Z.; Shapiro, S.; White, R.J.; Chan, M.; Beardsworth, A.; Frumkin, L.; Barst, R.J. Pulmonary arterial hypertension and response to tadalafil (PHIRST) study group. Tadalafil therapy for pulmonary arterial hypertension. Circulation, 2009, 119(22), 2894-2903.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.839274] [PMID: 19470885]
[136]
Oudiz, R.J.; Brundage, B.H.; Galiè, N.; Ghofrani, H.A.; Simonneau, G.; Botros, F.T.; Chan, M.; Beardsworth, A.; Barst, R.J. PHIRST study group Tadalafil for the treatment of pulmonary arterial hypertension: a double-blind 52-week uncontrolled extension study. J. Am. Coll. Cardiol., 2012, 60(8), 768-774.
[http://dx.doi.org/10.1016/j.jacc.2012.05.004] [PMID: 22818063]
[137]
Zheng, Y.G.; Ma, H.; Hu, E.C.; Liu, G.; Chen, G.; Xiong, C.M. Oral targeted therapies in the treatment of pulmonary arterial hyper-tension: a meta-analysis of clinical trials. Pulm. Pharmacol. Ther., 2014, 29(2), 241-249.
[http://dx.doi.org/10.1016/j.pupt.2014.08.005] [PMID: 25173912]
[138]
Coeytaux, R.R.; Schmit, K.M.; Kraft, B.D.; Kosinski, A.S.; Mingo, A.M.; Vann, L.M.; Gilstrap, D.L.; Hargett, C.W.; Heidenfelder, B.; Dolor, R.J.; McCrory, D.C. Comparative effectiveness and safety of drug therapy for pulmonary arterial hypertension: a systematic review and meta-analysis. Chest, 2014, 145(5), 1055-1063.
[http://dx.doi.org/10.1378/chest.13-1864] [PMID: 24371842]
[139]
Ryerson, C.J.; Nayar, S.; Swiston, J.R.; Sin, D.D. Pharmacotherapy in pulmonary arterial hypertension: a systematic review and meta-analysis. Respir. Res., 2010, 11, 12.
[http://dx.doi.org/10.1186/1465-9921-11-12] [PMID: 20113497]
[140]
Lian, T.Y.; Jiang, X.; Jing, Z.C. Riociguat: a soluble guanylate cyclase stimulator for the treatment of pulmonary hypertension. Drug Des. Devel. Ther., 2017, 11, 1195-1207.
[http://dx.doi.org/10.2147/DDDT.S117277] [PMID: 28458514]
[141]
Stone, J.R.; Marletta, M.A. Spectral and kinetic studies on the activation of soluble guanylate cyclase by nitric oxide. Biochemistry, 1996, 35(4), 1093-1099.
[http://dx.doi.org/10.1021/bi9519718] [PMID: 8573563]
[142]
Conole, D.; Scott, L.J. Riociguat: first global approval. Drugs, 2013, 73(17), 1967-1975.
[http://dx.doi.org/10.1007/s40265-013-0149-5] [PMID: 24218053]
[143]
Stasch, J.P.; Hobbs, A.J. NO-independent, haem-dependent soluble guanylate cyclase stimulators. Handb. Exp. Pharmacol., 2009, (191), 277-308.
[http://dx.doi.org/10.1007/978-3-540-68964-5_13] [PMID: 19089334]
[144]
Chamorro, V.; Morales-Cano, D.; Milara, J.; Barreira, B.; Moreno, L.; Callejo, M.; Mondejar-Parreño, G.; Esquivel-Ruiz, S.; Cortijo, J.; Cogolludo, Á.; Barberá, J.A.; Perez-Vizcaino, F. Riociguat versus sildenafil on hypoxic pulmonary vasoconstriction and ventila-tion/perfusion matching. PLoS One, 2018, 13(1)e0191239
[http://dx.doi.org/10.1371/journal.pone.0191239] [PMID: 29364918]
[145]
Lang, M.; Kojonazarov, B.; Tian, X.; Kalymbetov, A.; Weissmann, N.; Grimminger, F.; Kretschmer, A.; Stasch, J.P.; Seeger, W.; Ghofrani, H.A.; Schermuly, R.T. The soluble guanylate cyclase stimulator riociguat ameliorates pulmonary hypertension induced by hypoxia and SU5416 in rats. PLoS One, 2012, 7(8)e43433
[http://dx.doi.org/10.1371/journal.pone.0043433] [PMID: 22912874]
[146]
Ghofrani, H.A.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.C.; Keogh, A.M.; Langleben, D.; Kilama, M.O.; Fritsch, A.; Neuser, D.; Rubin, L.J. PATENT-1 study group Riociguat for the treatment of pulmonary arterial hypertension. N. Engl. J. Med., 2013, 369(4), 330-340.
[http://dx.doi.org/10.1056/NEJMoa1209655] [PMID: 23883378]
[147]
Rubin, L.J.; Galiè, N.; Grimminger, F.; Grünig, E.; Humbert, M.; Jing, Z.C.; Keogh, A.; Langleben, D.; Fritsch, A.; Menezes, F.; Davie, N.; Ghofrani, H.A. Riociguat for the treatment of pulmonary arterial hypertension: a long-term extension study (PATENT-2). Eur. Respir. J., 2015, 45(5), 1303-1313.
[http://dx.doi.org/10.1183/09031936.00090614] [PMID: 25614164]
[148]
Galiè, N.; Müller, K.; Scalise, A.V.; Grünig, E. PATENT PLUS: a blinded, randomised and extension study of riociguat plus sildenafil in pulmonary arterial hypertension. Eur. Respir. J., 2015, 45(5), 1314-1322.
[http://dx.doi.org/10.1183/09031936.00105914] [PMID: 25657022]
[149]
Parikh, V.; Bhardwaj, A.; Nair, A. Pharmacotherapy for pulmonary arterial hypertension. J. Thorac. Dis., 2019, 11(Suppl. 14), S1767-S1781.
[http://dx.doi.org/10.21037/jtd.2019.09.14] [PMID: 31632754]
[150]
Coyle, K.; Coyle, D.; Blouin, J.; Lee, K.; Jabr, M.F.; Tran, K.; Mielniczuk, L.; Swiston, J.; Innes, M. Cost effectiveness of first-line oral therapies for pulmonary arterial hypertension: a modelling study. Pharmacoeconomics, 2016, 34(5), 509-520.
[http://dx.doi.org/10.1007/s40273-015-0366-8] [PMID: 26739957]
[151]
Rothe, T.; Karrer, W.; Schindler, C. A single dose of Sildenafil does not enhance FeNO: a randomised, cross-over and placebo-controlled study. Respir. Med., 2010, 104(6), 788-793.
[http://dx.doi.org/10.1016/j.rmed.2009.12.011] [PMID: 20079617]
[152]
Nagaya, N.; Uematsu, M.; Oya, H.; Sato, N.; Sakamaki, F.; Kyotani, S.; Ueno, K.; Nakanishi, N.; Yamagishi, M.; Miyatake, K. Short-term oral administration of L-arginine improves hemodynamics and exercise capacity in patients with precapillary pulmonary hyper-tension. Am. J. Respir. Crit. Care Med., 2001, 163(4), 887-891.
[http://dx.doi.org/10.1164/ajrccm.163.4.2007116] [PMID: 11282761]
[153]
Henrohn, D.; Björkstrand, K.; Lundberg, J.O.; Granstam, S-O.; Baron, T.; Ingimarsdóttir, I.J.; Hedenström, H.; Malinovschi, A.; Wernroth, M-L.; Jansson, M.; Hedeland, M.; Wikström, G. Effects of oral supplementation with nitrate-rich beetroot juice in patients with pulmonary arterial hypertension-results from BEET-PAH, an exploratory randomized, double-blind, placebo-controlled, crossover study. J. Card. Fail., 2018, 24(10), 640-653.
[http://dx.doi.org/10.1016/j.cardfail.2018.09.010] [PMID: 30244181]
[154]
Ignarro, L.J.; Fukuto, J.M.; Griscavage, J.M.; Rogers, N.E.; Byrns, R.E. Oxidation of nitric oxide in aqueous solution to nitrite but not nitrate: comparison with enzymatically formed nitric oxide from L-arginine. Proc. Natl. Acad. Sci. USA, 1993, 90(17), 8103-8107.
[http://dx.doi.org/10.1073/pnas.90.17.8103] [PMID: 7690141]
[155]
Lundberg, J.O.; Govoni, M. Inorganic nitrate is a possible source for systemic generation of nitric oxide. Free Radic. Biol. Med., 2004, 37(3), 395-400.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.04.027] [PMID: 15223073]
[156]
Cederqvist, B.; Persson, M.G.; Gustafsson, L.E. Direct demonstration of NO formation in vivo from organic nitrites and nitrates, and correlation to effects on blood pressure and to in vitro effects. Biochem. Pharmacol., 1994, 47(6), 1047-1053.
[http://dx.doi.org/10.1016/0006-2952(94)90416-2] [PMID: 8147903]
[157]
Sparacino-Watkins, C.E.; Lai, Y.C.; Gladwin, M.T. Nitrate-nitrite-nitric oxide pathway in pulmonary arterial hypertension therapeutics. Circulation, 2012, 125(23), 2824-2826.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.107821] [PMID: 22572912]
[158]
Simon, M.A.; Vanderpool, R.R.; Nouraie, M.; Bachman, T.N.; White, P.M.; Sugahara, M.; Gorcsan, J., III; Parsley, E.L.; Gladwin, M.T. Acute hemodynamic effects of inhaled sodium nitrite in pulmonary hypertension associated with heart failure with preserved ejection fraction. JCI Insight, 2016, 1(18)e89620
[http://dx.doi.org/10.1172/jci.insight.89620] [PMID: 27812547]
[159]
Rix, P.J.; Vick, A.; Attkins, N.J.; Barker, G.E.; Bott, A.W.; Alcorn, H., Jr; Gladwin, M.T.; Shiva, S.; Bradley, S.; Hussaini, A.; Hoye, W.L.; Parsley, E.L.; Masamune, H. Pharmacokinetics, pharmacodynamics, safety and tolerability of nebulized sodium nitrite (AIR001) following repeat-dose inhalation in healthy subjects. Clin. Pharmacokinet., 2015, 54(3), 261-272.
[http://dx.doi.org/10.1007/s40262-014-0201-y] [PMID: 25421879]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy