Generic placeholder image

Recent Innovations in Chemical Engineering

Editor-in-Chief

ISSN (Print): 2405-5204
ISSN (Online): 2405-5212

Research Article

Effect of Additives on the Electrical, Structural and Mechanical Property Modification of PEO-NH4HF2 based Polymer Electrolytes

Author(s): Jitender Paul Sharma*

Volume 14, Issue 1, 2021

Published on: 19 May, 2020

Page: [4 - 14] Pages: 11

DOI: 10.2174/2405520413999200519072426

Price: $65

Abstract

Objective: Polyethylene oxide (PEO) composed of 10 wt% ammonium bifluoride (NH4HF2) exhibited higher conductivity of 5.96x10-6 S/cm as compared to other concentrations of salt at room temperature. The effect of additives, i.e., nano-sized fumed silica concentration as nanofiller and propylene carbonate (PC) concentration as plasticizer on electrical, structural, as well as mechanical property studies of polymer electrolytes has been studied.

Methods: The ionic conductivity, as well as dielectric studies of polymer electrolytes consisting of polyethylene oxide and different (x wt%) ammonium bifluoride (x=1, 2.5, 5, 10 and 15 wt %), have been measured using complex impedance spectroscopic technique. X-ray diffraction (XRD) and differential scanning calorimetry/thermogravimetric analysis (DSC/ TGA) studies have been conducted to observe the effect of additives on crystalline phase, crystallite size, melting temperature and weight loss of different polymer electrolytes. The effect of additives on the mechanical properties (tensile strength, modulus of elasticity and % elongation at break) of different polymer electrolytes has also been studied by Universal Testing Machine (UTM).

Results: The maximum conductivity achieved was 1.55× 10-4 S/cm in case of plasticized nanocomposite polymer electrolytes with the simultaneous presence of 3 wt% fumed silica and 0.3 ml propylene carbonate. The variation of ionic conductivity at different temperatures and activation energy values of different polymer electrolytes were also measured and observed in good correlation.

Conclusion: The observed enhancement in the ionic conductivity of polymer electrolytes with additives is due to an increase in carrier concentration, amorphous content, chain flexibility, as well as the formation of more conducting pathways. Hence, this new approach led to the development of plasticized nanocomposite polymer electrolytes with high ionic conductivity and improved structural and mechanical properties.

Keywords: Ionic conductivity, impedance spectroscopy, XRD, DSC, TGA, mechanical properties, plasticizer, fumed silica.

Graphical Abstract

[1]
Bruce PG. Gray FM Polymer electrolytes II: physical principlesSolid state electrochemistry. UK: Cambridge University Press 1997.
[2]
MacCallum JR. Vincent CA Polymer electrolyte reviews-2. London: Elsevier 1987.
[3]
Scrosati B, Ed. Applications of electroactive polymers. London: Chapman and Hall 1993.
[http://dx.doi.org/10.1007/978-94-011-1568-1]
[4]
Armand M, Tarascon JM. Building better batteries. Nature 2008; 451(7179): 652-7.
[http://dx.doi.org/10.1038/451652a] [PMID: 18256660]
[5]
Meyer WH. Polymer electrolytes for lithium-ion batteries. Adv Mater 1998; 10(6): 439-48.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I] [PMID: 21647973]
[6]
Gray FM. Polymer electrolytes The Royal Society of Chemistry. UK: Cambridge University Press 1993.
[7]
Alagmir M, Abraham KM. Lithium batteries, new materials, development and prospective. Amsterdam: Elsevier 1994.
[8]
Jacob MME, Hackett E, Giannelis EP. From nanocomposite to nanogel polymer electrolytes. J Mater Chem 2003; 13: 1-5.
[http://dx.doi.org/10.1039/b204458g]
[9]
Armand MB, Chabagno JM, Duclot MJ. Fast ion transport in solids. New York: Elsevier 1997.
[10]
Chu PP, Reddy MJ. Sm2O3 composite PEO solid polymer electrolytes. J Power Sources 2003; 115: 288-94.
[http://dx.doi.org/10.1016/S0378-7753(02)00717-6]
[11]
Johan MR, Shy OO, Ibrahim S, Yassin SMM, Hue TY. Effects of Al2O3 nano-filler and EC plasticizer on the ionic conductivity enhancement of solid PEOLiCF3SO3 solid polymer electrolyte. Solid State Ion 2011; 196: 41-7.
[http://dx.doi.org/10.1016/j.ssi.2011.06.001]
[12]
Fan LZ, Nan CW, Zhao SJ. Effect of modified SiO2 on the properties of PEO-based polymer electrolytes. Solid State Ion 2003; 164: 81-6.
[http://dx.doi.org/10.1016/j.ssi.2003.08.004]
[13]
Zhang S, Lee JY, Hong L. Li+ conducting ‘fuzzy’ poly(ethylene oxide)–SiO2 polymer composite electrolytes. J Power Sources 2004; 134: 95-02.
[http://dx.doi.org/10.1016/j.jpowsour.2004.02.017]
[14]
Nookala M, Kumar B, Rodrigues S. Ionic conductivity and ambient temperature Li electrode reaction in composite polymer electrolytes containing nano size alumina. J Power Sources 2002; 111: 165-72.
[http://dx.doi.org/10.1016/S0378-7753(02)00303-8]
[15]
Sharma JP, Sekhon SS. Nano-dispersed polymer gel electrolytes: Conductivity modification with the addition of PMMA and fumed silica. Solid State Ion 2007; 178: 439-45.
[http://dx.doi.org/10.1016/j.ssi.2007.01.017]
[16]
Hirankumar G, Mehta N. Effect of incorporation of different plasticizers on structural and ion transport properties of PVA-LiClO4 based electrolytes. Heliyon 2018; 4(12): e00992.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00992] [PMID: 30623123]
[17]
Li R, Wei X, Chang M, Rui F, Mengqiao Z. Spherelike SnO2/TiO2 composites as high-performance anodes for lithium ion batteries. Ceram Int 2019; 45(10): 13530-5.
[http://dx.doi.org/10.1016/j.ceramint.2019.04.059]
[18]
Xiao W, Wang Z, Zhang Y, Fang R, Jiang Y. Enhanced performance of P(VDF-HFP)-based composite polymer electrolytes doped with organic-inorganic hybrid particles PMMA-ZrO2 for lithium ion batteries. J Power Sources 2018; 382: 128-34.
[http://dx.doi.org/10.1016/j.jpowsour.2018.02.012]
[19]
Fang R, Xiao W, Miao C, Mei P, Jiang Y. Enhanced lithium storage performance of core-shell structural Si@TiO2/NC composite anode via facile sol-gel and in situ N-doped carbon coating processes. Electrochim Acta 2019; 317: 575-82.
[http://dx.doi.org/10.1016/j.electacta.2019.06.028]
[20]
Armand M, Gorecki W, Andreani R. In: Second Int Symp Polymer Electrolytes (ed) Scrosati B
[21]
Kim S, Hwang EJ, Jung Y, Han M, Park SJ. Ionic conductivity of polymeric nanocomposite electrolytes based on poly(ethylene oxide) and organo-clay materials. Colloids Surf A: Physicochem Eng Aspects 2008; 313-314: 216-9.
[22]
Wang W, Alexandridis P. Composite polymer electrolytes: Nanoparticles affect structure and properties. Polymers (Basel) 2016; 8(11): 387.
[http://dx.doi.org/10.3390/polym8110387 PMID: 30974666]
[23]
Weston JE, Steele BCH. Effects of inert fillers on the mechanical and electrochemical properties of lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ion 1982; 7: 75-9.
[http://dx.doi.org/10.1016/0167-2738(82)90072-8]
[24]
Yang XQ, Lee HS, Hanson L, McBreen J, Okamoto Y. Development of a new plasticizer for poly(ethylene oxide)-based polymer electrolyte and the investigation of their ion-pair dissociation effect. J Power Sources 1995; 54: 198-04.
[http://dx.doi.org/10.1016/0378-7753(94)02066-C]
[25]
Shaari N, Kamarudin SK. Recent advances in additive-enhanced polymer electrolyte membrane properties in fuel cell applications: An overview. Int J Energy Res 2019; 1-39.
[http://dx.doi.org/10.1002/er.4348]
[26]
Gondaliya N, Kanchan DK, Sharma P, Jayswal MS. Dielectric and electric properties of plasticized PEOAgCF3SO3‐SiO2 nanocomposite polymer electrolyte system. Polym Compos 2012; 33(2): 2195-00.
[http://dx.doi.org/10.1002/pc.22362]
[27]
Kumar M, Sekhon SS. Ionic conductance behaviour of plasticized polymer electrolytes containing different plasticizers. Ionics 2002; 8(3-4): 223-33.
[http://dx.doi.org/10.1007/BF02376072]
[28]
Gondaliya N, Kanchan DK, Sharma P, Joge P. Effect of silicone dioxide and poly(ethylene glycol) on the conductivity and relaxation dynamics of poly(ethylene oxide)–silver triflate solid polymer electrolyte. J Appl Polym Sci 2012; 125(2): 1513-20.
[http://dx.doi.org/10.1002/app.36372]
[29]
Deka M, Kumar A. Electrical and electrochemical studies of poly(vinylidene fluoride)–clay nanocomposite gel polymer electrolytes for Li-ion batteries. J Power Sources 2011; 196: 1358-64.
[http://dx.doi.org/10.1016/j.jpowsour.2010.09.035]
[30]
Rajeswari N, Selvasekarapandian S, Karthikeyan S, et al. Conductivity and dielectric properties of polyvinyl alcohol–polyvinylpyrrolidone poly blend film using non-aqueous medium. J Non-Cryst Solids 2011; 357(22-23): 3751-6.
[http://dx.doi.org/10.1016/j.jnoncrysol.2011.07.037]
[31]
Chandra S Superionic Solids. Principles and Applications by. Amsterdam: North Holland 1981; p. 124.
[32]
Colomban P Proton Conductors: Solids, membranes and gels-materials and devices edited by, Cambridge University Press, Cambridge, In: 1992; 42: pp. 1879-352.
[33]
Rahman MYA, Ahmad A, Lee TK, Farina Y, Dahlan HM. Effect of ethylene carbonate (EC) plasticizer on poly (Vinyl Chloride)-liquid 50% epoxidise natural rubber (LENR50) based polymer electrolyte. Mater Sci Appl 2011; 2(7): 818-26.
[http://dx.doi.org/10.4236/msa.2011.27111]
[34]
Mohamed SA, Al-Ghamdi AA, Sharma GD, El Mansy MK. Effect of ethylene carbonate as a plasticizer on CuI/PVA nanocomposite: Structure, optical and electrical properties. J Adv Res 2014; 5(1): 79-86.
[http://dx.doi.org/10.1016/j.jare.2012.11.008 PMID: 25685474]
[35]
Stephan AM, Prem Kumar T, Renganathan NG, Pitchumani S, Thirunakaran R, Muniyandi N. Ionic conductivity and FT-IR studies on plasticized PVCrPMMA blend polymer electrolytes. J Power Sources 2000; 89: 80-7.
[http://dx.doi.org/10.1016/S0378-7753(00)00379-7]
[36]
Sharma JP, Yamada K, Sekhon SS. Conductivity studies of plasticized PEO–HPF6–fumed silica nanocomposite polymer electrolyte system. Int J Ionics 2012; 18: 151-8.
[http://dx.doi.org/10.1007/s11581-011-0610-y]
[37]
Pandey GP, Agrawal RC, Hashmi SA. Magnesium ion-conducting gel polymer electrolytes dispersed with nano sized magnesium oxide. J Power Sources 2009; 190: 563-72.
[http://dx.doi.org/10.1016/j.jpowsour.2009.01.057]
[38]
Guinier A. X-ray diffraction in crystals, imperfect crystals and amorphous bodies. New York: Dover Publications 1994.
[39]
Rinaldi RW, Matos R, Rubira AF, Ferrira OP, Girotto EM. Electrical, spectroscopic, and thermal properties of blends formed by PEDOT, PVC, and PEO. J Appl Polym Sci 2005; 96: 1710-5.
[http://dx.doi.org/10.1002/app.21637]
[40]
Subramania A, Kalyana Sundaram NT, Sukumar N. Development of PVA based micro-porous polymer electrolyte by a novel preferential polymer dissolution process. J Power Sources 2005; 141: 188-92.
[http://dx.doi.org/10.1016/j.jpowsour.2004.09.001]
[41]
Ramya CS, Selvasekarapandian S, Savitha T, Hirankumar G, Angelo PC. Conductivity and thermal behavior of proton conducting polymer electrolyte based on poly (N-vinyl pyrrolidone). Eur Polym J 2006; 42: 2672-7.
[http://dx.doi.org/10.1016/j.eurpolymj.2006.05.020]
[42]
Appetecchi GB, Croce F, Scrosati B. Kinetics and stability of the lithium electrode in poly(methylmethacrylate)-based gel electrolytes. Electrochim Acta 1995; 40(8): 991-7.
[http://dx.doi.org/10.1016/0013-4686(94)00345-2]
[43]
Latif F, Aziz M, Katun N, Yahya MZ. The role and impact of rubber in poly (methyl methacrylate)/lithium triflate electrolyte. J Power Sources 2006; 159: 1401-4.
[http://dx.doi.org/10.1016/j.jpowsour.2005.12.007]
[44]
Dieterich W, Maass P. Non-Debye relaxations in disordered ionic solids. Chem Phys 2002; 284: 439-67.
[http://dx.doi.org/10.1016/S0301-0104(02)00673-0]
[45]
Rajeswari N, Selvasekarapandian S, Prabu M, Karthikeyan S, Sanjeeviraja C. Lithium ion conducting solid polymer blend electrolyte based on biodegradable polymers. Bull Mater Sci 2013; 36: 333-9.
[http://dx.doi.org/10.1007/s12034-013-0463-2]
[46]
Irshad A, Wani A, Ganguly JA, Ahmad T. Silver nanoparticles: Ultrasonic wave assisted synthesis, optical characterization and surface area studies. Mater Lett 2011; 65(3): 520-2.
[http://dx.doi.org/10.1016/j.matlet.2010.11.003]
[47]
Animista IE, Kruglyashov AL. Morphology and ionic conductivity of poly (ethylene oxide)-poly (vinyl acetate) –LiClO4 polymer electrolytes. Solid State Ion 1998; 106: 321-7.
[http://dx.doi.org/10.1016/S0167-2738(97)00503-1]
[48]
Kuila T, Acharya H, Srivatsava SK, Samantardy BK, Kureti S. Enhancing the ionic conductivity of PEO based plasticized composite polymer electrolyte by LaMnO3 nanofiller. Mater Sci Eng B 2007; 137: 217-24.
[http://dx.doi.org/10.1016/j.mseb.2006.11.023]
[49]
Ramesh S, Liew CW, Ramesh K. Evaluation and investigation on the effect of ionic liquid onto PMMAPVC gel polymer blend electrolytes. J Non-Cryst Solids 2011; 357(10): 2132-8.
[http://dx.doi.org/10.1016/j.jnoncrysol.2011.03.004]
[50]
Hodge RM, Edward GH, Simon GP. Water absorption and states of water in semicrystalline poly (vinyl alcohol) films. Polymer (Guildf) 1996; 37(8): 1371-6.
[http://dx.doi.org/10.1016/0032-3861(96)81134-7]
[51]
Chen HW, Chang FC. The novel polymer electrolyte nanocomposite composed of poly (ethylene oxide), lithium triflate and mineral clay. Polymer (Guildf) 2001; 42: 9763-9.
[http://dx.doi.org/10.1016/S0032-3861(01)00520-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy