[1]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[2]
Nehrbas, J.; Butler, J.T.; Chen, D.W.; Kurre, P. Extracellular vesicles and chemotherapy resistance in the AML microenvironment. Front. Oncol., 2020, 10, 90.
[3]
Guan, W.J.; Zhong, N.S. Clinical characteristics of Covid-19 in China. Reply. N. Engl. J. Med., 2020, 382. pii: 10.1056/NEJMc2005203#sa5
[4]
Anand, K.; Ziebuhr, J.; Wadhwani, P.; Mesters, J.R.; Hilgenfeld, R. Coronavirus main proteinase (3CLpro) structure: basis for design of anti-SARS drugs. Science, 2003, 300(5626), 1763-1767.
[5]
Jenwitheesuk, E.; Samudrala, R. Identifying inhibitors of the SARS coronavirus proteinase. Bioorg. Med. Chem. Lett., 2003, 13(22), 3989-3992.
[6]
Irwin, J.J.; Shoichet, B.K. ZINC--a free database of commercially available compounds for virtual screening. J. Chem. Inf. Model., 2005, 45(1), 177-182.
[7]
Sterling, T.; Irwin, J.J. ZINC 15 – ligand discovery for everyone. J. Chem. Inf. Model., 2015, 55(11), 2324-2337.
[8]
Rohl, C.A.; Strauss, C.E.; Misura, K.M.; Baker, D. Protein structure prediction using Rosetta. Methods Enzymol., 2004, 383, 66-93.
[9]
Kohlhoff, K.J.; Shukla, D.; Lawrenz, M.; Bowman, G.R.; Konerding, D.E.; Belov, D.; Altman, R.B.; Pande, V.S. Corrigendum: Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat. Chem., 2015, 7(9), 759.
[10]
Voelz, V.A.; Bowman, G.R.; Beauchamp, K.; Pande, V.S. Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J. Am. Chem. Soc., 2010, 132(5), 1526-1528.
[11]
Li, Y.; Zhang, J.; Wang, N.; Li, H.; Shi, Y.; Guo, G.; Liu, K.; Zeng, H.; Zou, Q. Therapeutic drugs targeting 2019-nCoV main protease by highthroughput
screening (preprint). bioRxiv, 2020.Available
from:. https://www.biorxiv.org/content/biorxiv/early/2020/01/30/2020.01.28.922922.full.pdf
[12]
Xu, Z.; Peng, C.; Shi, Y.; Zhu, Z.; Mu, K.; Wang, X.; Zhu, W. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an
integrative approach combining homology modelling, molecular docking and binding free energy calculation (preprint) bioRxiv,, 2020.Available from: . https://www.biorxiv.org/content/biorxiv/early/2020/01/28/2020.01.27.921627.full.pdf
[13]
Zhavoronkov, A.; Aladinskiy, V.; Zhebrak, A.; Zagribelnyy, B.; Terentiev, V.; Bezrukov, D.S.; Polykovskiy, D.; Shayakhmetov, R.; Filimonov, A.; Orekhov, P.; Yan, Y.; Popova, O.; Vanhaelen, Q.; Aliper, A.; Ivanenkov, Y. Potential COVID-2019 3C-like protease inhibitors designed using generative
deep learning approaches (preprint). ChemRxiv, 2020.Available from: . https://s3-eu-west-1.amazonaws.com/itempdf74155353254prod/ 11829102/Potential_COVID-2019_3C-like_Protease_Inhibitors_Designed_Using_Generative_Deep_Learning_Approaches_v2.pdf
[14]
Richardson, P.; Griffin, I.; Tucker, C.; Smith, D.; Oechsle, O.; Phelan, A.; Stebbing, J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 2020, 395(10223), e30-e31.
[15]
Gao, J.; Tian, Z.; Yang, X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci. Trends, 2020, 14(1), 72-73.
[16]
Gautret, P.; Lagier, J.C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Dupont, H.T.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J.M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. (pre-proof). Int. J. Antimicrob. Agents, 2020., 105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949]
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949]