Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

General Review Article

Effect of Mirabegron on the Body's Exercise Capacity: A Review

Author(s): Kamil Leis, Ewelina Mazur, Mariusz Racinowski, Wojciech Świerczyński, Aleksandra Baska* and Przemysław Gałązka

Volume 20, Issue 9, 2020

Page: [1448 - 1455] Pages: 8

DOI: 10.2174/1871530320666200516164434

Price: $65

Abstract

Mirabegron is a β3-agonist drug approved by the FDA for use in 2012 and administered in overactive bladder. Activating of adrenergic receptors leads to the relaxation of the detrusor muscle. According to the latest research and reports, it also has lipolytic activity, affecting the reduction of mainly brown adipose tissue (BAT) but also of white adipose tissue (WAT). This results in a decrease in body weight and triglyceride concentration and an increase in lipoprotein lipase activity, as well as in the level of free fatty acids or adipokines in the plasma. The drug indirectly participates in the regulation of carbohydrate metabolism, influencing the increase in insulin sensitivity, supporting cellular uptake of glucose. However, due to the elevation of blood pressure and pulse, as a supplement, the drug should be taken with care to avoid cardiovascular complications. In our review, below, we present a description and discussion of available studies in terms of mirabegron action on the exercise capacity of the body in the context of its potential use as a doping agent.

Keywords: Mirabegron, β3-agonist, insulin sensitivity, lipolysis, exercise, drug.

Graphical Abstract

[1]
Mo, W.; Michel, M.C.; Lee, X.W.; Kaumann, A.J.; Molenaar, P. The β3 -adrenoceptor agonist mirabegron increases human atrial force through β1 -adrenoceptors: an indirect mechanism? Br. J. Pharmacol., 2017, 174(16), 2706-2715.
[http://dx.doi.org/10.1111/bph.13897 ] [PMID: 28574581]
[2]
[4]
Alexandre, E.C.; Kiguti, L.R.; Calmasini, F.B.; Silva, F.H.; da Silva, K.P.; Ferreira, R.; Ribeiro, C.A.; Mónica, F.Z.; Pupo, A.S.; Antunes, E. Mirabegron relaxes urethral smooth muscle by a dual mechanism involving β3 -adrenoceptor activation and α1 -adrenoceptor blockade. Br. J. Pharmacol., 2016, 173(3), 415-428.
[http://dx.doi.org/10.1111/bph.13367 ] [PMID: 26493129]
[5]
Cypess, A.M.; Weiner, L.S.; Roberts-Toler, C.; Franquet Elía, E.; Kessler, S.H.; Kahn, P.A.; English, J.; Chatman, K.; Trauger, S.A.; Doria, A.; Kolodny, G.M. Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab., 2015, 21(1), 33-38.
[http://dx.doi.org/10.1016/j.cmet.2014.12.009 ] [PMID: 25565203]
[6]
Kaur, K.K.; Allahbadia, G.; Singh, M. Advances in BAT physiology for understanding and translating into pharmacotherapies for obesity and comorbidities. MOJ Drug Des Develop Ther, 2016, 2(5), 166-176.
[7]
Russo, E.; Giannini, A.; Caretto, M.; Mannella, P.; Simoncini, T. Bladder dysfunction and urinary incontinence after the menopause: hormones, drugs, or surgery? Pre-Menopause. Menopause and Beyond, 2018, Vol. 5, pp., 287-292.
[http://dx.doi.org/10.1007/978-3-319-63540-8_25]
[8]
Teleman, P.M.; Lidfeldt, J.; Nerbrand, C.; Samsioe, G.; Mattiasson, A. Overactive bladder: prevalence, risk factors and relation to stress incontinence in middle-aged women. BJOG, 2004, 111(6), 600-604.
[http://dx.doi.org/10.1111/j.1471-0528.2004.00137.x ] [PMID: 15198789]
[9]
Aleksiewicz, T.; Leis, K.; Świerczyński, W.; Miętkiewicz, K.; Litwin, K.; Gałązka, P. Mirabegron: the review of current knowledge of safety and efficacy in the relief of overactive bladder symptoms. J. Educ. Health Sport, 2018, 8(9), 424-437.
[10]
Kuo, H.C.; Lee, K.S.; Na, Y.; Sood, R.; Nakaji, S.; Kubota, Y.; Kuroishi, K. Results of a randomized, double-blind, parallel-group, placebo- and active-controlled, multicenter study of mirabegron, a β3-adrenoceptor agonist, in patients with overactive bladder in Asia. Neurourol. Urodyn., 2015, 34(7), 685-692.
[http://dx.doi.org/10.1002/nau.22645 ] [PMID: 25130281]
[11]
Batista, J.E.; Kölbl, H.; Herschorn, S.; Rechberger, T.; Cambronero, J.; Halaska, M.; Coppell, A.; Kaper, M.; Huang, M.; Siddiqui, E. The efficacy and safety of mirabegron compared with solifenacin in overactive bladder patients dissatisfied with previous antimuscarinic treatment due to lack of efficacy: results of a noninferiority, randomized, phase IIIb trial. Ther. Adv. Urol., 2015, 7(4), 167-179.
[http://dx.doi.org/10.1177/1756287215589250 ] [PMID: 26445596]
[12]
Kallner, H.K.; Christensson, A.A.; Elmér, C.; Flam, B.; Altman, D. Safety and efficacy of mirabegron in daily clinical practice: a prospective observational study. Eur. J. Obstet. Gynecol. Reprod. Biol., 2016, 203, 167-172.
[http://dx.doi.org/10.1016/j.ejogrb.2016.05.048 ] [PMID: 27318184]
[13]
Serati, M.; Leone Roberti Maggiore, U.; Sorice, P.; Cantaluppi, S.; Finazzi Agrò, E.; Ghezzi, F. Is mirabegron equally as effective when used as first- or second-line therapy in women with overactive bladder? Int. Urogynecol. J. Pelvic Floor Dysfunct., 2017, 28(7), 1033-1039.
[http://dx.doi.org/10.1007/s00192-016-3219-x ] [PMID: 27942790]
[14]
Schiavi, M.C.; Faiano, P.; D’Oria, O.; Zullo, M.A.; Muzii, L.; Benedetti Panici, P. Efficacy and tolerability of treatment with mirabegron compared with solifenacin in the management of overactive bladder syndrome: A retrospective analysis. J. Obstet. Gynaecol. Res., 2018, 44(3), 524-531.
[http://dx.doi.org/10.1111/jog.13541] [PMID: 29271106]
[15]
Вдовиченко, Ю.П.; Єфіменко, О.О.; Педаченко, Н.Ю.; Яцина, О.І. Differentiated approach to the treatment of genitourinary syndrome in perimenopausal women. Reprod Endocrinol, 2019, 1(46), 8-18.
[http://dx.doi.org/10.18370/2309-4117.2019.46.8-18]
[16]
Dimitriadis, F.; Zachariou, A.; Skouros, S.; Karagiannis, A.; Kaltsas, A.; Simogianni, N.; Tsounapi, P.; Takenaka, A.; Sofikitis, N. PS-02-003 The effect of mirabegron on female sexual function. J. Sex. Med., 2017, 14(4), e110-e111.
[http://dx.doi.org/10.1016/j.jsxm.2017.03.084]
[17]
Cero, C.; O'Mara, A. L. A. N. A.; Johnson, J. W.; Baskin, A. S.; Linerman, J. D.; Cypess, A. Stimulation of the ß3-adrenergic receptor via Mirabegron induces lipolysis and thermogenesis in human adipocytes. Diabetes, 2018, 67(Suppl. 1).
[http://dx.doi.org/10.2337/db18-2049-P]
[18]
O’Mara, A.L.A.N.A.; Cypess, A.; Cero, C.; Johnson, J.W.; Linderman, J.D.; Leitner, B.; Fletcher, L.; Brychta, R.; Kapuria, D.; McGehee, S.; Rotman, Y. Physiological responses to daily use of beta-three adrenergic receptor agonist, Mirabegron. Diabetes, 2018.
[http://dx.doi.org/10.2337/db18-1146-P]
[19]
Aldiss, P.; Lewis, J.; Ebling, F.; Budge, H.; Symonds, M. Physiological regulation of brown adipose tissue with obesity by mild-cold exposure, a β3-agonist and exercise training at thermoneutrality., . FASEB J, 2018, 32(1_supplement), 670-20.
[20]
Finlin, B.S.; Memetimin, H.; Confides, A.L.; Kasza, I.; Zhu, B.; Vekaria, H.J.; Harfmann, B.; Jones, K.A.; Johnson, Z.R.; Westgate, P.M.; Alexander, C.M.; Sullivan, P.G.; Dupont-Versteegden, E.E.; Kern, P.A. Human adipose beiging in response to cold and mirabegron. JCI Insight, 2018, 3(15)121510
[http://dx.doi.org/10.1172/jci.insight.121510 ] [PMID: 30089732]
[21]
Hao, L.; Scott, S.; Abbasi, M.; Zu, Y.; Khan, M.S.H.; Yang, Y.; Wu, D.; Zhao, L.; Wang, S. Beneficial metabolic effects of mirabegron in vitro and in high-fat diet-induced obese mice. J. Pharmacol. Exp. Ther., 2019, 369(3), 419-427.
[http://dx.doi.org/10.1124/jpet.118.255778 ] [PMID: 30940691]
[22]
Martinez-Tellez, B.; Nahon, K.J.; Janssen, L.G.M.; Sardjoe-Mishre, A.S.; van Weeghel, M.; Vaz, F.M.; Houtkooper, R.; Burakiewicz, J.; Dzyubachyk, O.; Kooijman, S.; Webb, A.G.; Kan, H.E.; Berbee, J.F.P.; Jazet, I.M.; Boon, M.; Rensen, P.C.N. The effect of Mirabegron on energy expenditure, brown adipose tissue and the lipidomic profile in healthy lean South Asian and white Caucasian Men. Atherosclerosis, 2019, 287,e279.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.06.864]
[23]
Cero, C.; Johnson, J. W.; O’Mara, A. L. A. N. A.; Linderman, J. D.; Cypess, A. M. 137-OR: The selective human Beta 3 adrenergic receptor mirabegron potently activates lipolysis in human white adipocytes. Diabetes, 2019, 68(Suppl. 1).
[http://dx.doi.org/10.2337/db19-137-OR]
[24]
O’Mara, A.E.; Johnson, J.W.; Linderman, J.D.; Brychta, R.J.; McGehee, S.; Fletcher, L.A.; Fink, Y.A.; Kapuria, D.; Cassimatis, T.M.; Kelsey, N.; Cero, C.; Sater, Z.A.; Piccinini, F.; Baskin, A.S.; Leitner, B.P.; Cai, H.; Millo, C.M.; Dieckmann, W.; Walter, M.; Javitt, N.B.; Rotman, Y.; Walter, P.J.; Ader, M.; Bergman, R.N.; Herscovitch, P.; Chen, K.Y.; Cypess, A.M. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest., 2020.131126
[http://dx.doi.org/10.1172/JCI131126] [PMID: 31961826]
[25]
Tzanavari, T.; Giannogonas, P.; Karalis, K.P. TNF-α and obesity. Curr. Dir. Autoimmun., 2010, 11, 145-156.
[http://dx.doi.org/10.1159/000289203]
[26]
Arkan, M.C.; Hevener, A.L.; Greten, F.R.; Maeda, S.; Li, Z.W.; Long, J.M.; Wynshaw-Boris, A.; Poli, G.; Olefsky, J.; Karin, M. IKK-β links inflammation to obesity-induced insulin resistance. Nat. Med., 2005, 11(2), 191-198.
[http://dx.doi.org/10.1038/nm1185 ] [PMID: 15685170]
[27]
Antuna-Puente, B.; Feve, B.; Fellahi, S.; Bastard, J.P. Adipokines: the missing link between insulin resistance and obesity. Diabetes Metab., 2008, 34(1), 2-11.
[http://dx.doi.org/10.1016/j.diabet.2007.09.004 ] [PMID: 18093861]
[28]
Zhang, Y.; Zhan, R.X.; Chen, J.Q.; Gao, Y.; Chen, L.; Kong, Y.; Zhong, X.J.; Liu, M.Q.; Chu, J.J.; Yan, G.Q.; Li, T.; He, M.; Huang, Q.R. Pharmacological activation of PPAR gamma ameliorates vascular endothelial insulin resistance via a non-canonical PPAR gamma-dependent nuclear factor-kappa B trans-repression pathway. Eur. J. Pharmacol., 2015, 754, 41-51.
[http://dx.doi.org/10.1016/j.ejphar.2015.02.004 ] [PMID: 25687252]
[29]
Samuel, V.T.; Shulman, G.I. The pathogenesis of insulin resistance: integrating signaling pathways and substrate flux. J. Clin. Invest., 2016, 126(1), 12-22.
[http://dx.doi.org/10.1172/JCI77812 ] [PMID: 26727229]
[30]
Poher, A.L.; Altirriba, J.; Veyrat-Durebex, C.; Rohner-Jeanrenaud, F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front. Physiol., 2015, 6, 4.
[http://dx.doi.org/10.3389/fphys.2015.00004 ] [PMID: 25688211]
[31]
Roberts-Toler, C.; O’Neill, B.T.; Cypess, A.M. Diet-induced obesity causes insulin resistance in mouse brown adipose tissue. Obesity (Silver Spring), 2015, 23(9), 1765-1770.
[http://dx.doi.org/10.1002/oby.21134 ] [PMID: 26242777]
[32]
Mirbolooki, M.R.; Schade, K.N.; Constantinescu, C.C.; Pan, M.L.; Mukherjee, J. Enhancement of 18F-fluorodeoxyglucose metabolism in rat brain frontal cortex using a β3 adrenoceptor agonist. Synapse, 2015, 69(2), 96-98.
[http://dx.doi.org/10.1002/syn.21789 ] [PMID: 25347981]
[33]
Finlin, B.S.; Memetimin, H.; Zhu, B.; Confides, A.L.; Vekaria, H.J.; El Khouli, R.H.; Johnson, Z.R.; Westgate, P.M.; Chen, J.; Morris, A.J.; Sullivan, P.G.; Dupont-Versteegden, E.E.; Kern, P.A. The β3- adrenergic receptor agonist mirabegron improves glucose homeostasis in obese humans. J. Clin. Invest., 2020.134892 2020.
[http://dx.doi.org/10.1172/JCI134892] [PMID: 31961829]
[34]
Andersson, K.E. Pharmacology: cardiovascular effects of mirabegron. Nat. Rev. Urol., 2017, 14(10), 587-588.
[http://dx.doi.org/10.1038/nrurol.2017.113 ] [PMID: 28695920]
[35]
Balachandran, A.A.; Duckett, J.R. The risk and severity of developing symptomatic palpitations when prescribed mirabegron for overactive bladder. Eur. J. Obstet. Gynecol. Reprod. Biol., 2015, 187, 60-63.
[http://dx.doi.org/10.1016/j.ejogrb.2015.02.020 ] [PMID: 25756594]
[36]
Rosa, G.M.; Ferrero, S.; Nitti, V.W.; Wagg, A.; Saleem, T.; Chapple, C.R. Cardiovascular safety of β3-adrenoceptor agonists for the treatment of patients with overactive bladder syndrome. Eur. Urol., 2016, 69(2), 311-323.
[http://dx.doi.org/10.1016/j.eururo.2015.09.007 ] [PMID: 26422675]
[37]
Chen, H.L.; Chen, T.C.; Chang, H.M.; Juan, Y.S.; Huang, W.H.; Pan, H.F.; Chang, Y.C.; Wu, C.M.; Wang, Y.L.; Lee, H.Y. Mirabegron is alternative to antimuscarinic agents for overactive bladder without higher risk in hypertension: a systematic review and meta-analysis. World J. Urol., 2018, 36(8), 1285-1297.
[http://dx.doi.org/10.1007/s00345-018-2268-9 ] [PMID: 29556972]
[38]
Pouleur, A.C.; Anker, S.; Brito, D.; Brosteanu, O.; Hasenclever, D.; Casadei, B.; Edelmann, F.; Filippatos, G.; Gruson, D.; Ikonomidis, I.; Lhommel, R.; Mahmod, M.; Neubauer, S.; Persu, A.; Gerber, B.L.; Piechnik, S.; Pieske, B.; Pieske-Kraigher, E.; Pinto, F.; Ponikowski, P.; Senni, M.; Trochu, J.N.; Van Overstraeten, N.; Wachter, R.; Balligand, J.L. Rationale and design of a multicentre, randomized, placebo-controlled trial of mirabegron, a Beta3-adrenergic receptor agonist on left ventricular mass and diastolic function in patients with structural heart disease Beta3-left ventricular hypertrophy (Beta3-LVH). ESC Heart Fail., 2018, 5(5), 830-841.
[http://dx.doi.org/10.1002/ehf2.12306 ] [PMID: 29932311]
[39]
Korstanje, C.; Suzuki, M.; Yuno, K.; Sato, S.; Ukai, M.; Schneidkraut, M.J.; Yan, G.X. Translational science approach for assessment of cardiovascular effects and proarrhythmogenic potential of the beta-3 adrenergic agonist mirabegron. J. Pharmacol. Toxicol. Methods, 2017, 87, 74-81.
[http://dx.doi.org/10.1016/j.vascn.2017.04.008 ] [PMID: 28434969]
[40]
White, W.B.; Chapple, C.; Gratzke, C.; Herschorn, S.; Robinson, D.; Frankel, J.; Ridder, A.; Stoelzel, M.; Paireddy, A.; van Maanen, R.; Weber, M.A. Cardiovascular safety of the β3‐adrenoceptor agonist mirabegron and the antimuscarinic agent solifenacin in the SYNERGY trial. J. Clin. Pharmacol., 2018, 58(8), 1084-1091.
[http://dx.doi.org/10.1002/jcph.1107]
[41]
Loh, R.K.C.; Formosa, M.F.; La Gerche, A.; Reutens, A.T.; Kingwell, B.A.; Carey, A.L. Acute metabolic and cardiovascular effects of mirabegron in healthy individuals. Diabetes Obes. Metab., 2019, 21(2), 276-284.
[http://dx.doi.org/10.1111/dom.13516 ] [PMID: 30203462]
[42]
Mendes-Silvério, C.B.; Alexandre, E.M.; Lescano, C.H.; Antunes, E.; Mónica, F.Z. Mirabegron, a β3-adrenoceptor agonist reduced platelet aggregation through cyclic adenosine monophosphate accumulation. Eur. J. Pharmacol., 2018, 829, 79-84.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.010 ] [PMID: 29654782]
[43]
Sui, W.; Li, H.; Yang, Y.; Jing, X.; Xue, F.; Cheng, J.; Dong, M.; Zhang, M.; Pan, H.; Chen, Y.; Zhang, Y.; Zhou, Q.; Shi, W.; Wang, X.; Zhang, H.; Zhang, C.; Zhang, Y.; Cao, Y. Bladder drug mirabegron exacerbates atherosclerosis through activation of brown fat-mediated lipolysis. Proc. Natl. Acad. Sci. USA, 2019, 116(22), 10937-10942.
[http://dx.doi.org/10.1073/pnas.1901655116 ] [PMID: 31085638]
[44]
Malsin, E.S.; Coleman, J.M.; Wolfe, L.F.; Lam, A.P. Respiratory dysfunction following initiation of mirabegron: A case report. Respir. Med. Case Rep., 2019, 26, 304-306.
[http://dx.doi.org/10.1016/j.rmcr.2019.02.012 ] [PMID: 30886821]
[45]
Available at: https://www.wada-ama.org/en/content/what-is-prohibited (Accessed December 10, 2019).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy