Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

General Review Article

Protein and Antibody Engineering: Suppressing Degranulation of the Mast Cells and Type I Hypersensitivity Reaction

Author(s): Huda Fatima Rajani*, Solmaz Shahidi and Mohammad Mahmoudi Gomari

Volume 21, Issue 8, 2020

Page: [831 - 841] Pages: 11

DOI: 10.2174/1389203721666200511094717

Price: $65

Abstract

With an increase in atopic cases and owing to a significant role of mast cells in type I hypersensitivity, a therapeutic need to inhibit degranulation of mast cells has risen. Mast cells are notorious for IgE-mediated allergic response. Advancements have allowed researchers to improve clinical outcomes of already available therapies. Engineered peptides and antibodies can be easily manipulated to attain desired characteristics as per the biological environment. A number of these molecules are designed to target mast cells in order to regulate the release of histamine and other mediators, thereby controlling type I hypersensitivity response. The aim of this review paper is to highlight some of the significant molecules designed for the purpose.

Keywords: Type I hypersensitivity, mast cells, degranulation, peptide engineering, antibody engineering, Fc receptors.

« Previous
Graphical Abstract

[1]
Pawankar, R.; Canonica, G.; Holgate, S.; Lockey, R.; Blaiss, M. . World Allergy Organization (WAO) white book on allergy, 2011.
[2]
Fang, Y.; Xiang, Z. Roles and relevance of mast cells in infection and vaccination. J. Biomed. Res., 2016, 30(4), 253-263.
[PMID: 26565602]
[3]
Piliponsky, A.M.; Romani, L. The contribution of mast cells to bacterial and fungal infection immunity. Immunol. Rev., 2018, 282(1), 188-197.
[http://dx.doi.org/10.1111/imr.12623 ] [PMID: 29431211]
[4]
Kubo, M. Mast cells and basophils in allergic inflammation. Curr. Opin. Immunol., 2018, 54, 74-79.
[http://dx.doi.org/10.1016/j.coi.2018.06.006 ] [PMID: 29960953]
[5]
Gupta, K.; Harvima, I.T. Mast cell-neural interactions contribute to pain and itch. Immunol. Rev., 2018, 282(1), 168-187.
[http://dx.doi.org/10.1111/imr.12622 ] [PMID: 29431216]
[6]
Korosec, P.; Gibbs, B.F.; Rijavec, M.; Custovic, A.; Turner, P.J. Important and specific role for basophils in acute allergic reactions. Clin. Exp. Allergy, 2018, 48(5), 502-512.
[http://dx.doi.org/10.1111/cea.13117]
[7]
Sanchez, E.; Gonzalez, E.A.; Moreno, D.S.; Cardenas, R.A.; Ramos, M.A.; Davalos, A.J.; Manllo, J.; Rodarte, A.I.; Petrova, Y.; Moreira, D.C.; Chavez, M.A.; Tortoriello, A.; Lara, A.; Gutierrez, B.A.; Burns, A.R.; Heidelberger, R.; Adachi, R. Syntaxin 3, but not syntaxin 4, is required for mast cell-regulated exocytosis, where it plays a primary role mediating compound exocytosis. J. Biol. Chem., 2019, 294(9), 3012-3023.
[http://dx.doi.org/10.1074/jbc.RA118.005532 ] [PMID: 30563839]
[8]
Yang, Y.; Kong, B.; Jung, Y.; Park, J.B.; Oh, J.M.; Hwang, J.; Cho, J.Y.; Kweon, D.H. Soluble N-Ethylmaleimide-Sensitive Factor Attachment Protein Receptor-Derived Peptides for Regulation of Mast Cell Degranulation. Front. Immunol., 2018, 9, 725.
[http://dx.doi.org/10.3389/fimmu.2018.00725 ] [PMID: 29696021]
[9]
Costello, P.S.; Turner, M.; Walters, A.E.; Cunningham, C.N.; Bauer, P.H.; Downward, J.; Tybulewicz, V.L. Critical role for the tyrosine kinase Syk in signalling through the high affinity IgE receptor of mast cells. Oncogene, 1996, 13(12), 2595-2605.
[PMID: 9000133]
[10]
Bao, Y.; Wang, S.; Gao, Y.; Zhang, W.; Jin, H.; Yang, Y.; Li, J. MicroRNA-126 accelerates IgE-mediated mast cell degranulation associated with the PI3K/Akt signaling pathway by promoting Ca2+ influx. Exp. Ther. Med., 2018, 16(3), 2763-2769.
[http://dx.doi.org/10.3892/etm.2018.6510 ] [PMID: 30186504]
[11]
Tkaczyk, C.; Gilfillan, A.M. Fc(epsilon)Ri-dependent signaling pathways in human mast cells. Clin. Immunol., 2001, 99(2), 198-210.
[http://dx.doi.org/10.1006/clim.2001.4992 ] [PMID: 11318592]
[12]
Domingo, C.; Palomares, O.; Sandham, D.A.; Erpenbeck, V.J.; Altman, P. The prostaglandin D2 receptor 2 pathway in asthma: a key player in airway inflammation. Respir. Res., 2018, 19(1), 189.
[http://dx.doi.org/10.1186/s12931-018-0893-x ] [PMID: 30268119]
[13]
Metcalfe, D.D.; Peavy, R.D.; Gilfillan, A.M. Mechanisms of mast cell signaling in anaphylaxis. J. Allergy Clin. Immunol., 2009, 124(4), 639-646.
[http://dx.doi.org/10.1016/j.jaci.2009.08.035 ] [PMID: 19815110]
[14]
Suurmond, J.; Rivellese, F.; Dorjée, A.L.; Bakker, A.M.; Rombouts, Y.J.; Rispens, T.; Wolbink, G.; Zaldumbide, A.; Hoeben, R.C.; Huizinga, T.W.; Toes, R.E. Toll-like receptor triggering augments activation of human mast cells by anti-citrullinated protein antibodies. Ann. Rheum. Dis., 2015, 74(10), 1915-1923.
[http://dx.doi.org/10.1136/annrheumdis-2014-205562 ] [PMID: 24818634]
[15]
Ali, H. Regulation of human mast cell and basophil function by anaphylatoxins C3a and C5a. Immunol. Lett., 2010, 128(1), 36-45.
[http://dx.doi.org/10.1016/j.imlet.2009.10.007 ] [PMID: 19895849]
[16]
McNeil, B.D.; Pundir, P.; Meeker, S.; Han, L.; Undem, B.J.; Kulka, M.; Dong, X. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature, 2015, 519(7542), 237-241.
[http://dx.doi.org/10.1038/nature14022 ] [PMID: 25517090]
[17]
Nakamura, Y.; Oscherwitz, J.; Cease, K.B.; Chan, S.M.; Muñoz-Planillo, R.; Hasegawa, M.; Villaruz, A.E.; Cheung, G.Y.; McGavin, M.J.; Travers, J.B.; Otto, M.; Inohara, N.; Núñez, G. Staphylococcus δ-toxin induces allergic skin disease by activating mast cells. Nature, 2013, 503(7476), 397-401.
[http://dx.doi.org/10.1038/nature12655 ] [PMID: 24172897]
[18]
Dobranowski, P.; Sly, L.M. SHIP negatively regulates type II immune responses in mast cells and macrophages. J. Leukoc. Biol., 2018, 103(6), 1053-1064.
[http://dx.doi.org/10.1002/JLB.3MIR0817-340R ] [PMID: 29345374]
[19]
Burton, O.T.; Epp, A.; Fanny, M.E.; Miller, S.J.; Stranks, A.J.; Teague, J.E.; Clark, R.A.; van de Rijn, M.; Oettgen, H.C. Tissue-Specific Expression of the Low-Affinity IgG Receptor, FcγRIIb, on Human Mast Cells. Front. Immunol., 2018, 9(1244), 1244.
[http://dx.doi.org/10.3389/fimmu.2018.01244 ] [PMID: 29928276]
[20]
Robida, P.A.; O’Sullivan, J.A.; Cao, Y.; Shin, S.C.; Bochner, B.S. Siglec-8 Engagement Selectively Inhibits Allergen-Dependent Degranulation of Human Skin Mast Cells In vitro. J. Allergy Clin. Immunol., 2019, 143(2), AB179.
[http://dx.doi.org/10.1016/j.jaci.2018.12.547]
[21]
Castillo, M.; Scott, N.W.; Mustafa, M.Z.; Mustafa, M.S.; Azuara-Blanco, A. Topical antihistamines and mast cell stabilisers for treating seasonal and perennial allergic conjunctivitis. Cochrane Database Syst. Rev., 2015, (6)CD009566
[http://dx.doi.org/10.1002/14651858.CD009566.pub2 ] [PMID: 26028608]
[22]
Kaplan, A.P.; Giménez-Arnau, A.M.; Saini, S.S. Mechanisms of action that contribute to efficacy of omalizumab in chronic spontaneous urticaria. Allergy, 2017, 72(4), 519-533.
[http://dx.doi.org/10.1111/all.13083 ] [PMID: 27861988]
[23]
Serrano-Candelas, E.; Martinez-Aranguren, R.; Valero, A.; Bartra, J.; Gastaminza, G.; Goikoetxea, M.J.; Martin, M.; Ferrer, M. Comparable actions of omalizumab on mast cells and basophils. Clin. Exp. Allergy, 2016, 46(1), 92-102.
[http://dx.doi.org/10.1111/cea.12668]
[24]
Chu, H.M.; Wright, J.; Chan, Y.H.; Lin, C.J.; Chang, T.W.; Lim, C. Two potential therapeutic antibodies bind to a peptide segment of membrane-bound IgE in different conformations. Nat. Commun., 2014, 5, 3139.
[http://dx.doi.org/10.1038/ncomms4139 ] [PMID: 24457896]
[25]
Liour, S.S.; Tom, A.; Chan, Y.H.; Chang, T.W. Treating IgE-mediated diseases via targeting IgE-expressing B cells using an anti-CεmX antibody. Pediatr. Allergy Immunol., 2016, 27(5), 446-451.
[http://dx.doi.org/10.1111/pai.12584 ] [PMID: 27090058]
[26]
Dong, R.; Zhang, M.; Hu, Q.; Zheng, S.; Soh, A.; Zheng, Y.; Yuan, H. Galectin-3 as a novel biomarker for disease diagnosis and a target for therapy. In: Int. J. Mol. Med; , 2018; 41, pp. (2)599-614. Review
[PMID: 29207027]
[27]
Yang, S.; Wang, J.; Chen, F.; Liu, G.; Weng, Z.; Chen, J. Elevated Galectin-9 Suppresses Th1 Effector Function and Induces Apoptosis of Activated CD4+ T Cells in Osteoarthritis. Inflammation, 2017, 40(3), 1062-1071.
[http://dx.doi.org/10.1007/s10753-017-0549-x ] [PMID: 28393295]
[28]
Tanino, Y.; Hashimoto, T.; Ojima, T.; Mizuno, M. F-fucoidan from Saccharina japonica is a novel inducer of galectin-9 and exhibits anti-allergic activity. J. Clin. Biochem. Nutr., 2016, 59(1), 25-30.
[http://dx.doi.org/10.3164/jcbn.15-144 ] [PMID: 27499575]
[29]
Mello-Bosnic, C.; Gimenes, A.D.; Oliani, S.M.; Gil, C.D. Treatment with galectin-1 eye drops regulates mast cell degranulation and attenuates the severity of conjunctivitis. Eur. J. Pharmacol., 2018, 833, 124-130.
[http://dx.doi.org/10.1016/j.ejphar.2018.05.046 ] [PMID: 29859836]
[30]
Yang, L.T.; Shu, Q.; Luo, X.Q.; Liu, Z.Q.; Qiu, S.Q.; Liu, J.Q.; Guo, H.J.; Li, L.J.; Li, M.G.; Liu, D.B.; Xia, L.X.; Liu, Z.G.; Yang, P.C. Long-term effects: Galectin-1 and specific immunotherapy for allergic responses in the intestine. Allergy, 2018, 73(1), 106-114.
[http://dx.doi.org/10.1111/all.13256 ] [PMID: 28718965]
[31]
Andrade, F.E.C.; Corrêa, M.P.; Gimenes, A.D.; Dos Santos, M.S.; Campos, M.; Chammas, R.; Gomes, J.A.P.; Gil, C.D. Galectin-3: role in ocular allergy and potential as a predictive biomarker. Br. J. Ophthalmol., 2018, 102(7), 1003-1010.
[http://dx.doi.org/10.1136/bjophthalmol-2017-311473 ] [PMID: 29502069]
[32]
Gross, A.R.; Theoharides, T.C. Chondroitin sulfate inhibits secretion of TNF and CXCL8 from human mast cells stimulated by IL-33. Biofactors, 2019, 45(1), 49-61.
[http://dx.doi.org/10.1002/biof.1464 ] [PMID: 30521103]
[33]
Yeung, L.; Hickey, M.J.; Wright, M.D. The Many and Varied Roles of Tetraspanins in Immune Cell Recruitment and Migration. Front. Immunol., 2018, 9, 1644.
[http://dx.doi.org/10.3389/fimmu.2018.01644 ] [PMID: 30072994]
[34]
Metcalfe, D.D.; Pawankar, R.; Ackerman, S.J.; Akin, C.; Clayton, F.; Falcone, F.H.; Gleich, G.J.; Irani, A.M.; Johansson, M.W.; Klion, A.D.; Leiferman, K.M.; Levi-Schaffer, F.; Nilsson, G.; Okayama, Y.; Prussin, C.; Schroeder, J.T.; Schwartz, L.B.; Simon, H.U.; Walls, A.F.; Triggiani, M. Biomarkers of the involvement of mast cells, basophils and eosinophils in asthma and allergic diseases. World Allergy Organ. J., 2016, 9, 7.
[http://dx.doi.org/10.1186/s40413-016-0094-3 ] [PMID: 26904159]
[35]
Levy, S. Function of the tetraspanin molecule CD81 in B and T cells. Immunol. Res., 2014, 58(2-3), 179-185.
[http://dx.doi.org/10.1007/s12026-014-8490-7 ] [PMID: 24522698]
[36]
Kraft, S.; Jouvin, M.H.; Kulkarni, N.; Kissing, S.; Morgan, E.S.; Dvorak, A.M.; Schröder, B.; Saftig, P.; Kinet, J.P. The tetraspanin CD63 is required for efficient IgE-mediated mast cell degranulation and anaphylaxis. J. Immunol., 2013, 191(6), 2871-2878.
[http://dx.doi.org/10.4049/jimmunol.1202323 ] [PMID: 23945142]
[37]
Abdala-Valencia, H.; Bryce, P.J.; Schleimer, R.P.; Wechsler, J.B.; Loffredo, L.F.; Cook-Mills, J.M.; Hsu, C.L.; Berdnikovs, S. Tetraspanin CD151 Is a Negative Regulator of FcεRI-Mediated Mast Cell Activation. J. Immunol., 2015, 195(4), 1377-1387.
[http://dx.doi.org/10.4049/jimmunol.1302874 ] [PMID: 26136426]
[38]
Biethahn, K.; Orinska, Z.; Vigorito, E.; Goyeneche-Patino, D.A.; Mirghomizadeh, F.; Föger, N.; Bulfone-Paus, S. miRNA-155 controls mast cell activation by regulating the PI3Kγ pathway and anaphylaxis in a mouse model. Allergy, 2014, 69(6), 752-762.
[http://dx.doi.org/10.1111/all.12407 ] [PMID: 24734904]
[39]
Xiao, L.; Jiang, L.; Hu, Q.; Li, Y. MicroRNA-133b Ameliorates Allergic Inflammation and Symptom in Murine Model of Allergic Rhinitis by Targeting Nlrp3. Cell. Physiol. Biochem., 2017, 42(3), 901-912.
[http://dx.doi.org/10.1159/000478645]
[40]
Yamada, Y.; Kosaka, K.; Miyazawa, T.; Kurata-Miura, K.; Yoshida, T. miR-142-3p enhances FcεRI-mediated degranulation in mast cells. Biochem. Biophys. Res. Commun., 2014, 443(3), 980-986.
[http://dx.doi.org/10.1016/j.bbrc.2013.12.078 ] [PMID: 24361879]
[41]
Smiljkovic, D.; Blatt, K.; Stefanzl, G.; Dorofeeva, Y.; Skrabs, C.; Focke-Tejkl, M.; Sperr, W.R.; Jaeger, U.; Valenta, R.; Valent, P. BTK inhibition is a potent approach to block IgE-mediated histamine release in human basophils. Allergy, 2017, 72(11), 1666-1676.
[http://dx.doi.org/10.1111/all.13166 ] [PMID: 28328081]
[42]
Saito, P.; Melo, C.P.B.; Martinez, R.M.; Fattori, V.; Cezar, T.L.C.; Pinto, I.C.; Bussmann, A.J.C.; Vignoli, J.A.; Georgetti, S.R.; Baracat, M.M.; Verri, W.A., Jr; Casagrande, R. The Lipid Mediator Resolvin D1 Reduces the Skin Inflammation and Oxidative Stress Induced by UV Irradiation in Hairless Mice. Front. Pharmacol., 2018, 9, 1242.
[http://dx.doi.org/10.3389/fphar.2018.01242 ] [PMID: 30429790]
[43]
Kawamoto, Y.; Kondo, H.; Hasegawa, M.; Kurimoto, C.; Ishii, Y.; Kato, C.; Botei, T.; Shinya, M.; Murate, T.; Ueno, Y.; Kawabe, M.; Goto, Y.; Yamamoto, R.; Iida, M.; Yajima, I.; Ohgami, N.; Kato, M.; Takeda, K. Inhibition of mast cell degranulation by melanin. Biochem. Pharmacol., 2019, 163, 178-193.
[http://dx.doi.org/10.1016/j.bcp.2019.02.015 ] [PMID: 30796915]
[44]
Marmorato, M.P.; Gimenes, A.D.; Andrade, F.E.C.; Oliani, S.M.; Gil, C.D. Involvement of the annexin A1-Fpr anti-inflammatory system in the ocular allergy. Eur. J. Pharmacol., 2019, 842, 298-305.
[http://dx.doi.org/10.1016/j.ejphar.2018.11.008 ] [PMID: 30419240]
[45]
Gimenes, A.D.; Andrade, T.R.; Mello, C.B.; Ramos, L.; Gil, C.D.; Oliani, S.M. Beneficial effect of annexin A1 in a model of experimental allergic conjunctivitis. Exp. Eye Res., 2015, 134, 24-32.
[http://dx.doi.org/10.1016/j.exer.2015.03.013 ] [PMID: 25795053]
[46]
Silwal, P.; Shin, K.; Choi, S.; Kang, S.W.; Park, J.B.; Lee, H.J.; Koo, S.J.; Chung, K.H.; Namgung, U.; Lim, K.; Heo, J.Y.; Park, J.I.; Park, S.K. Adenine suppresses IgE-mediated mast cell activation. Mol. Immunol., 2015, 65(2), 242-249.
[http://dx.doi.org/10.1016/j.molimm.2015.01.021 ] [PMID: 25700347]
[47]
Oboki, K.; Ohno, T.; Kajiwara, N.; Saito, H.; Nakae, S. IL-33 and IL-33 receptors in host defense and diseases. Allergol. Int., 2010, 59(2), 143-160.
[48]
Joulia, R.; L'Faqihi, F. E.; Valitutti, S.; Espinosa, E. . IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level J. Allergy Clin. Immunol, 2017, 140(2), 497-509. e10
[49]
Taracanova, A. Alevizos, M.; Karagkouni, A.; Weng, Z.; Norwitz, E.; Conti, P.; Leeman, S.E.; Theoharides, T.C. SP and IL-33 together markedly enhance TNF synthesis and secretion from human mast cells mediated by the interaction of their receptors. Proc. Natl. Acad. Sci. USA, 2017, 114(20), E4002-E4009.
[http://dx.doi.org/10.1073/pnas.1524845114 ] [PMID: 28461492]
[50]
Fursov, N.; Lu, J.; Healy, C.; Wu, S.J.; Lacy, E.; Filer, A.; Li, Y.; Liu, C.; Lamb, R.; Jones, B.; Reddy, R.; Petley, T.; Duffy, K. Monoclonal antibodies targeting ST2L Domain 1 or Domain 3 differentially modulate IL-33-induced cytokine release by human mast cell and basophilic cell lines. Mol. Immunol., 2016, 75, 178-187.
[http://dx.doi.org/10.1016/j.molimm.2016.05.019 ] [PMID: 27294560]
[51]
Farkas, A. M.; Baranyi, U.; Bohmig, G. A.; Unger, L.; Hopf, S.; Wahrmann, M.; Regele, H.; Mahr, B.; Schwarz, C.; Hock, K.; Pilat, N.; Kristo, I.; Mraz, J.; Lupinek, C.; Thalhamer, J.; Bond, G.; Kuessel, L.; Wlodek, E.; Martin, J.; Clatworthy, M.; Pettigrew, G.; Valenta, R.; Wekerle, T. Allograft rejection is associated with development of functional IgE specific for donor MHC antigens J. Allergy Clin. Immunol, 2019, 143(1), 335-345. e12
[52]
Nakano, T.; Kamei, R.; Fujimura, T.; Takaoka, Y.; Hori, A.; Lai, C.Y.; Chiang, K.C.; Shimada, Y.; Ohmori, N.; Goto, T.; Ono, K.; Chen, C.L.; Goto, S.; Kawamoto, S. Impact of Histone H1 on the Progression of Allergic Rhinitis and Its Suppression by Neutralizing Antibody in Mice. PLoS One, 2016, 11(4)e0153630
[http://dx.doi.org/10.1371/journal.pone.0153630 ] [PMID: 27088594]
[53]
Zenarruzabeitia, O.; Vitallé, J.; García-Obregón, S.; Astigarraga, I.; Eguizabal, C.; Santos, S.; Simhadri, V.R.; Borrego, F. The expression and function of human CD300 receptors on blood circulating mononuclear cells are distinct in neonates and adults. Sci. Rep., 2016, 6, 32693.
[http://dx.doi.org/10.1038/srep32693 ] [PMID: 27595670]
[54]
Suber, J.; Kulis, M.D.; Burks, A.W. Utilizing Members of the CD300 Multigene Family to Inhibit Mast Cell Degranulation in Peanut Allergy. J. Allergy Clin. Immunol., 2019, 143(2), AB424.
[http://dx.doi.org/10.1016/j.jaci.2018.12.953]
[55]
Kuriakose, A.; Chirmule, N.; Nair, P. Immunogenicity of Biotherapeutics: Causes and Association with Posttranslational Modifications. J. Immunol. Res., 2016, 20161298473
[http://dx.doi.org/10.1155/2016/1298473 ] [PMID: 27437405]
[56]
Chang, T.W.; Chen, C.; Lin, C.J.; Metz, M.; Church, M.K.; Maurer, M. The potential pharmacologic mechanisms of omalizumab in patients with chronic spontaneous urticaria. J. Allergy Clin. Immunol., 2015, 135(2), 337-342.
[http://dx.doi.org/10.1016/j.jaci.2014.04.036 ] [PMID: 24948369]
[57]
Caslin, H.L.; Kiwanuka, K.N.; Haque, T.T.; Taruselli, M.T.; MacKnight, H.P.; Paranjape, A.; Ryan, J.J. Controlling mast cell activation and homeostasis: Work influenced by bill paul that continues today. Front. Immunol., 2018, 9(868)
[http://dx.doi.org/10.3389/fimmu.2018.00868]
[58]
Akyol, G. Y.; Manaenko, A.; Akyol, O.; Solaroglu, I.; Ho, W. M.; Ding, Y.; Flores, J.; Zhang, J. H.; Tang, J. J. S. r. IVIG activates FcγRIIB-SHIP1-PIP3 Pathway to stabilize mast cells and suppress inflammation after ICH in mice., 2017, 17(1) 15583
[http://dx.doi.org/10.1038/s41598-017-15455-w]
[59]
Fassina, G.; Verdoliva, A.; Odierna, M.R.; Ruvo, M.; Cassini, G. Protein A mimetic peptide ligand for affinity purification of antibodies. J. Mol. Recognit., 1996, 9(5-6), 564-569.
[http://dx.doi.org/10.1002/(SICI)1099-1352(199634/12)9:5/6<564:AID-JMR302>3.0.CO;2-F ] [PMID: 9174941]
[60]
Schlingmann, B.; Castiglia, K.R.; Stobart, C.C.; Moore, M.L. Polyvalent vaccines: High-maintenance heroes. PLoS Pathog., 2018, 14(4)e1006904
[http://dx.doi.org/10.1371/journal.ppat.1006904 ] [PMID: 29621336]
[61]
Handlogten, M.W.; Kiziltepe, T.; Moustakas, D.T.; Bilgiçer, B. Design of a heterobivalent ligand to inhibit IgE clustering on mast cells. Chem. Biol., 2011, 18(9), 1179-1188.
[http://dx.doi.org/10.1016/j.chembiol.2011.06.012 ] [PMID: 21944756]
[62]
Handlogten, M.W.; Kiziltepe, T.; Serezani, A.P.; Kaplan, M.H.; Bilgicer, B. Inhibition of weak-affinity epitope-IgE interactions prevents mast cell degranulation. Nat. Chem. Biol., 2013, 9(12), 789-795.
[http://dx.doi.org/10.1038/nchembio.1358 ] [PMID: 24096304]
[63]
Boersma, Y.L. Advances in the Application of Designed Ankyrin Repeat Proteins (DARPins) as Research Tools and Protein Therapeutics. Methods Mol. Biol., 2018, 1798, 307-327.
[http://dx.doi.org/10.1007/978-1-4939-7893-9_23 ] [PMID: 29868969]
[64]
Eggel, A.; Baravalle, G.; Hobi, G.; Kim, B.; Buschor, P.; Forrer, P.; Shin, J. S.; Vogel, M.; Stadler, B. M.; Dahinden, C. A.; Jardetzky, T. S. Accelerated dissociation of IgE-FcepsilonRI complexes by disruptive inhibitors actively desensitizes allergic effector cells J. Allergy Clin. Immunol, 2014, 133(6), 1709-1719. e8
[65]
Zellweger, F.; Gasser, P.; Brigger, D.; Buschor, P.; Vogel, M.; Eggel, A. A novel bispecific DARPin targeting FcγRIIB and FcεRI-bound IgE inhibits allergic responses. Allergy, 2017, 72(8), 1174-1183.
[http://dx.doi.org/10.1111/all.13109 ] [PMID: 27997998]
[66]
Barr, T.P.; Garzia, C.; Guha, S.; Fletcher, E.K.; Nguyen, N.; Wieschhaus, A.J.; Ferrer, L.; Covic, L.; Kuliopulos, A. PAR2 Pepducin-Based Suppression of Inflammation and Itch in Atopic Dermatitis Models. J. Invest. Dermatol., 2019, 139(2), 412-421.
[http://dx.doi.org/10.1016/j.jid.2018.08.019 ] [PMID: 30287285]
[67]
Uchida, R.; Egawa, T.; Fujita, Y.; Furuta, K.; Taguchi, H.; Tanaka, S.; Nishida, K. Identification of the minimal region of peptide derived from ADP-ribosylation factor1 (ARF1) that inhibits IgE-mediated mast cell activation. Mol. Immunol., 2019, 105, 32-37.
[http://dx.doi.org/10.1016/j.molimm.2018.11.002 ] [PMID: 30472514]
[68]
Dantzer, J.A.; Wood, R.A. The use of omalizumab in allergen immunotherapy. Clin. Exp. Allergy, 2018, 48(3), 232-240.
[http://dx.doi.org/10.1111/cea.13084]
[69]
Głobińska, A.; Boonpiyathad, T.; Satitsuksanoa, P.; Kleuskens, M.; van de Veen, W.; Sokolowska, M.; Akdis, M. Mechanisms of allergen-specific immunotherapy: Diverse mechanisms of immune tolerance to allergens. Ann. Allergy Asthma Immunol., 2018, 121(3), 306-312.
[http://dx.doi.org/10.1016/j.anai.2018.06.026 ] [PMID: 29966703]
[70]
Lukschal, A.; Wallmann, J.; Bublin, M.; Hofstetter, G.; Mothes-Luksch, N.; Breiteneder, H.; Pali-Schöll, I.; Jensen-Jarolim, E. Mimotopes for Api g 5, a Relevant Cross-reactive Allergen, in the Celery-Mugwort-Birch-Spice Syndrome. Allergy Asthma Immunol. Res., 2016, 8(2), 124-131.
[http://dx.doi.org/10.4168/aair.2016.8.2.124 ] [PMID: 26739405]
[71]
Zha, L.; Leoratti, F. M. S.; He, L.; Mohsen, M. O.; Cragg, M.; Storni, F.; Vogel, M.; Bachmann, M. F. An unexpected protective role of lowaffinity allergen-specific IgG through the inhibitory receptor FcgammaRIIb. J. Allergy Clin. Immunol, 2018, 142(5), 1529-1536. e6
[72]
van Rijt, L.S.; Logiantara, A.; Canbaz, D.; van Ree, R. Birch pollen-specific subcutaneous immunotherapy reduces ILC2 frequency but does not suppress IL-33 in mice. Clin. Exp. Allergy, 2018, 48(11), 1402-1411.
[73]
Wallmann, J.; Proell, M.; Stepanoska, T.; Hantusch, B.; Pali-Schöll, I.; Thalhamer, T.; Thalhamer, J.; Jensen-Jarolim, E.; Hartl, A. A mimotope gene encoding the major IgE epitope of allergen Phl p 5 for epitope-specific immunization. Immunol. Lett., 2009, 122(1), 68-75.
[http://dx.doi.org/10.1016/j.imlet.2008.12.002 ] [PMID: 19111573]
[74]
Nucera, E.; Mezzacappa, S.; Buonomo, A.; Centrone, M.; Rizzi, A.; Manicone, P.F.; Patriarca, G.; Aruanno, A.; Schiavino, D. Latex immunotherapy: evidence of effectiveness. Postepy Dermatol. Alergol., 2018, 35(2), 145-150.
[http://dx.doi.org/10.5114/ada.2018.75235 ] [PMID: 29760613]
[75]
Terada, T.; Zhang, K.; Belperio, J.; Londhe, V.; Saxon, A. A chimeric human-cat Fcgamma-Fel d1 fusion protein inhibits systemic, pulmonary, and cutaneous allergic reactivity to intratracheal challenge in mice sensitized to Fel d1, the major cat allergen. Clin. Immunol., 2006, 120(1), 45-56.
[http://dx.doi.org/10.1016/j.clim.2005.12.010 ] [PMID: 16473552]
[76]
Nilsson, O.B.; Adedoyin, J.; Rhyner, C.; Neimert-Andersson, T.; Grundström, J.; Berndt, K.D.; Crameri, R.; Grönlund, H. In vitro evolution of allergy vaccine candidates, with maintained structure, but reduced B cell and T cell activation capacity. PLoS One, 2011, 6(9)e24558
[http://dx.doi.org/10.1371/journal.pone.0024558 ] [PMID: 21931754]
[77]
Engeroff, P.; Caviezel, F.; Storni, F.; Thoms, F.; Vogel, M.; Bachmann, M.F. Allergens displayed on virus-like particles are highly immunogenic but fail to activate human mast cells. Allergy, 2018, 73(2), 341-349.
[http://dx.doi.org/10.1111/all.13268 ] [PMID: 28787769]
[78]
Orengo, J.M.; Radin, A.R.; Kamat, V.; Badithe, A.; Ben, L.H.; Bennett, B.L.; Zhong, S.; Birchard, D.; Limnander, A.; Rafique, A.; Bautista, J.; Kostic, A.; Newell, D.; Duan, X.; Franklin, M.C.; Olson, W.; Huang, T.; Gandhi, N.A.; Lipsich, L.; Stahl, N.; Papadopoulos, N.J.; Murphy, A.J.; Yancopoulos, G.D. Treating cat allergy with monoclonal IgG antibodies that bind allergen and prevent IgE engagement. Nat. Commun., 2018, 9(1), 1421.
[http://dx.doi.org/10.1038/s41467-018-03636-8 ] [PMID: 29650949]
[79]
Kim, J.H.; Lee, J.H.; Ye, Y.M.; Lee, J.H.; Park, J.W.; Hur, G.Y.; Kim, J.H.; Lee, H.Y.; Shin, Y.S.; Yang, E.M.; Park, H.S. Efficacy and Safety of Sublingual Immunotherapy in Elderly Rhinitis Patients Sensitized to House Dust Mites. Allergy Asthma Immunol. Res., 2018, 10(6), 675-685.
[http://dx.doi.org/10.4168/aair.2018.10.6.675 ] [PMID: 30306749]
[80]
Shakya, A. K.; Lee, C. H.; Gill, H. S. . Coated microneedle-based cutaneous immunotherapy prevents Der p 1-induced airway allergy in mice J. Allergy Clin. Immunol, 2018, 142(6), 2007-2011. e3
[81]
Fukuda, K.; Ishida, W.; Wakasa, Y.; Takagi, H.; Takaiwa, F.; Fukushima, A. Oral Immunotherapy for Allergic Conjunctivitis Using Transgenic Rice Expressing Hypoallergenic Antigens. Cornea, 2018, 37(Suppl. 1), S67-S73.
[http://dx.doi.org/10.1097/ICO.0000000000001758 ] [PMID: 30252684]
[82]
Cafone, J.; Capucilli, P.; Hill, D.A.; Spergel, J.M. Eosinophilic esophagitis during sublingual and oral allergen immunotherapy. Curr. Opin. Allergy Clin. Immunol., 2019, 19(4), 350-357.
[http://dx.doi.org/10.1097/ACI.0000000000000537 ] [PMID: 31058677]
[83]
Ang, W.X.; Church, A.M.; Kulis, M.; Choi, H.W.; Burks, A.W.; Abraham, S.N. Mast cell desensitization inhibits calcium flux and aberrantly remodels actin. J. Clin. Invest., 2016, 126(11), 4103-4118.
[http://dx.doi.org/10.1172/JCI87492 ] [PMID: 27669462]
[84]
Killoran, K.E.; Kropp, L.E.; Lindrose, A.R.; Curtis, H.E.; Cook, D.; Mitre, E. Rush desensitization with a single antigen induces subclinical activation of mast cells and protects against bystander challenge in dually sensitized mice. Clin. Exp. Allergy, 2019, 49(4), 484-494.
[http://dx.doi.org/10.1111/cea.13323]
[85]
Plundrich, N.J.; Bansode, R.R.; Foegeding, E.A.; Williams, L.L.; Lila, M.A. Protein-bound Vaccinium fruit polyphenols decrease IgE binding to peanut allergens and RBL-2H3 mast cell degranulation in vitro. Food Funct., 2017, 8(4), 1611-1621.
[http://dx.doi.org/10.1039/C7FO00249A ] [PMID: 28294257]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy