Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Mini-Review Article

Adipokines: A Rainbow of Proteins with Metabolic and Endocrine Functions

Author(s): Sara Parrettini, Massimiliano Cavallo, Francesco Gaggia, Riccardo Calafiore and Giovanni Luca*

Volume 27, Issue 12, 2020

Page: [1204 - 1230] Pages: 27

DOI: 10.2174/0929866527666200505214555

Price: $65

Abstract

Obesity represents one of the most important health problems worldwide with increasing morbidity and mortality. Widespread prevalence of this disease justifies its actual definition of a “global epidemic”. Adipose tissue is nowadays considered a complex organ with lots of endocrine and metabolic functions. In addition to fulfilling its task for energy storage and thermal regulation, by virtue of its constituent white and brown cells, adipose tissue represents, considering its size, the biggest endocrine gland in the body. Both adipocytes and surrounding resident cells (macrophages, endothelial cells and others) produce a huge number of molecules, or adipokines, with endocrine or paracrine functions, that regulate various aspects of metabolism whose clinical relevance is emerging. By balancing pro-inflammatory and anti-inflammatory effects, the adipokines control insulin sensitivity and related glucose metabolism changes, lipid accumulation in the liver and other organs, and finally gonadal function. Collectively, literature data remains cloudy because of still conflicting results of pre-clinical and clinical studies. The aim of this review was to summarize scientific evidence about adipokines’ effects on human metabolism, by focusing on their role on either Metabolic Syndrome and NAFLD, or insulin-resistance in pregnancy, or finally, reproductive function disorders.

Keywords: Adipokines, adipose organ, inflammation, diabetes, metabolic syndrome, reproductive function.

Graphical Abstract

[1]
Bays, H. Adiposopathy, “sick fat,” Ockham’s razor, and resolution of the obesity paradox. Curr. Atheroscler. Rep., 2014, 16(5), 409.
[http://dx.doi.org/10.1007/s11883-014-0409-1] [PMID: 24659222]
[2]
Barchetta, I.; Cimini, F.A.; Ciccarelli, G.; Baroni, M.G.; Cavallo, M.G. Sick fat: The good and the bad of old and new circulating markers of adipose tissue inflammation. J. Endocrinol. Invest., 2019, 42(11), 1257-1272.
[http://dx.doi.org/10.1007/s40618-019-01052-3] [PMID: 31073969]
[3]
Oh, K.J.; Lee, D.S.; Kim, W.K.; Han, B.S.; Lee, S.C.; Bae, K.H. Metabolic adaptation in obesity and type II diabetes: Myokines, adipokines and hepatokines. Int. J. Mol. Sci., 2016, 18(1), E8.
[http://dx.doi.org/10.3390/ijms18010008] [PMID: 28025491]
[4]
Song, P.; Kwon, Y.; Joo, J.Y.; Kim, D.G.; Yoon, J.H. Secretomics to discover regulators in diseases. Int. J. Mol. Sci., 2019, 20(16), E3893.
[http://dx.doi.org/10.3390/ijms20163893] [PMID: 31405033]
[5]
Itoh, N. FGF21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Front. Endocrinol. (Lausanne), 2014, 5, 107.
[http://dx.doi.org/10.3389/fendo.2014.00107] [PMID: 25071723]
[6]
Stefan, N.; Häring, H.U. The role of hepatokines in metabolism. Nat. Rev. Endocrinol., 2013, 9(3), 144-152.
[http://dx.doi.org/10.1038/nrendo.2012.258] [PMID: 23337953]
[7]
Lee, M.W.; Lee, M.; Oh, K.J. Adipose tissue-derived signatures for obesity and type 2 diabetes: Adipokines, batokines and microRNAs. J. Clin. Med., 2019, 8(6), E854.
[http://dx.doi.org/10.3390/jcm8060854] [PMID: 31208019]
[8]
Cinti, S. The adipose organ at a glance. Dis. Model. Mech., 2012, 5(5), 588-594.
[http://dx.doi.org/10.1242/dmm.009662] [PMID: 22915020]
[9]
Frühbeck, G. Overview of adipose tissue and its role in obesity and metabolic disorders. Methods Mol. Biol., 2008, 456, 1-22.
[http://dx.doi.org/10.1007/978-1-59745-245-8_1] [PMID: 18516549]
[10]
Cinti, S. The Adipose Organ; Kurtis: Milan, 1999.
[11]
Cinti, S. Adipose organ development and remodeling. Compr. Physiol., 2018, 8(4), 1357-1431.
[http://dx.doi.org/10.1002/cphy.c170042] [PMID: 30215863]
[12]
Frühbeck, G.; Gómez-Ambrosi, J.; Muruzábal, F.J.; Burrell, M.A. The adipocyte: A model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am. J. Physiol. Endocrinol. Metab., 2001, 280(6), E827-E847.
[http://dx.doi.org/10.1152/ajpendo.2001.280.6.E827] [PMID: 11350765]
[13]
Wu, J.; Boström, P.; Sparks, L.M.; Ye, L.; Choi, J.H.; Giang, A.H.; Khandekar, M.; Virtanen, K.A.; Nuutila, P.; Schaart, G.; Huang, K.; Tu, H.; van Marken Lichtenbelt, W.D.; Hoeks, J.; Enerbäck, S.; Schrauwen, P.; Spiegelman, B.M. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell, 2012, 150(2), 366-376.
[http://dx.doi.org/10.1016/j.cell.2012.05.016] [PMID: 22796012]
[14]
Tchkonia, T.; Thomou, T.; Zhu, Y.; Karagiannides, I.; Pothoulakis, C.; Jensen, M.D.; Kirkland, J.L. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab., 2013, 17(5), 644-656.
[http://dx.doi.org/10.1016/j.cmet.2013.03.008] [PMID: 23583168]
[15]
Giordano, A.; Smorlesi, A.; Frontini, A.; Barbatelli, G.; Cinti, S. White, brown and pink adipocytes: The extraordinary plasticity of the adipose organ. Eur. J. Endocrinol., 2014, 170(5), R159-R171.
[http://dx.doi.org/10.1530/EJE-13-0945] [PMID: 24468979]
[16]
Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; Kolodny, G.M.; Kahn, C.R. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med., 2009, 360(15), 1509-1517.
[http://dx.doi.org/10.1056/NEJMoa0810780] [PMID: 19357406]
[17]
Virtanen, K.A.; Lidell, M.E.; Orava, J.; Heglind, M.; Westergren, R.; Niemi, T.; Taittonen, M.; Laine, J.; Savisto, N.J.; Enerbäck, S.; Nuutila, P. Functional brown adipose tissue in healthy adults. N. Engl. J. Med., 2009, 360(15), 1518-1525.
[http://dx.doi.org/10.1056/NEJMoa0808949] [PMID: 19357407]
[18]
Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev., 2004, 84(1), 277-359.
[http://dx.doi.org/10.1152/physrev.00015.2003] [PMID: 14715917]
[19]
Enerbäck, S. The origins of brown adipose tissue. N. Engl. J. Med., 2009, 360(19), 2021-2023.
[http://dx.doi.org/10.1056/NEJMcibr0809610] [PMID: 19420373]
[20]
Rodríguez, A.; Ezquerro, S.; Méndez-Giménez, L.; Becerril, S.; Frühbeck, G. Revisiting the adipocyte: A model for integration of cytokine signaling in the regulation of energy metabolism. Am. J. Physiol. Endocrinol. Metab., 2015, 309(8), E691-E714.
[http://dx.doi.org/10.1152/ajpendo.00297.2015] [PMID: 26330344]
[21]
Lidell, M.E.; Betz, M.J.; Dahlqvist Leinhard, O.; Heglind, M.; Elander, L.; Slawik, M.; Mussack, T.; Nilsson, D.; Romu, T.; Nuutila, P.; Virtanen, K.A.; Beuschlein, F.; Persson, A.; Borga, M.; Enerbäck, S. Evidence for two types of brown adipose tissue in humans. Nat. Med., 2013, 19(5), 631-634.
[http://dx.doi.org/10.1038/nm.3017] [PMID: 23603813]
[22]
Becerril, S.; Rodríguez, A.; Catalán, V.; Sáinz, N.; Ramírez, B.; Gómez-Ambrosi, J.; Frühbeck, G. Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: Evidence of the role of Med1 in energy balance. Physiol. Genomics, 2012, 44(13), 678-688.
[http://dx.doi.org/10.1152/physiolgenomics.00039.2012] [PMID: 22570438]
[23]
Cinti, S. Transdifferentiation properties of adipocytes in the adipose organ. Am. J. Physiol. Endocrinol. Metab., 2009, 297(5), E977-E986.
[http://dx.doi.org/10.1152/ajpendo.00183.2009] [PMID: 19458063]
[24]
Lehr, S.; Hartwig, S.; Sell, H. Adipokines: A treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin. Appl., 2012, 6(1-2), 91-101.
[http://dx.doi.org/10.1002/prca.201100052] [PMID: 22213627]
[25]
Spalding, K.L.; Arner, E.; Westermark, P.O.; Bernard, S.; Buchholz, B.A.; Bergmann, O.; Blomqvist, L.; Hoffstedt, J.; Näslund, E.; Britton, T.; Concha, H.; Hassan, M.; Rydén, M.; Frisén, J.; Arner, P. Dynamics of fat cell turnover in humans. Nature, 2008, 453(7196), 783-787.
[http://dx.doi.org/10.1038/nature06902] [PMID: 18454136]
[26]
White, U.; Ravussin, E. Dynamics of adipose tissue turnover in human metabolic health and disease. Diabetologia, 2019, 62(1), 17-23.
[http://dx.doi.org/10.1007/s00125-018-4732-x] [PMID: 30267179]
[27]
Boivin, A.; Brochu, G.; Marceau, S.; Marceau, P.; Hould, F.S.; Tchernof, A. Regional differences in adipose tissue metabolism in obese men. Metabolism, 2007, 56(4), 533-540.
[http://dx.doi.org/10.1016/j.metabol.2006.11.015] [PMID: 17379013]
[28]
Perrini, S.; Laviola, L.; Cignarelli, A.; Melchiorre, M.; De Stefano, F.; Caccioppoli, C.; Natalicchio, A.; Orlando, M.R.; Garruti, G.; De Fazio, M.; Catalano, G.; Memeo, V.; Giorgino, R.; Giorgino, F. Fat depot-related differences in gene expression, adiponectin secretion, and insulin action and signalling in human adipocytes differentiated in vitro from precursor stromal cells. Diabetologia, 2008, 51(1), 155-164.
[http://dx.doi.org/10.1007/s00125-007-0841-7] [PMID: 17960360]
[29]
Schoettl, T.; Fischer, IP.; Ussar, S. Heterogeneity of adipose tissue in development and metabolic function. J. Exp. Biol., 2018, 221(Pt Suppl 1), jeb162958.
[http://dx.doi.org/10.1242/jeb.162958]
[30]
Weisberg, S.P.; McCann, D.; Desai, M.; Rosenbaum, M.; Leibel, R.L.; Ferrante, A.W.Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest., 2003, 112(12), 1796-1808.
[http://dx.doi.org/10.1172/JCI200319246] [PMID: 14679176]
[31]
Lumeng, C.N.; Bodzin, J.L.; Saltiel, A.R. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Invest., 2007, 117(1), 175-184.
[http://dx.doi.org/10.1172/JCI29881] [PMID: 17200717]
[32]
Kintscher, U.; Hartge, M.; Hess, K.; Foryst-Ludwig, A.; Clemenz, M.; Wabitsch, M.; Fischer-Posovszky, P.; Barth, T.F.; Dragun, D.; Skurk, T.; Hauner, H.; Blüher, M.; Unger, T.; Wolf, A.M.; Knippschild, U.; Hombach, V.; Marx, N. T-lymphocyte infiltration in visceral adipose tissue: A primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol., 2008, 28(7), 1304-1310.
[http://dx.doi.org/10.1161/ATVBAHA.108.165100] [PMID: 18420999]
[33]
Verboven, K.; Wouters, K.; Gaens, K.; Hansen, D.; Bijnen, M.; Wetzels, S.; Stehouwer, C.D.; Goossens, G.H.; Schalkwijk, C.G.; Blaak, E.E.; Jocken, J.W. Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep., 2018, 8(1), 4677.
[http://dx.doi.org/10.1038/s41598-018-22962-x] [PMID: 29549282]
[34]
Reddy, P.; Lent-Schochet, D.; Ramakrishnan, N.; McLaughlin, M.; Jialal, I. Metabolic syndrome is an inflammatory disorder: A conspiracy between adipose tissue and phagocytes. Clin. Chim. Acta, 2019, 496, 35-44.
[http://dx.doi.org/10.1016/j.cca.2019.06.019] [PMID: 31229566]
[35]
Adolph, T.E.; Grander, C.; Grabherr, F.; Tilg, H. Adipokines and Non-Alcoholic Fatty Liver Disease: Multiple Interactions. Int. J. Mol. Sci., 2017, 18(8), E1649.
[http://dx.doi.org/10.3390/ijms18081649] [PMID: 28758929]
[36]
Šimják, P.; Cinkajzlová, A.; Anderlová, K.; Pařízek, A.; Mráz, M.; Kršek, M.; Haluzík, M. The role of obesity and adipose tissue dysfunction in gestational diabetes mellitus. J. Endocrinol., 2018, 238(2), R63-R77.
[http://dx.doi.org/10.1530/JOE-18-0032] [PMID: 29743342]
[37]
ADA (American Diabetes Association). Standards of Medical Care in Diabetes 2019. Diabetes Care, 2019, 42(Suppl. 1), 1-186.
[38]
Briana, D.D.; Malamitsi-Puchner, A. Reviews: Adipocytokines in normal and complicated pregnancies. Reprod. Sci., 2009, 16(10), 921-937.
[http://dx.doi.org/10.1177/1933719109336614] [PMID: 19474287]
[39]
Thomas, S.; Kratzsch, D.; Schaab, M.; Scholz, M.; Grunewald, S.; Thiery, J.; Paasch, U.; Kratzsch, J. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil. Steril., 2013, 99(5), 1256-1263.e3.
[http://dx.doi.org/10.1016/j.fertnstert.2012.12.022] [PMID: 23375204]
[40]
Viengchareun, S.; Zennaro, M.C.; Pascual-Le Tallec, L.; Lombes, M. Brown adipocytes are novel sites of expression and regulation of adiponectin and resistin. FEBS Lett., 2002, 532(3), 345-350.
[http://dx.doi.org/10.1016/S0014-5793(02)03697-9] [PMID: 12482590]
[41]
Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem., 1995, 270(45), 26746-26749.
[http://dx.doi.org/10.1074/jbc.270.45.26746] [PMID: 7592907]
[42]
Oh, D.K.; Ciaraldi, T.; Henry, R.R. Adiponectin in health and disease. Diabetes Obes. Metab., 2007, 9(3), 282-289.
[http://dx.doi.org/10.1111/j.1463-1326.2006.00610.x] [PMID: 17391153]
[43]
Yamauchi, T.; Iwabu, M.; Okada-Iwabu, M.; Kadowaki, T. Adiponectin receptors: A review of their structure, function and how they work. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 15-23.
[http://dx.doi.org/10.1016/j.beem.2013.09.003] [PMID: 24417942]
[44]
Achari, A.E.; Jain, S.K. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int. J. Mol. Sci., 2017, 18(6), E1321.
[http://dx.doi.org/10.3390/ijms18061321] [PMID: 28635626]
[45]
Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; Eto, K.; Akanuma, Y.; Froguel, P.; Foufelle, F.; Ferre, P.; Carling, D.; Kimura, S.; Nagai, R.; Kahn, B.B.; Kadowaki, T. Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat. Med., 2002, 8(11), 1288-1295.
[http://dx.doi.org/10.1038/nm788] [PMID: 12368907]
[46]
Gu, W.; Li, X.; Liu, C.; Yang, J.; Ye, L.; Tang, J.; Gu, Y.; Yang, Y.; Hong, J.; Zhang, Y.; Chen, M.; Ning, G. Globular adiponectin augments insulin secretion from pancreatic islet beta cells at high glucose concentrations. Endocrine, 2006, 30(2), 217-221.
[http://dx.doi.org/10.1385/ENDO:30:2:217] [PMID: 17322583]
[47]
Kim, J-Y.; van de Wall, E.; Laplante, M.; Azzara, A.; Trujillo, M.E.; Hofmann, S.M.; Schraw, T.; Durand, J.L.; Li, H.; Li, G.; Jelicks, L.A.; Mehler, M.F.; Hui, D.Y.; Deshaies, Y.; Shulman, G.I.; Schwartz, G.J.; Scherer, P.E. Obesity-associated improvements in metabolic profile through expansion of adipose tissue. J. Clin. Invest., 2007, 117(9), 2621-2637.
[http://dx.doi.org/10.1172/JCI31021] [PMID: 17717599]
[48]
Abdella, N.A.; Mojiminiyi, O.A. Clinical applications of adiponectin measurements in type 2 diabetes mellitus: Screening, diagnosis, and marker of diabetes control. Dis. Markers, 2018, 2018, 5187940.
[http://dx.doi.org/10.1155/2018/5187940] [PMID: 30069271]
[49]
Ma, W.; Huang, T.; Zheng, Y.; Wang, M.; Bray, G.A.; Sacks, F.M.; Qi, L. Weight-loss diets, adiponectin, and changes in cardiometabolic risk in the 2-Year POUNDS lost trial. J. Clin. Endocrinol. Metab., 2016, 101(6), 2415-2422.
[http://dx.doi.org/10.1210/jc.2016-1207] [PMID: 27055193]
[50]
Unamuno, X.; Izaguirre, M.; Gómez-Ambrosi, J.; Rodríguez, A.; Ramírez, B.; Becerril, S.; Valentí, V.; Moncada, R.; Silva, C.; Salvador, J.; Portincasa, P.; Frühbeck, G.; Catalán, V. Increase of the adiponectin/leptin in with obesity and type 2 diabetes after Roux-en-Y gastric bypass. Nutrients, 2019, 11(9), E2069.
[http://dx.doi.org/10.3390/nu11092069] [PMID: 31484347]
[51]
Corbi, G.; Polito, R.; Monaco, M.L.; Cacciatore, F.; Scioli, M.; Ferrara, N.; Daniele, A.; Nigro, E. Adiponectin expression and genotypes in italian people with severe obesity undergone a hypocaloric diet and physical exercise program. Nutrients, 2019, 11(9), E2195.
[http://dx.doi.org/10.3390/nu11092195] [PMID: 31547312]
[52]
Becic, T.; Studenik, C.; Hoffmann, G. Exercise increases adiponectin and reduces leptin levels in prediabetic and diabetic individuals: Systematic review and meta-analysis of randomized controlled trials. Med. Sci. (Basel), 2018, 6(4), E97.
[http://dx.doi.org/10.3390/medsci6040097] [PMID: 30380802]
[53]
Quaresma, P.G.; Reencober, N.; Zanotto, T.M.; Santos, A.C.; Weissmann, L.; de Matos, A.H.; Lopes-Cendes, I.; Folli, F.; Saad, M.J.; Prada, P.O. Pioglitazone treatment increases food intake and decreases energy expenditure partially via hypothalamic adiponectin/adipoR1/AMPK pathway. Int. J. Obes., 2016, 40(1), 138-146.
[http://dx.doi.org/10.1038/ijo.2015.134] [PMID: 26228462]
[54]
Summers, S.A. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid Res., 2006, 45(1), 42-72.
[http://dx.doi.org/10.1016/j.plipres.2005.11.002] [PMID: 16445986]
[55]
Holland, W.L.; Miller, R.A.; Wang, Z.V.; Sun, K.; Barth, B.M.; Bui, H.H.; Davis, K.E.; Bikman, B.T.; Halberg, N.; Rutkowski, J.M.; Wade, M.R.; Tenorio, V.M.; Kuo, M.S.; Brozinick, J.T.; Zhang, B.B.; Birnbaum, M.J.; Summers, S.A.; Scherer, P.E. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med., 2011, 17(1), 55-63.
[http://dx.doi.org/10.1038/nm.2277] [PMID: 21186369]
[56]
Scherer, P.E. The many secret lives of adipocytes: Implications for diabetes. Diabetologia, 2019, 62(2), 223-232.
[http://dx.doi.org/10.1007/s00125-018-4777-x] [PMID: 30465066]
[57]
Kubota, N.; Yano, W.; Kubota, T.; Yamauchi, T.; Itoh, S.; Kumagai, H.; Kozono, H.; Takamoto, I.; Okamoto, S.; Shiuchi, T.; Suzuki, R.; Satoh, H.; Tsuchida, A.; Moroi, M.; Sugi, K.; Noda, T.; Ebinuma, H.; Ueta, Y.; Kondo, T.; Araki, E.; Ezaki, O.; Nagai, R.; Tobe, K.; Terauchi, Y.; Ueki, K.; Minokoshi, Y.; Kadowaki, T. Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metab., 2007, 6(1), 55-68.
[http://dx.doi.org/10.1016/j.cmet.2007.06.003] [PMID: 17618856]
[58]
Moschen, A.R.; Molnar, C.; Wolf, A.M.; Weiss, H.; Graziadei, I.; Kaser, S.; Ebenbichler, C.F.; Stadlmann, S.; Moser, P.L.; Tilg, H. Effects of weight loss induced by bariatric surgery on hepatic adipocytokine expression. J. Hepatol., 2009, 51(4), 765-777.
[http://dx.doi.org/10.1016/j.jhep.2009.06.016] [PMID: 19664840]
[59]
Maeda, K.; Ishihara, K.; Miyake, K.; Kaji, Y.; Kawamitsu, H.; Fujii, M.; Sugimura, K.; Ohara, T. Inverse correlation between serum adiponectin concentration and hepatic lipid content in Japanese with type 2 diabetes. Metabolism, 2005, 54(6), 775-780.
[http://dx.doi.org/10.1016/j.metabol.2005.01.020] [PMID: 15931613]
[60]
Polyzos, S.A.; Toulis, K.A.; Goulis, D.G.; Zavos, C.; Kountouras, J. Serum total adiponectin in nonalcoholic fatty liver disease: A systematic review and meta-analysis. Metabolism, 2011, 60(3), 313-326.
[http://dx.doi.org/10.1016/j.metabol.2010.09.003] [PMID: 21040935]
[61]
van der Poorten, D.; Samer, C.F.; Ramezani-Moghadam, M.; Coulter, S.; Kacevska, M.; Schrijnders, D.; Wu, L.E.; McLeod, D.; Bugianesi, E.; Komuta, M.; Roskams, T.; Liddle, C.; Hebbard, L.; George, J. Hepatic fat loss in advanced nonalcoholic steatohepatitis: Are alterations in serum adiponectin the cause? Hepatology, 2013, 57(6), 2180-2188.
[http://dx.doi.org/10.1002/hep.26072] [PMID: 22996622]
[62]
Ebrahimi, R.; Shanaki, M.; Mohassel Azadi, S.; Bahiraee, A.; Radmard, A.R.; Poustchi, H.; Emamgholipour, S. Low level of adiponectin predicts the development of Nonalcoholic fatty liver disease: Is it irrespective to visceral adiposity index, visceral adipose tissue thickness and other obesity indices? Arch. Physiol. Biochem., 2019, 1-8.
[http://dx.doi.org/10.1080/13813455.2019.1661496] [PMID: 31482741]
[63]
Feldman, A.; Eder, S.K.; Felder, T.K.; Kedenko, L.; Paulweber, B.; Stadlmayr, A.; Huber-Schönauer, U.; Niederseer, D.; Stickel, F.; Auer, S.; Haschke-Becher, E.; Patsch, W.; Datz, C.; Aigner, E. Clinical and metabolic characterization of lean caucasian subjects with non-alcoholic fatty liver. Am. J. Gastroenterol., 2017, 112(1), 102-110.
[http://dx.doi.org/10.1038/ajg.2016.318] [PMID: 27527746]
[64]
Ayonrinde, O.T.; Olynyk, J.K.; Beilin, L.J.; Mori, T.A.; Pennell, C.E.; de Klerk, N.; Oddy, W.H.; Shipman, P.; Adams, L.A. Gender-specific differences in adipose distribution and adipocytokines influence adolescent nonalcoholic fatty liver disease. Hepatology, 2011, 53(3), 800-809.
[http://dx.doi.org/10.1002/hep.24097] [PMID: 21374659]
[65]
Iliodromiti, S.; Sassarini, J.; Kelsey, T.W.; Lindsay, R.S.; Sattar, N.; Nelson, S.M. Accuracy of circulating adiponectin for predicting gestational diabetes: A systematic review and meta-analysis. Diabetologia, 2016, 59(4), 692-699.
[http://dx.doi.org/10.1007/s00125-015-3855-6] [PMID: 26768001]
[66]
Lain, K.Y.; Catalano, P.M. Metabolic changes in pregnancy. Clin. Obstet. Gynecol., 2007, 50(4), 938-948.
[http://dx.doi.org/10.1097/GRF.0b013e31815a5494] [PMID: 17982337]
[67]
Saucedo, R.; Valencia, J.; Gutierrez, C.; Basurto, L.; Hernandez, M.; Puello, E.; Rico, G.; Vega, G.; Zarate, A. Gene variants in the FTO gene are associated with adiponectin and TNF-alpha levels in gestational diabetes mellitus. Diabetol. Metab. Syndr., 2017, 9, 32.
[http://dx.doi.org/10.1186/s13098-017-0234-0] [PMID: 28507607]
[68]
Lekva, T.; Roland, M.C.P.; Michelsen, A.E.; Friis, C.M.; Aukrust, P.; Bollerslev, J.; Henriksen, T.; Ueland, T. Large reduction in adiponectin during pregnancy is associated with large-for-gestational-age newborns. J. Clin. Endocrinol. Metab., 2017, 102(7), 2552-2559.
[http://dx.doi.org/10.1210/jc.2017-00289] [PMID: 28460045]
[69]
Caminos, J.E.; Nogueiras, R.; Gaytán, F.; Pineda, R.; González, C.R.; Barreiro, M.L.; Castaño, J.P.; Malagón, M.M.; Pinilla, L.; Toppari, J.; Diéguez, C.; Tena-Sempere, M. Novel expression and direct effects of adiponectin in the rat testis. Endocrinology, 2008, 149(7), 3390-3402.
[http://dx.doi.org/10.1210/en.2007-1582] [PMID: 18403483]
[70]
Wu, L.; Xu, B.; Fan, W.; Zhu, X.; Wang, G.; Zhang, A. Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-κB signaling pathway. FEBS J., 2013, 280(16), 3920-3927.
[http://dx.doi.org/10.1111/febs.12391] [PMID: 23773620]
[71]
Roumaud, P.; Martin, L.J. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm. Mol. Biol. Clin. Investig., 2015, 24(1), 25-45.
[http://dx.doi.org/10.1515/hmbci-2015-0046] [PMID: 26587746]
[72]
Rak, A.; Mellouk, N.; Froment, P.; Dupont, J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction, 2017, 153(6), R215-R226.
[http://dx.doi.org/10.1530/REP-17-0002] [PMID: 28330882]
[73]
Elfassy, Y.; Bastard, J-P.; McAvoy, C.; Fellahi, S.; Dupont, J.; Levy, R. Adipokines in semen: physiopathology and effects on spermatozoas. Int. J. Endocrinol., 2018, 2018, 3906490.
[http://dx.doi.org/10.1155/2018/3906490] [PMID: 29971101]
[74]
Chabrolle, C.; Tosca, L.; Ramé, C.; Lecomte, P.; Royère, D.; Dupont, J. Adiponectin increases insulin-like growth factor I-induced progesterone and estradiol secretion in human granulosa cells. Fertil. Steril., 2009, 92(6), 1988-1996.
[http://dx.doi.org/10.1016/j.fertnstert.2008.09.008] [PMID: 19081562]
[75]
Gutman, G.; Barak, V.; Maslovitz, S.; Amit, A.; Lessing, J.B.; Geva, E. Recombinant luteinizing hormone induces increased production of ovarian follicular adiponectin in vivo: Implications for enhanced insulin sensitivity. Fertil. Steril., 2009, 91(5), 1837-1841.
[http://dx.doi.org/10.1016/j.fertnstert.2008.02.006] [PMID: 18440519]
[76]
Richards, J.S.; Liu, Z.; Kawai, T.; Tabata, K.; Watanabe, H.; Suresh, D.; Kuo, F.T.; Pisarska, M.D.; Shimada, M. Adiponectin and its receptors modulate granulosa cell and cumulus cell functions, fertility, and early embryo development in the mouse and human. Fertil. Steril., 2012, 98(2), 471-9.e1.
[http://dx.doi.org/10.1016/j.fertnstert.2012.04.050] [PMID: 22633650]
[77]
Wickham, E.P., III; Tao, T.; Nestler, J.E.; McGee, E.A. Activation of the LH receptor up regulates the type 2 adiponectin receptor in human granulosa cells. J. Assist. Reprod. Genet., 2013, 30(7), 963-968.
[http://dx.doi.org/10.1007/s10815-013-0012-3] [PMID: 23779096]
[78]
Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose tissue-derived omentin-1 function and regulation. Compr. Physiol., 2017, 7(3), 765-781.
[http://dx.doi.org/10.1002/cphy.c160043] [PMID: 28640441]
[79]
Yang, R.Z.; Lee, M.J.; Hu, H.; Pray, J.; Wu, H.B.; Hansen, B.C.; Shuldiner, A.R.; Fried, S.K.; McLenithan, J.C.; Gong, D.W. Identification of omentin as a novel depot-specific adipokine in human adipose tissue: possible role in modulating insulin action. Am. J. Physiol. Endocrinol. Metab., 2006, 290(6), E1253-E1261.
[http://dx.doi.org/10.1152/ajpendo.00572.2004] [PMID: 16531507]
[80]
de Souza Batista, C.M.; Yang, R.Z.; Lee, M.J.; Glynn, N.M.; Yu, D.Z.; Pray, J.; Ndubuizu, K.; Patil, S.; Schwartz, A.; Kligman, M.; Fried, S.K.; Gong, D.W.; Shuldiner, A.R.; Pollin, T.I.; McLenithan, J.C. Omentin plasma levels and gene expression are decreased in obesity. Diabetes, 2007, 56(6), 1655-1661.
[http://dx.doi.org/10.2337/db06-1506] [PMID: 17329619]
[81]
Pan, H.Y.; Guo, L.; Li, Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res. Clin. Pract., 2010, 88(1), 29-33.
[http://dx.doi.org/10.1016/j.diabres.2010.01.013] [PMID: 20129687]
[82]
Waluga, M.; Kukla, M.; Zorniak, M.; Kajor, M.; Liszka, L.; Dyaczynski, M.; Kowalski, G.; Zadlo, D.; Waluga, E.; Olczyk, P.; Buldak, R.J.; Berdowska, A.; Hartleb, M. Fibroblast growth factor-21 and omentin-1 hepatic mRNA expression and serum levels in morbidly obese women with non-alcoholic fatty liver disease. J. Physiol. Pharmacol., 2017, 68(3), 363-374.
[PMID: 28820393]
[83]
Kohan, L.; Safarpur, M.; Abdollahi, H. Omentin-1 rs2274907 and resistin rs1862513 polymorphisms influence genetic susceptibility to nonalcoholic fatty liver disease. Mol. Biol. Res. Commun., 2016, 5(1), 11-17.
[PMID: 27844016]
[84]
Pan, B.L.; Ma, R.M. Correlation of serum omentin-1 and chemerin with gestational diabetes mellitus. Nan Fang Yi Ke Da Xue Xue Bao, 2016, 36(9), 1231-1236.
[PMID: 27687656]
[85]
Liu, H.; Wu, J.; Wang, H.; Sheng, L.; Tang, N.; Li, Y.; Hao, T. Association of serum omentin-1 concentrations with the presence and severity of preeclampsia. Ann. Clin. Biochem., 2015, 52(Pt 2), 245-250.
[http://dx.doi.org/10.1177/0004563214541247] [PMID: 24912760]
[86]
Cloix, L.; Reverchon, M.; Cornuau, M.; Froment, P.; Ramé, C.; Costa, C.; Froment, G.; Lecomte, P.; Chen, W.; Royère, D.; Guerif, F.; Dupont, J. Expression and regulation of INTELECTIN1 in human granulosa-lutein cells: role in IGF-1-induced steroidogenesis through NAMPT. Biol. Reprod., 2014, 91(2), 50.
[http://dx.doi.org/10.1095/biolreprod.114.120410] [PMID: 24943040]
[87]
Yang, H.Y.; Ma, Y.; Lu, X.H.; Liang, X.H.; Suo, Y.J.; Huang, Z.X.; Lu, D.C.; Qin, Y.F.; Luo, Z.J. The correlation of plasma omentin-1 with insulin resistance in non-obese polycystic ovary syndrome. Ann. Endocrinol. (Paris), 2015, 76(5), 620-627.
[http://dx.doi.org/10.1016/j.ando.2015.08.002] [PMID: 26514948]
[88]
Ouchi, N.; Higuchi, A.; Ohashi, K.; Oshima, Y.; Gokce, N.; Shibata, R.; Akasaki, Y.; Shimono, A.; Walsh, K. Sfrp5 is an anti-inflammatory adipokine that modulates metabolic dysfunction in obesity. Science, 2010, 329(5990), 454-457.
[http://dx.doi.org/10.1126/science.1188280] [PMID: 20558665]
[89]
Carstensen-Kirberg, M.; Kannenberg, J.M.; Huth, C.; Meisinger, C.; Koenig, W.; Heier, M.; Peters, A.; Rathmann, W.; Roden, M.; Herder, C.; Thorand, B. Inverse associations between serum levels of secreted frizzled-related protein-5 (SFRP5) and multiple cardiometabolic risk factors: KORA F4 study. Cardiovasc. Diabetol., 2017, 16(1), 109.
[http://dx.doi.org/10.1186/s12933-017-0591-x] [PMID: 28851362]
[90]
Gutiérrez-Vidal, R.; Vega-Badillo, J.; Reyes-Fermín, L.M.; Hernández-Pérez, H.A.; Sánchez-Muñoz, F.; López-Álvarez, G.S.; Larrieta-Carrasco, E.; Fernández-Silva, I.; Méndez-Sánchez, N.; Tovar, A.R.; Villamil-Ramírez, H.; Mejía-Domínguez, A.M.; Villarreal-Molina, T.; Hernández-Pando, R.; Campos-Pérez, F.; Aguilar-Salinas, C.A.; Canizales-Quinteros, S. SFRP5 hepatic expression is associated with non-alcoholic liver disease in morbidly obese women. Ann. Hepatol., 2015, 14(5), 666-674.
[http://dx.doi.org/10.1016/S1665-2681(19)30761-6] [PMID: 26256895]
[91]
Chatani, N.; Kamada, Y.; Kizu, T.; Ogura, S.; Furuta, K.; Egawa, M.; Hamano, M.; Ezaki, H.; Kiso, S.; Shimono, A.; Ouchi, N.; Yoshida, Y.; Takehara, T. Secreted frizzled-related protein 5 (Sfrp5) decreases hepatic stellate cell activation and liver fibrosis. Liver Int., 2015, 35(8), 2017-2026.
[http://dx.doi.org/10.1111/liv.12757] [PMID: 25488180]
[92]
Oztas, E.; Ozler, S.; Ersoy, E.; Ersoy, A.O.; Tokmak, A.; Ergin, M.; Uygur, D.; Danisman, N. Prediction of gestational diabetes mellitus by first trimester serum secreted frizzle-related protein-5 levels. J. Matern. Fetal Neonatal Med., 2016, 29(9), 1515-1519.
[http://dx.doi.org/10.3109/14767058.2015.1052399] [PMID: 26100762]
[93]
Kimber-Trojnar, Ż.; Patro-Małysza, J.; Trojnar, M.; Darmochwał-Kolarz, D.; Oleszczuk, J.; Leszczyńska-Gorzelak, B. Umbilical Cord SFRP5 levels of term newborns in relation to normal and excessive gestational weight gain. Int. J. Mol. Sci., 2019, 20(3), E595.
[http://dx.doi.org/10.3390/ijms20030595] [PMID: 30704061]
[94]
Hu, W.; Li, L.; Yang, M.; Luo, X.; Ran, W.; Liu, D.; Xiong, Z.; Liu, H.; Yang, G. Circulating Sfrp5 is a signature of obesity-related metabolic disorders and is regulated by glucose and liraglutide in humans. J. Clin. Endocrinol. Metab., 2013, 98(1), 290-298.
[http://dx.doi.org/10.1210/jc.2012-2466] [PMID: 23185036]
[95]
Zhang, Y.; Proenca, R.; Maffei, M.; Barone, M.; Leopold, L.; Friedman, J.M. Positional cloning of the mouse obese gene and its human homologue. Nature, 1994, 372(6505), 425-432.
[http://dx.doi.org/10.1038/372425a0] [PMID: 7984236]
[96]
Christen, T.; Trompet, S.; Noordam, R.; van Klinken, J.B.; van Dijk, K.W.; Lamb, H.J.; Cobbaert, C.M.; den Heijer, M.; Jazet, I.M.; Jukema, J.W.; Rosendaal, F.R.; de Mutsert, R. Sex differences in body fat distribution are related to sex differences in serum leptin and adiponectin. Peptides, 2018, 107, 25-31.
[http://dx.doi.org/10.1016/j.peptides.2018.07.008] [PMID: 30076861]
[97]
Zarkesh-Esfahani, H.; Pockley, A.G.; Wu, Z.; Hellewell, P.G.; Weetman, A.P.; Ross, R.J. Leptin indirectly activates human neutrophils via induction of TNF-α. J. Immunol., 2004, 172(3), 1809-1814.
[http://dx.doi.org/10.4049/jimmunol.172.3.1809] [PMID: 14734764]
[98]
Amitani, M.; Asakawa, A.; Amitani, H.; Inui, A. The role of leptin in the control of insulin-glucose axis. Front. Neurosci., 2013, 7, 51.
[http://dx.doi.org/10.3389/fnins.2013.00051] [PMID: 23579596]
[99]
Minokoshi, Y.; Kim, Y.B.; Peroni, O.D.; Fryer, L.G.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 2002, 415(6869), 339-343.
[http://dx.doi.org/10.1038/415339a] [PMID: 11797013]
[100]
Ghasemi, A.; Hashemy, S.I.; Azimi-Nezhad, M.; Dehghani, A.; Saeidi, J.; Mohtashami, M. The cross-talk between adipokines and miRNAs in health and obesity-mediated diseases. Clin. Chim. Acta, 2019, 499, 41-53.
[http://dx.doi.org/10.1016/j.cca.2019.08.028] [PMID: 31476303]
[101]
Tartaglia, L.A.; Dembski, M.; Weng, X.; Deng, N.; Culpepper, J.; Devos, R.; Richards, G.J.; Campfield, L.A.; Clark, F.T.; Deeds, J.; Muir, C.; Sanker, S.; Moriarty, A.; Moore, K.J.; Smutko, J.S.; Mays, G.G.; Wool, E.A.; Monroe, C.A.; Tepper, R.I. Identification and expression cloning of a leptin receptor, OB-R. Cell, 1995, 83(7), 1263-1271.
[http://dx.doi.org/10.1016/0092-8674(95)90151-5] [PMID: 8548812]
[102]
Maffei, M.; Halaas, J.; Ravussin, E.; Pratley, R.E.; Lee, G.H.; Zhang, Y.; Fei, H.; Kim, S.; Lallone, R.; Ranganathan, S.; Kern, P.A.; Friedman, J.M. Leptin levels in human and rodent: Measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat. Med., 1995, 1(11), 1155-1161.
[http://dx.doi.org/10.1038/nm1195-1155] [PMID: 7584987]
[103]
Ferré, P.; Foufelle, F. Hepatic steatosis: A role for de novo lipogenesis and the transcription factor SREBP-1c. Diabetes Obes. Metab., 2010, 12(Suppl. 2), 83-92.
[http://dx.doi.org/10.1111/j.1463-1326.2010.01275.x] [PMID: 21029304]
[104]
Ikejima, K.; Honda, H.; Yoshikawa, M.; Hirose, M.; Kitamura, T.; Takei, Y.; Sato, N. Leptin augments inflammatory and profibrogenic responses in the murine liver induced by hepatotoxic chemicals. Hepatology, 2001, 34(2), 288-297.
[http://dx.doi.org/10.1053/jhep.2001.26518] [PMID: 11481614]
[105]
Polyzos, S.A.; Aronis, K.N.; Kountouras, J.; Raptis, D.D.; Vasiloglou, M.F.; Mantzoros, C.S. Circulating leptin in non-alcoholic fatty liver disease: A systematic review and meta-analysis. Diabetologia, 2016, 59(1), 30-43.
[http://dx.doi.org/10.1007/s00125-015-3769-3] [PMID: 26407715]
[106]
Rotundo, L.; Persaud, A.; Feurdean, M.; Ahlawat, S.; Kim, H.S. The Association of leptin with severity of non-alcoholic fatty liver disease: A population-based study. Clin. Mol. Hepatol., 2018, 24(4), 392-401.
[http://dx.doi.org/10.3350/cmh.2018.0011] [PMID: 30068065]
[107]
Hossain, I.A.; Akter, S.; Rahman, M.K.; Ali, L. Gender specific association of serum leptin and insulinemic indices with non-alcoholic fatty liver disease in prediabetic subjects. PLoS One, 2015, 10(11), e0142165.
[http://dx.doi.org/10.1371/journal.pone.0142165] [PMID: 26569494]
[108]
Qiu, C.; Williams, M.A.; Vadachkoria, S.; Frederick, I.O.; Luthy, D.A. Increased maternal plasma leptin in early pregnancy and risk of gestational diabetes mellitus. Obstet. Gynecol., 2004, 103(3), 519-525.
[http://dx.doi.org/10.1097/01.AOG.0000113621.53602.7a] [PMID: 14990416]
[109]
Lappas, M.; Yee, K.; Permezel, M.; Rice, G.E. Release and regulation of leptin, resistin and adiponectin from human placenta, fetal membranes, and maternal adipose tissue and skeletal muscle from normal and gestational diabetes mellitus-complicated pregnancies. J. Endocrinol., 2005, 186(3), 457-465.
[http://dx.doi.org/10.1677/joe.1.06227] [PMID: 16135665]
[110]
Nuamah, M.A.; Yura, S.; Sagawa, N.; Itoh, H.; Mise, H.; Korita, D.; Kakui, K.; Takemura, M.; Ogawa, Y.; Nakao, K.; Fujii, S. Significant increase in maternal plasma leptin concentration in induced delivery: A possible contribution of pro-inflammatory cytokines to placental leptin secretion. Endocr. J., 2004, 51(2), 177-187.
[http://dx.doi.org/10.1507/endocrj.51.177] [PMID: 15118268]
[111]
Lekva, T.; Michelsen, A.E.; Aukrust, P.; Henriksen, T.; Bollerslev, J.; Ueland, T. Leptin and adiponectin as predictors of cardiovascular risk after gestational diabetes mellitus. Cardiovasc. Diabetol., 2017, 16(1), 5.
[http://dx.doi.org/10.1186/s12933-016-0492-4] [PMID: 28068986]
[112]
Odle, A.K.; Haney, A.; Allensworth-James, M.; Akhter, N.; Childs, G.V. Adipocyte versus pituitary leptin in the regulation of pituitary hormones: Somatotropes develop normally in the absence of circulating leptin. Endocrinology, 2014, 155(11), 4316-4328.
[http://dx.doi.org/10.1210/en.2014-1172] [PMID: 25116704]
[113]
Budak, E.; Fernández Sánchez, M.; Bellver, J.; Cerveró, A.; Simón, C.; Pellicer, A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin, and PYY3-36 with the reproductive system. Fertil. Steril., 2006, 85(6), 1563-1581.
[http://dx.doi.org/10.1016/j.fertnstert.2005.09.065] [PMID: 16759918]
[114]
Syriou, V.; Papanikolaou, D.; Kozyraki, A.; Goulis, D.G. Cytokines and male infertility. Eur. Cytokine Netw., 2018, 29(3), 73-82.
[http://dx.doi.org/10.1684/ecn.2018.0412] [PMID: 30547889]
[115]
Karlsson, C.; Lindell, K.; Svensson, E.; Bergh, C.; Lind, P.; Billig, H.; Carlsson, L.M.; Carlsson, B. Expression of functional leptin receptors in the human ovary. J. Clin. Endocrinol. Metab., 1997, 82(12), 4144-4148.
[http://dx.doi.org/10.1210/jc.82.12.4144] [PMID: 9398729]
[116]
Agarwal, S.K.; Vogel, K.; Weitsman, S.R.; Magoffin, D.A. Leptin antagonizes the insulin-like growth factor-I augmentation of steroidogenesis in granulosa and theca cells of the human ovary. J. Clin. Endocrinol. Metab., 1999, 84(3), 1072-1076.
[http://dx.doi.org/10.1210/jc.84.3.1072] [PMID: 10084597]
[117]
Einollahi, N.; Dashti, N.; Nabatchian, F. Serum leptin concentrations during the menstrual cycle in Iranian healthy women. Acta Med. Iran., 2010, 48(5), 300-303.
[PMID: 21287461]
[118]
Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature, 2001, 409(6818), 307-312.
[http://dx.doi.org/10.1038/35053000] [PMID: 11201732]
[119]
Rajala, M.W.; Qi, Y.; Patel, H.R.; Takahashi, N.; Banerjee, R.; Pajvani, U.B. Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes., 2004, 53, 1671e9.
[http://dx.doi.org/10.2337/diabetes.53.7.1671]
[120]
Mostafazadeh, M.; Haiaty, S.; Rastqar, A.; Keshvari, M. Correlation between resistin level and metabolic syndrome component: A review. Horm. Metab. Res., 2018, 50(7), 521-536.
[http://dx.doi.org/10.1055/a-0637-1975] [PMID: 29991083]
[121]
Bertolani, C.; Sancho-Bru, P.; Failli, P.; Bataller, R.; Aleffi, S.; DeFranco, R.; Mazzinghi, B.; Romagnani, P.; Milani, S.; Ginés, P.; Colmenero, J.; Parola, M.; Gelmini, S.; Tarquini, R.; Laffi, G.; Pinzani, M.; Marra, F. Resistin as an intrahepatic cytokine: Overexpression during chronic injury and induction of proinflammatory actions in hepatic stellate cells. Am. J. Pathol., 2006, 169(6), 2042-2053.
[http://dx.doi.org/10.2353/ajpath.2006.060081] [PMID: 17148667]
[122]
Polyzos, S.A.; Kountouras, J.; Polymerou, V.; Papadimitriou, K.G.; Zavos, C.; Katsinelos, P. Vaspin, resistin, retinol-binding protein-4, interleukin-1α and interleukin-6 in patients with nonalcoholic fatty liver disease. Ann. Hepatol., 2016, 15(5), 705-714.
[PMID: 27493109]
[123]
Ajmera, V.; Perito, E.R.; Bass, N.M.; Terrault, N.A.; Yates, K.P.; Gill, R.; Loomba, R.; Diehl, A.M.; Aouizerat, B.E. NASH Clinical Research Network. Novel plasma biomarkers associated with liver disease severity in adults with nonalcoholic fatty liver disease. Hepatology, 2017, 65(1), 65-77.
[http://dx.doi.org/10.1002/hep.28776] [PMID: 27532276]
[124]
Yura, S.; Sagawa, N.; Itoh, H.; Kakui, K.; Nuamah, M.A.; Korita, D.; Takemura, M.; Fujii, S. Resistin is expressed in the human placenta. J. Clin. Endocrinol. Metab., 2003, 88(3), 1394-1397.
[http://dx.doi.org/10.1210/jc.2002-011926] [PMID: 12629135]
[125]
Kuzmicki, M.; Telejko, B.; Szamatowicz, J.; Zonenberg, A.; Nikolajuk, A.; Kretowski, A.; Gorska, M. High resistin and interleukin-6 levels are associated with gestational diabetes mellitus. Gynecol. Endocrinol., 2009, 25(4), 258-263.
[http://dx.doi.org/10.1080/09513590802653825] [PMID: 19408175]
[126]
Megia, A.; Vendrell, J.; Gutierrez, C.; Sabaté, M.; Broch, M.; Fernández-Real, J.M.; Simón, I. Insulin sensitivity and resistin levels in gestational diabetes mellitus and after parturition. Eur. J. Endocrinol., 2008, 158(2), 173-178.
[http://dx.doi.org/10.1530/EJE-07-0671] [PMID: 18230823]
[127]
Moretti, E.; Collodel, G.; Mazzi, L.; Campagna, M.; Iacoponi, F.; Figura, N. Resistin, interleukin-6, tumor necrosis factor-alpha, and human semen parameters in the presence of leukocytospermia, smoking habit, and varicocele. Fertil. Steril., 2014, 102(2), 354-360.
[http://dx.doi.org/10.1016/j.fertnstert.2014.04.017] [PMID: 24830311]
[128]
Nogueiras, R.; Barreiro, M.L.; Caminos, J.E.; Gaytán, F.; Suominen, J.S.; Navarro, V.M.; Casanueva, F.F.; Aguilar, E.; Toppari, J.; Diéguez, C.; Tena-Sempere, M. Novel expression of resistin in rat testis: functional role and regulation by nutritional status and hormonal factors. J. Cell Sci., 2004, 117(Pt 15), 3247-3257.
[http://dx.doi.org/10.1242/jcs.01196] [PMID: 15226398]
[129]
Munir, I.; Yen, H.W.; Baruth, T.; Tarkowski, R.; Azziz, R.; Magoffin, D.A.; Jakimiuk, A.J. Resistin stimulation of 17alpha-hydroxylase activity in ovarian theca cells in vitro: relevance to polycystic ovary syndrome. J. Clin. Endocrinol. Metab., 2005, 90(8), 4852-4857.
[http://dx.doi.org/10.1210/jc.2004-2152] [PMID: 15886251]
[130]
Messini, C.I.; Vasilaki, A.; Korona, E.; Anifandis, G.; Georgoulias, P.; Dafopoulos, K.; Garas, A.; Daponte, A.; Messinis, I.E. Effect of resistin on estradiol and progesterone secretion from human luteinized granulosa cells in culture. Syst Biol Reprod Med, 2019, 65(5), 350-356.
[http://dx.doi.org/10.1080/19396368.2019.1615151] [PMID: 31099269]
[131]
Seow, K.M.; Juan, C.C.; Hsu, Y.P.; Ho, L.T.; Wang, Y.Y.; Hwang, J.L. Serum and follicular resistin levels in women with polycystic ovarian syndrome during IVF-stimulated cycles. Hum. Reprod., 2005, 20(1), 117-121.
[http://dx.doi.org/10.1093/humrep/deh589] [PMID: 15513972]
[132]
Gul, O.O.; Cander, S.; Gul, B.; Açıkgoz, E.; Sarandol, E.; Ersoy, C. Evaluation of insulin resistance and plasma levels for visfatin and resistin in obese and non-obese patients with polycystic ovary syndrome. Eur. Cytokine Netw., 2015, 26(4), 73-78.
[http://dx.doi.org/10.1684/ecn.2015.0370] [PMID: 26967765]
[133]
Shaker, O.; El-Shehaby, A.; Zakaria, A.; Mostafa, N.; Talaat, S.; Katsiki, N.; Mikhailidis, D.P. Plasma visfatin and retinol binding protein-4 levels in patients with type 2 diabetes mellitus and their relationship to adiposity and fatty liver. Clin. Biochem., 2011, 44(17-18), 1457-1463.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.08.1148] [PMID: 21939650]
[134]
Moschen, A.R.; Kaser, A.; Enrich, B.; Mosheimer, B.; Theurl, M.; Niederegger, H.; Tilg, H. Visfatin, an adipocytokine with proinflammatory and immunomodulating properties. J. Immunol., 2007, 178(3), 1748-1758.
[http://dx.doi.org/10.4049/jimmunol.178.3.1748] [PMID: 17237424]
[135]
Kumari, B.; Yadav, U.C.S. Adipokine Visfatin’s role in pathogenesis of diabesity and related metabolic derangements. Curr. Mol. Med., 2018, 18(2), 116-125.
[http://dx.doi.org/10.2174/1566524018666180705114131] [PMID: 29974830]
[136]
Hameed, W.; Yousaf, I.; Latif, R.; Aslam, M. Effect of visfatin on testicular steroidogenesis in purified Leydig cells. J. Ayub Med. Coll. Abbottabad, 2012, 24(3-4), 62-64.
[PMID: 24669612]
[137]
Jeremy, M.; Gurusubramanian, G.; Roy, V.K. Localization pattern of visfatin (NAMPT) in d-galactose induced aged rat testis. Ann. Anat., 2017, 211, 46-54.
[http://dx.doi.org/10.1016/j.aanat.2017.01.009] [PMID: 28163205]
[138]
Shen, C.J.; Tsai, E.M.; Lee, J.N.; Chen, Y.L.; Lee, C.H.; Chan, T.F. The concentrations of visfatin in the follicular fluids of women undergoing controlled ovarian stimulation are correlated to the number of oocytes retrieved. Fertil. Steril., 2010, 93(6), 1844-1850.
[http://dx.doi.org/10.1016/j.fertnstert.2008.12.090] [PMID: 19200966]
[139]
Plati, E.; Kouskouni, E.; Malamitsi-Puchner, A.; Boutsikou, M.; Kaparos, G.; Baka, S. Visfatin and leptin levels in women with polycystic ovaries undergoing ovarian stimulation. Fertil. Steril., 2010, 94(4), 1451-1456.
[http://dx.doi.org/10.1016/j.fertnstert.2009.04.055] [PMID: 19523615]
[140]
Reverchon, M.; Cornuau, M.; Cloix, L.; Ramé, C.; Guerif, F.; Royère, D.; Dupont, J. Visfatin is expressed in human granulosa cells: regulation by metformin through AMPK/SIRT1 pathways and its role in steroidogenesis. Mol. Hum. Reprod., 2013, 19(5), 313-326.
[http://dx.doi.org/10.1093/molehr/gat002] [PMID: 23315983]
[141]
Zabel, B.A.; Allen, S.J.; Kulig, P.; Allen, J.A.; Cichy, J.; Handel, T.M.; Butcher, E.C. Chemerin activation by serine proteases of the coagulation, fibrinolytic, and inflammatory cascades. J. Biol. Chem., 2005, 280(41), 34661-34666.
[http://dx.doi.org/10.1074/jbc.M504868200] [PMID: 16096270]
[142]
Bondue, B.; Wittamer, V.; Parmentier, M. Chemerin and its receptors in leukocyte trafficking, inflammation and metabolism. Cytokine Growth Factor Rev., 2011, 22(5-6), 331-338.
[http://dx.doi.org/10.1016/j.cytogfr.2011.11.004] [PMID: 22119008]
[143]
Wittamer, V.; Franssen, J.D.; Vulcano, M.; Mirjolet, J.F.; Le Poul, E.; Migeotte, I.; Brézillon, S.; Tyldesley, R.; Blanpain, C.; Detheux, M.; Mantovani, A.; Sozzani, S.; Vassart, G.; Parmentier, M.; Communi, D. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med., 2003, 198(7), 977-985.
[http://dx.doi.org/10.1084/jem.20030382] [PMID: 14530373]
[144]
Herová, M.; Schmid, M.; Gemperle, C.; Hersberger, M. ChemR23, the receptor for chemerin and resolvin E1, is expressed and functional on M1 but not on M2 macrophages. J. Immunol., 2015, 194(5), 2330-2337.
[http://dx.doi.org/10.4049/jimmunol.1402166] [PMID: 25637017]
[145]
Rourke, J.L.; Dranse, H.J.; Sinal, C.J. Towards an integrative approach to understanding the role of chemerin in human health and disease. Obes. Rev., 2013, 14(3), 245-262.
[http://dx.doi.org/10.1111/obr.12009] [PMID: 23216632]
[146]
Ernst, M.C.; Issa, M.; Goralski, K.B.; Sinal, C.J. Chemerin exacerbates glucose intolerance in mouse models of obesity and diabetes. Endocrinology, 2010, 151(5), 1998-2007.
[http://dx.doi.org/10.1210/en.2009-1098] [PMID: 20228173]
[147]
Bozaoglu, K.; Segal, D.; Shields, K.A.; Cummings, N.; Curran, J.E.; Comuzzie, A.G.; Mahaney, M.C.; Rainwater, D.L.; VandeBerg, J.L.; MacCluer, J.W.; Collier, G.; Blangero, J.; Walder, K.; Jowett, J.B. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metab., 2009, 94(8), 3085-3088.
[http://dx.doi.org/10.1210/jc.2008-1833] [PMID: 19470637]
[148]
Lu, B.; Zhao, M.; Jiang, W.; Ma, J.; Yang, C.; Shao, J.; Gu, P. Independent association of circulating level of chemerin with functional and early morphological vascular changes in newly diagnosed Type 2 diabetic patients. Medicine (Baltimore), 2015, 94(47), e1990.
[http://dx.doi.org/10.1097/MD.0000000000001990] [PMID: 26632694]
[149]
Niklowitz, P.; Rothermel, J.; Lass, N.; Barth, A.; Reinehr, T. Link between chemerin, central obesity, and parameters of the Metabolic Syndrome: Findings from a longitudinal study in obese children participating in a lifestyle intervention. Int. J. Obes., 2018, 42(10), 1743-1752.
[http://dx.doi.org/10.1038/s41366-018-0157-3] [PMID: 30030480]
[150]
Stelmanska, E.; Sledzinski, T.; Turyn, J.; Presler, M.; Korczynska, J.; Swierczynski, J. Chemerin gene expression is regulated by food restriction and food restriction-refeeding in rat adipose tissue but not in liver. Regul. Pept., 2013, 181, 22-29.
[http://dx.doi.org/10.1016/j.regpep.2012.12.001] [PMID: 23328001]
[151]
Takahashi, M.; Takahashi, Y.; Takahashi, K.; Zolotaryov, F.N.; Hong, K.S.; Kitazawa, R.; Iida, K.; Okimura, Y.; Kaji, H.; Kitazawa, S.; Kasuga, M.; Chihara, K. Chemerin enhances insulin signaling and potentiates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. FEBS Lett., 2008, 582(5), 573-578.
[http://dx.doi.org/10.1016/j.febslet.2008.01.023] [PMID: 18242188]
[152]
Takahashi, M.; Okimura, Y.; Iguchi, G.; Nishizawa, H.; Yamamoto, M.; Suda, K.; Kitazawa, R.; Fujimoto, W.; Takahashi, K.; Zolotaryov, F.N.; Hong, K.S.; Kiyonari, H.; Abe, T.; Kaji, H.; Kitazawa, S.; Kasuga, M.; Chihara, K.; Takahashi, Y. Chemerin regulates β-cell function in mice. Sci. Rep., 2011, 1, 123.
[http://dx.doi.org/10.1038/srep00123] [PMID: 22355640]
[153]
Döcke, S.; Lock, J.F.; Birkenfeld, A.L.; Hoppe, S.; Lieske, S.; Rieger, A.; Raschzok, N.; Sauer, I.M.; Florian, S.; Osterhoff, M.A.; Heller, R.; Herrmann, K.; Lindenmüller, S.; Horn, P.; Bauer, M.; Weickert, M.O.; Neuhaus, P.; Stockmann, M.; Möhlig, M.; Pfeiffer, A.F.; von Loeffelholz, C. Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur. J. Endocrinol., 2013, 169(5), 547-557.
[http://dx.doi.org/10.1530/EJE-13-0112] [PMID: 23935128]
[154]
Krautbauer, S.; Wanninger, J.; Eisinger, K.; Hader, Y.; Beck, M.; Kopp, A.; Schmid, A.; Weiss, T.S.; Dorn, C.; Buechler, C. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol., 2013, 95(2), 199-205.
[http://dx.doi.org/10.1016/j.yexmp.2013.07.009] [PMID: 23906870]
[155]
Fatima, S.S.; Alam, F.; Chaudhry, B.; Khan, T.A. Elevated levels of chemerin, leptin, and interleukin-18 in gestational diabetes mellitus. J. Matern. Fetal Neonatal Med., 2017, 30(9), 1023-1028.
[http://dx.doi.org/10.1080/14767058.2016.1199671] [PMID: 27278709]
[156]
Zhou, Z.; Chen, H.; Ju, H.; Sun, M. Circulating chemerin levels and gestational diabetes mellitus: A systematic review and meta-analysis. Lipids Health Dis., 2018, 17(1), 169.
[http://dx.doi.org/10.1186/s12944-018-0826-1] [PMID: 30041634]
[157]
van Poppel, M.N.; Zeck, W.; Ulrich, D.; Schest, E.C.; Hirschmugl, B.; Lang, U.; Wadsack, C.; Desoye, G. Cord blood chemerin: differential effects of gestational diabetes mellitus and maternal obesity. Clin. Endocrinol. (Oxf.), 2014, 80(1), 65-72.
[http://dx.doi.org/10.1111/cen.12140] [PMID: 23286837]
[158]
Cetin, O.; Kurdoglu, Z.; Kurdoglu, M.; Sahin, H.G. Chemerin level in pregnancies complicated by preeclampsia and its relation with disease severity and neonatal outcomes. J. Obstet. Gynaecol., 2017, 37(2), 195-199.
[PMID: 27866414]
[159]
Chen, H.; Jin, S.; Guo, J.; Kombairaju, P.; Biswal, S.; Zirkin, B.R. Knockout of the transcription factor Nrf2: Effects on testosterone production by aging mouse Leydig cells. Mol. Cell. Endocrinol., 2015, 409, 113-120.
[http://dx.doi.org/10.1016/j.mce.2015.03.013] [PMID: 25818884]
[160]
Bongrani, A.; Elfassy, Y.; Brun, J.S.; Ramé, C.; Mellouk, N.; Fellahi, S.; Bastard, J.P.; Levy, R.; Vasseur, C.; Froment, P.; Dupont, J. Expression of adipokines in seminal fluid of men of normal weight. Asian J. Androl., 2019, 21(5), 528-530.
[http://dx.doi.org/10.4103/aja.aja_25_19] [PMID: 31115360]
[161]
Goralski, K.B.; McCarthy, T.C.; Hanniman, E.A.; Zabel, B.A.; Butcher, E.C.; Parlee, S.D.; Muruganandan, S.; Sinal, C.J. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem., 2007, 282(38), 28175-28188.
[http://dx.doi.org/10.1074/jbc.M700793200] [PMID: 17635925]
[162]
Bongrani, A.; Mellouk, N.; Rame, C.; Cornuau, M.; Guérif, F.; Froment, P.; Dupont, J. Ovarian expression of adipokines in polycystic ovary syndrome: A role for chemerin, omentin, and apelin in follicular growth arrest and ovulatory dysfunction? Int. J. Mol. Sci., 2019, 20(15), 3778.
[http://dx.doi.org/10.3390/ijms20153778] [PMID: 31382403]
[163]
Reverchon, M.; Cornuau, M.; Ramé, C.; Guerif, F.; Royère, D.; Dupont, J. Chemerin inhibits IGF-1-induced progesterone and estradiol secretion in human granulosa cells. Hum. Reprod., 2012, 27(6), 1790-1800.
[http://dx.doi.org/10.1093/humrep/des089] [PMID: 22447628]
[164]
Boucher, J.; Masri, B.; Daviaud, D.; Gesta, S.; Guigné, C.; Mazzucotelli, A.; Castan-Laurell, I.; Tack, I.; Knibiehler, B.; Carpéné, C.; Audigier, Y.; Saulnier-Blache, J.S.; Valet, P. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology, 2005, 146(4), 1764-1771.
[http://dx.doi.org/10.1210/en.2004-1427] [PMID: 15677759]
[165]
Ba, H.J.; Chen, H.S.; Su, Z.; Du, M.L.; Chen, Q.L.; Li, Y.H.; Ma, H.M. Associations between serum apelin-12 levels and obesity-related markers in Chinese children. PLoS One, 2014, 9(1), e86577.
[http://dx.doi.org/10.1371/journal.pone.0086577] [PMID: 24475149]
[166]
Krist, J.; Wieder, K.; Klöting, N.; Oberbach, A.; Kralisch, S.; Wiesner, T.; Schön, M.R.; Gärtner, D.; Dietrich, A.; Shang, E.; Lohmann, T.; Dreßler, M.; Fasshauer, M.; Stumvoll, M.; Blüher, M. Effects of weight loss and exercise on apelin serum concentrations and adipose tissue expression in human obesity. Obes. Facts, 2013, 6(1), 57-69.
[http://dx.doi.org/10.1159/000348667] [PMID: 23429279]
[167]
Butruille, L.; Drougard, A.; Knauf, C.; Moitrot, E.; Valet, P.; Storme, L.; Deruelle, P.; Lesage, J. The apelinergic system: sexual dimorphism and tissue-specific modulations by obesity and insulin resistance in female mice. Peptides, 2013, 46, 94-101.
[http://dx.doi.org/10.1016/j.peptides.2013.05.013] [PMID: 23747606]
[168]
Sörhede Winzell, M.; Magnusson, C.; Ahrén, B. The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul. Pept., 2005, 131(1-3), 12-17.
[http://dx.doi.org/10.1016/j.regpep.2005.05.004] [PMID: 15970338]
[169]
Than, A.; Cheng, Y.; Foh, L.C.; Leow, M.K.; Lim, S.C.; Chuah, Y.J.; Kang, Y.; Chen, P. Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways. Mol. Cell. Endocrinol., 2012, 362(1-2), 227-241.
[http://dx.doi.org/10.1016/j.mce.2012.07.002] [PMID: 22842084]
[170]
Than, A.; He, H.L.; Chua, S.H.; Xu, D.; Sun, L.; Leow, M.K.; Chen, P. Apelin enhances brown adipogenesis and browning of white adipocytes. J. Biol. Chem., 2015, 290(23), 14679-14691.
[http://dx.doi.org/10.1074/jbc.M115.643817] [PMID: 25931124]
[171]
Wang, Y.; Song, J.; Bian, H.; Bo, J.; Lv, S.; Pan, W.; Lv, X. Apelin promotes hepatic fibrosis through ERK signaling in LX-2 cells. Mol. Cell. Biochem., 2019, 460(1-2), 205-215.
[http://dx.doi.org/10.1007/s11010-019-03581-0] [PMID: 31270645]
[172]
Montazerifar, F.; Bakhshipour, A.R.; Karajibani, M.; Torki, Z.; Dashipour, A.R. Serum omentin-1, vaspin, and apelin levels and central obesity in patients with nonalcoholic fatty liver disease. J. Res. Med. Sci., 2017, 22, 70.
[http://dx.doi.org/10.4103/jrms.JRMS_788_16] [PMID: 28616057]
[173]
Lv, S.Y.; Cui, B.; Chen, W.D.; Wang, Y.D. Apelin/APJ system: A key therapeutic target for liver disease. Oncotarget, 2017, 8(67), 112145-112151.
[http://dx.doi.org/10.18632/oncotarget.22841] [PMID: 29340118]
[174]
Telejko, B.; Kuzmicki, M.; Wawrusiewicz-Kurylonek, N.; Szamatowicz, J.; Nikolajuk, A.; Zonenberg, A.; Zwierz-Gugala, D.; Jelski, W.; Laudański, P.; Wilczynski, J.; Kretowski, A.; Gorska, M. Plasma apelin levels and apelin/APJ mRNA expression in patients with gestational diabetes mellitus. Diabetes Res. Clin. Pract., 2010, 87(2), 176-183.
[http://dx.doi.org/10.1016/j.diabres.2009.10.018] [PMID: 19926159]
[175]
Aslan, M.; Celik, O.; Celik, N.; Turkcuoglu, I.; Yilmaz, E.; Karaer, A.; Simsek, Y.; Celik, E.; Aydin, S. Cord blood nesfatin-1 and apelin-36 levels in gestational diabetes mellitus. Endocrine, 2012, 41(3), 424-429.
[http://dx.doi.org/10.1007/s12020-011-9577-8] [PMID: 22203468]
[176]
Sandal, S.; Tekin, S.; Seker, F.B.; Beytur, A.; Vardi, N.; Colak, C.; Tapan, T.; Yildiz, S.; Yilmaz, B. The effects of intracerebroventricular infusion of apelin-13 on reproductive function in male rats. Neurosci. Lett., 2015, 602, 133-138.
[http://dx.doi.org/10.1016/j.neulet.2015.06.059] [PMID: 26149233]
[177]
Altinkaya, S.O.; Nergiz, S.; Küçük, M.; Yüksel, H. Apelin levels in relation with hormonal and metabolic profile in patients with polycystic ovary syndrome. Eur. J. Obstet. Gynecol. Reprod. Biol., 2014, 176, 168-172.
[http://dx.doi.org/10.1016/j.ejogrb.2014.02.022] [PMID: 24642195]
[178]
Chang, C.Y.; Tsai, Y.C.; Lee, C.H.; Chan, T.F.; Wang, S.H.; Su, J.H. Lower serum apelin levels in women with polycystic ovary syndrome. Fertil. Steril., 2011, 95(8), 2520-3.e1-2.
[http://dx.doi.org/10.1016/j.fertnstert.2011.04.044] [PMID: 21575945]
[179]
Roche, J.; Ramé, C.; Reverchon, M.; Mellouk, N.; Cornuau, M.; Guerif, F.; Froment, P.; Dupont, J. Apelin (APLN) and Apelin Receptor (APLNR) in human ovary: Expression, signaling, and regulation of steroidogenesis in primary human luteinized granulosa cells. Biol. Reprod., 2016, 95(5), 104.
[http://dx.doi.org/10.1095/biolreprod.116.141754] [PMID: 27683264]
[180]
Ozkan, Z.S.; Cilgin, H.; Simsek, M.; Cobanoglu, B.; Ilhan, N. Investigation of apelin expression in endometriosis. J. Reprod. Infertil., 2013, 14(2), 50-55.
[PMID: 23926564]
[181]
Kumari, R.; Kumar, S.; Kant, R. An update on metabolic syndrome: Metabolic risk markers and adipokines in the development of metabolic syndrome. Diabetes Metab. Syndr., 2019, 13(4), 2409-2417.
[http://dx.doi.org/10.1016/j.dsx.2019.06.005] [PMID: 31405652]
[182]
Hotamisligil, G.S.; Budavari, A.; Murray, D.; Spiegelman, B.M. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-α. J. Clin. Invest., 1994, 94(4), 1543-1549.
[http://dx.doi.org/10.1172/JCI117495] [PMID: 7523453]
[183]
Cai, D.; Yuan, M.; Frantz, DF.; Melendez, PA.; Hansen, L.; Lee, J. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB. Nat. Med., 2005, 11, 183e90.
[184]
Cawthorn, WP.; Sethi, JK. TNF-alpha and adipocyte biology. FEBS Lett., 2008, 582, 117e31.
[185]
Hotamisligil, GS.; Spiegelman, BM. Tumor necrosis factor alpha: a key component of the obesity-diabetes link. Diabetes, 1994, 43, 1271e8.
[http://dx.doi.org/10.2337/diabetes.43.11.1271]
[186]
Souza, SC.; Palmer, HJ.; Kang, YH.; Yamamoto, MT.; Muliro, KV.; Paulson, KE. TNFα induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J. Cell Biochem., 2003, 89, 1077e86.
[187]
Fasshauer, M.; Klein, J.; Neumann, S.; Eszlinger, M.; Paschke, R. Tumor necrosis factor alpha is a negative regulator of resistin gene expression and secretion in 3T3-L1 adipocytes. Biochem. Biophys. Res. Commun., 2001, 288(4), 1027e31.
[188]
Uysal, KT.; Wiesbrock, SM.; Marino, MW.; Hotamisligil, GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 1997, 389, 610–614.
[189]
Dominguez, H.; Storgaard, H.; Rask-Madsen, C.; Steffen Hermann, T.; Ihlemann, N.; Baunbjerg Nielsen, D.; Spohr, C.; Kober, L.; Vaag, A.; Torp-Pedersen, C. Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J. Vasc. Res., 2005, 42(6), 517-525.
[http://dx.doi.org/10.1159/000088261] [PMID: 16155368]
[190]
Tam, LS.; Tomlinson, B.; Chu, TT.; Li, T.; Li, EK. Impact of TNF inhibition on insulin resistance and lipids levels in patients with rheumatoid arthritis. Clin Rheumatol, 2007, 26, 1495e8.
[http://dx.doi.org/10.1007/s10067-007-0539-8]
[191]
Tilg, H.; Diehl, A.M. Cytokines in alcoholic and nonalcoholic steatohepatitis. N. Engl. J. Med., 2000, 343(20), 1467-1476.
[http://dx.doi.org/10.1056/NEJM200011163432007] [PMID: 11078773]
[192]
Tilg, H.; Moschen, A.R.; Roden, M. NAFLD and diabetes mellitus. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(1), 32-42.
[http://dx.doi.org/10.1038/nrgastro.2016.147] [PMID: 27729660]
[193]
Howell, K.R.; Powell, T.L. Effects of maternal obesity on placental function and fetal development. Reproduction, 2017, 153(3), R97-R108.
[http://dx.doi.org/10.1530/REP-16-0495] [PMID: 27864335]
[194]
Xu, J.; Zhao, Y.H.; Chen, Y.P.; Yuan, X.L.; Wang, J.; Zhu, H.; Lu, C.M. Maternal circulating concentrations of tumor necrosis factor-alpha, leptin, and adiponectin in gestational diabetes mellitus: A systematic review and meta-analysis. ScientificWorldJournal, 2014, 2014, 926932.
[http://dx.doi.org/10.1155/2014/926932] [PMID: 25202741]
[195]
Barbour, L.A.; McCurdy, C.E.; Hernandez, T.L.; Kirwan, J.P.; Catalano, P.M.; Friedman, J.E. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care, 2007, 30(Suppl. 2), S112-S119.
[http://dx.doi.org/10.2337/dc07-s202] [PMID: 17596458]
[196]
Hong, C.Y.; Park, J.H.; Ahn, R.S.; Im, S.Y.; Choi, H.S.; Soh, J.; Mellon, S.H.; Lee, K. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor α. Mol. Cell. Biol., 2004, 24(7), 2593-2604.
[http://dx.doi.org/10.1128/MCB.24.7.2593-2604.2004] [PMID: 15024051]
[197]
Mauduit, C.; Gasnier, F.; Rey, C.; Chauvin, M.A.; Stocco, D.M.; Louisot, P.; Benahmed, M. Tumor necrosis factor-alpha inhibits leydig cell steroidogenesis through a decrease in steroidogenic acute regulatory protein expression. Endocrinology, 1998, 139(6), 2863-2868.
[http://dx.doi.org/10.1210/endo.139.6.6077] [PMID: 9607795]
[198]
Morales, V.; Santana, P.; Díaz, R.; Tabraue, C.; Gallardo, G.; López Blanco, F.; Hernández, I.; Fanjul, L.F.; Ruiz de Galarreta, C.M. Intratesticular delivery of tumor necrosis factor-alpha and ceramide directly abrogates steroidogenic acute regulatory protein expression and Leydig cell steroidogenesis in adult rats. Endocrinology, 2003, 144(11), 4763-4772.
[http://dx.doi.org/10.1210/en.2003-0569] [PMID: 12959973]
[199]
Wu, L.; Zhang, A.; Sun, Y.; Zhu, X.; Fan, W.; Lu, X.; Yang, Q.; Feng, Y. Sirt1 exerts anti-inflammatory effects and promotes steroidogenesis in Leydig cells. Fertil. Steril., 2012, 98(1), 194-199.
[http://dx.doi.org/10.1016/j.fertnstert.2012.04.008] [PMID: 22584026]
[200]
Xiong, Y.; Hales, D.B. The role of tumor necrosis factor-alpha in the regulation of mouse Leydig cell steroidogenesis. Endocrinology, 1993, 132(6), 2438-2444.
[http://dx.doi.org/10.1210/endo.132.6.8504748] [PMID: 8504748]
[201]
Leisegang, K.; Henkel, R. The in vitro modulation of steroidogenesis by inflammatory cytokines and insulin in TM3 Leydig cells. Reprod. Biol. Endocrinol., 2018, 16(1), 26.
[http://dx.doi.org/10.1186/s12958-018-0341-2] [PMID: 29566712]
[202]
Sakumoto, R.; Shibaya, M.; Okuda, K. Tumor necrosis factor-α (TNF α) inhibits progesterone and estradiol-17β production from cultured granulosa cells: Presence of TNFalpha receptors in bovine granulosa and theca cells. J. Reprod. Dev., 2003, 49(6), 441-449.
[http://dx.doi.org/10.1262/jrd.49.441] [PMID: 14967894]
[203]
Prange-Kiel, J.; Kreutzkamm, C.; Wehrenberg, U.; Rune, G.M. Role of tumor necrosis factor in preovulatory follicles of swine. Biol. Reprod., 2001, 65(3), 928-935.
[http://dx.doi.org/10.1095/biolreprod65.3.928] [PMID: 11514360]
[204]
Balchak, S.K.; Marcinkiewicz, J.L. Evidence for the presence of tumor necrosis factor alpha receptors during ovarian development in the rat. Biol. Reprod., 1999, 61(6), 1506-1512.
[http://dx.doi.org/10.1095/biolreprod61.6.1506] [PMID: 10569996]
[205]
Spicer, L.J. Tumor necrosis factor-α (TNF-α) inhibits steroidogenesis of bovine ovarian granulosa and thecal cells in vitro. Involvement of TNF-α receptors. Endocrine, 1998, 8(2), 109-115.
[http://dx.doi.org/10.1385/ENDO:8:2:109] [PMID: 9704567]
[206]
Miyamoto, Y.; Sakumoto, R.; Sakabe, Y.; Miyake, M.; Okano, A.; Okuda, K. Tumour necrosis factor-α receptors are present in the corpus luteum throughout the oestrous cycle and during the early gestation period in pigs. Reprod. Domest. Anim., 2002, 37(2), 105-110.
[http://dx.doi.org/10.1046/j.1439-0531.2002.00324.x] [PMID: 11975749]
[207]
Sakumoto, R.; Okuda, K. Possible actions of tumor necrosis factor-α in ovarian function. J. Reprod. Dev., 2004, 50(1), 39-46.
[http://dx.doi.org/10.1262/jrd.50.39] [PMID: 15007200]
[208]
Penny, L.A.; Armstrong, D.; Bramley, T.A.; Webb, R.; Collins, R.A.; Watson, E.D. Immune cells and cytokine production in the bovine corpus luteum throughout the oestrous cycle and after induced luteolysis. J. Reprod. Fertil., 1999, 115(1), 87-96.
[http://dx.doi.org/10.1530/jrf.0.1150087] [PMID: 10341726]
[209]
Hehnke, K.E.; Christenson, L.K.; Ford, S.P.; Taylor, M. Macrophage infiltration into the porcine corpus luteum during prostaglandin F2 α-induced luteolysis. Biol. Reprod., 1994, 50(1), 10-15.
[http://dx.doi.org/10.1095/biolreprod50.1.10] [PMID: 8312432]
[210]
Naftalin, D.M.; Bove, S.E.; Keyes, P.L.; Townson, D.H. Estrogen withdrawal induces macrophage invasion in the rabbit corpus luteum. Biol. Reprod., 1997, 56(5), 1175-1180.
[http://dx.doi.org/10.1095/biolreprod56.5.1175] [PMID: 9160716]
[211]
Paulino, L.R.F.M.; Cunha, E.V.; Barbalho Silva, A.W.; Souza, G.B.; Lopes, E.P.F.; Donato, M.A.M.; Peixoto, C.A.; Matos-Brito, B.G.; van den Hurk, R.; Silva, J.R.V. Effects of tumour necrosis factor-alpha and interleukin-1 beta on in vitro development of bovine secondary follicles. Reprod. Domest. Anim., 2018, 53(4), 997-1005.
[http://dx.doi.org/10.1111/rda.13199] [PMID: 29943395]
[212]
Kimura, A.; Kishimoto, T. IL-6: regulator of Treg/Th17 balance. Eur. J. Immunol., 2010, 40(7), 1830-1835.
[http://dx.doi.org/10.1002/eji.201040391] [PMID: 20583029]
[213]
Scheller, J.; Chalaris, A.; Schmidt-Arras, D.; Rose-John, S. The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim. Biophys. Acta, 2011, 1813(5), 878-888.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.034] [PMID: 21296109]
[214]
Mohamed-Ali, V.; Goodrick, S.; Rawesh, A.; Katz, DR.; Miles, JM.; Yudkin, JS. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-a, in vivo. J Clin Endocrinol Metab, 1997, 82, 4196e200.
[http://dx.doi.org/10.1210/jc.82.12.4196]
[215]
Fried, S.K.; Bunkin, D.A.; Greenberg, A.S. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: Depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab., 1998, 83(3), 847-850.
[http://dx.doi.org/10.1210/jc.83.3.847] [PMID: 9506738]
[216]
Han, M.S.; White, A.; Perry, R.J.; Camporez, J.P.; Hidalgo, J.; Shulman, G.I.; Davis, R.J. Regulation of adipose tissue inflammation by interleukin 6. Proc. Natl. Acad. Sci. USA, 2020, 117(6), 2751-2760.
[http://dx.doi.org/10.1073/pnas.1920004117] [PMID: 31980524]
[217]
Ziccardi, P.; Nappo, F.; Giugliano, G.; Esposito, K.; Marfella, R.; Cioffi, M.; D’Andrea, F.; Molinari, A.M.; Giugliano, D. Reduction of inflammatory cytokine concentrations and improvement of endothelial functions in obese women after weight loss over one year. Circulation, 2002, 105(7), 804-809.
[http://dx.doi.org/10.1161/hc0702.104279] [PMID: 11854119]
[218]
Pradhan, A.D.; Manson, J.E.; Rifai, N.; Buring, J.E.; Ridker, P.M. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA, 2001, 286(3), 327-334.
[http://dx.doi.org/10.1001/jama.286.3.327] [PMID: 11466099]
[219]
Matthews, V.B.; Allen, T.L.; Risis, S.; Chan, M.H.; Henstridge, D.C.; Watson, N.; Zaffino, L.A.; Babb, J.R.; Boon, J.; Meikle, P.J.; Jowett, J.B.; Watt, M.J.; Jansson, J.O.; Bruce, C.R.; Febbraio, M.A. Interleukin-6-deficient mice develop hepatic inflammation and systemic insulin resistance. Diabetologia, 2010, 53(11), 2431-2441.
[http://dx.doi.org/10.1007/s00125-010-1865-y] [PMID: 20697689]
[220]
Sabio, G.; Das, M.; Mora, A.; Zhang, Z.; Jun, J.Y.; Ko, H.J.; Barrett, T.; Kim, J.K.; Davis, R.J. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science, 2008, 322(5907), 1539-1543.
[http://dx.doi.org/10.1126/science.1160794] [PMID: 19056984]
[221]
Jin, X.; Zimmers, T.A.; Perez, E.A.; Pierce, R.H.; Zhang, Z.; Koniaris, L.G. Paradoxical effects of short- and long-term interleukin-6 exposure on liver injury and repair. Hepatology, 2006, 43(3), 474-484.
[http://dx.doi.org/10.1002/hep.21087] [PMID: 16496306]
[222]
Stojsavljević, S.; Gomerčić Palčić, M.; Virović Jukić, L.; Smirčić Duvnjak, L.; Duvnjak, M. Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J. Gastroenterol., 2014, 20(48), 18070-18091.
[http://dx.doi.org/10.3748/wjg.v20.i48.18070] [PMID: 25561778]
[223]
Aye, I.L.; Jansson, T.; Powell, T.L. TNF-α stimulates System A amino acid transport in primary human trophoblast cells mediated by p38 MAPK signaling. Physiol. Rep., 2015, 3(10), e12594.
[http://dx.doi.org/10.14814/phy2.12594] [PMID: 26508738]
[224]
Lager, S.; Jansson, N.; Olsson, A.L.; Wennergren, M.; Jansson, T.; Powell, T.L. Effect of IL-6 and TNF-α on fatty acid uptake in cultured human primary trophoblast cells. Placenta, 2011, 32(2), 121-127.
[http://dx.doi.org/10.1016/j.placenta.2010.10.012] [PMID: 21144584]
[225]
Morisset, A.S.; Dubé, M.C.; Côté, J.A.; Robitaille, J.; Weisnagel, S.J.; Tchernof, A. Circulating interleukin-6 concentrations during and after gestational diabetes mellitus. Acta Obstet. Gynecol. Scand., 2011, 90(5), 524-530.
[http://dx.doi.org/10.1111/j.1600-0412.2011.01094.x] [PMID: 21306350]
[226]
Kleiblova, P.; Dostalova, I.; Bartlova, M.; Lacinova, Z.; Ticha, I.; Krejci, V.; Springer, D.; Kleibl, Z.; Haluzik, M. Expression of adipokines and estrogen receptors in adipose tissue and placenta of patients with gestational diabetes mellitus. Mol. Cell. Endocrinol., 2010, 314(1), 150-156.
[http://dx.doi.org/10.1016/j.mce.2009.08.002] [PMID: 19682537]
[227]
Pantham, P.; Aye, I.L.; Powell, T.L. Inflammation in maternal obesity and gestational diabetes mellitus. Placenta, 2015, 36(7), 709-715.
[http://dx.doi.org/10.1016/j.placenta.2015.04.006] [PMID: 25972077]
[228]
Watson, M.E.; Newman, R.J.; Payne, A.M.; Abdelrahim, M.; Francis, G.L. The effect of macrophage conditioned media on Leydig cell function. Ann. Clin. Lab. Sci., 1994, 24(1), 84-95.
[PMID: 8147571]
[229]
Tsigos, C.; Papanicolaou, D.A.; Kyrou, I.; Raptis, S.A.; Chrousos, G.P. Dose-dependent effects of recombinant human interleukin-6 on the pituitary-testicular axis. J. Interferon Cytokine Res., 1999, 19(11), 1271-1276.
[http://dx.doi.org/10.1089/107999099312948] [PMID: 10574620]
[230]
Hales, D.B.; Diemer, T.; Hales, K.H. Role of cytokines in testicular function. Endocrine, 1999, 10(3), 201-217.
[http://dx.doi.org/10.1007/BF02738619] [PMID: 10484284]
[231]
Pasquali, R.; Casimirri, F.; De Iasio, R.; Mesini, P.; Boschi, S.; Chierici, R.; Flamia, R.; Biscotti, M.; Vicennati, V. Insulin regulates testosterone and sex hormone-binding globulin concentrations in adult normal weight and obese men. J. Clin. Endocrinol. Metab., 1995, 80(2), 654-658.
[PMID: 7852532]
[232]
Tremellen, K.; McPhee, N.; Pearce, K.; Benson, S.; Schedlowski, M.; Engler, H. Endotoxin-initiated inflammation reduces testosterone production in men of reproductive age. Am. J. Physiol. Endocrinol. Metab., 2018, 314(3), E206-E213.
[http://dx.doi.org/10.1152/ajpendo.00279.2017] [PMID: 29183872]
[233]
Päth, G.; Bornstein, S.R.; Ehrhart-Bornstein, M.; Scherbaum, W.A. Interleukin-6 and the interleukin-6 receptor in the human adrenal gland: expression and effects on steroidogenesis. J. Clin. Endocrinol. Metab., 1997, 82(7), 2343-2349.
[http://dx.doi.org/10.1210/jc.82.7.2343] [PMID: 9215317]
[234]
Bornstein, S.R.; Rutkowski, H.; Vrezas, I. Cytokines and steroidogenesis. Mol. Cell. Endocrinol., 2004, 215(1-2), 135-141.
[http://dx.doi.org/10.1016/j.mce.2003.11.022] [PMID: 15026186]
[235]
Taylor, C.C.; Terranova, P.F. Lipopolysaccharide inhibits rat ovarian thecal-interstitial cell steroid secretion in vitro. Endocrinology, 1995, 136(12), 5527-5532.
[http://dx.doi.org/10.1210/endo.136.12.7588304] [PMID: 7588304]
[236]
Liu, Z.; de Matos, D.G.; Fan, H.Y.; Shimada, M.; Palmer, S.; Richards, J.S. Interleukin-6: An autocrine regulator of the mouse cumulus cell-oocyte complex expansion process. Endocrinology, 2009, 150(7), 3360-3368.
[http://dx.doi.org/10.1210/en.2008-1532] [PMID: 19299453]
[237]
Bromfield, J.J.; Sheldon, I.M. Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology, 2011, 152(12), 5029-5040.
[http://dx.doi.org/10.1210/en.2011-1124] [PMID: 21990308]
[238]
Samir, M.; Glister, C.; Mattar, D.; Laird, M.; Knight, P.G. Follicular expression of pro-inflammatory cytokines tumour necrosis factor-α (TNFα), interleukin 6 (IL6) and their receptors in cattle: TNFα, IL6 and macrophages suppress thecal androgen production in vitro. Reproduction, 2017, 154(1), 35-49.
[http://dx.doi.org/10.1530/REP-17-0053] [PMID: 28432091]
[239]
Kjeldsen, L.; Johnsen, A.H.; Sengeløv, H.; Borregaard, N. Isolation and primary structure of NGAL, a novel protein associated with human neutrophil gelatinase. J. Biol. Chem., 1993, 268(14), 10425-10432.
[PMID: 7683678]
[240]
Cowland, J.B.; Muta, T.; Borregaard, N. IL-1beta-specific up-regulation of neutrophil gelatinase-associated lipocalin is controlled by IkappaB-zeta. J. Immunol., 2006, 176(9), 5559-5566.
[http://dx.doi.org/10.4049/jimmunol.176.9.5559] [PMID: 16622025]
[241]
Zhang, J.; Wu, Y.; Zhang, Y.; Leroith, D.; Bernlohr, D.A.; Chen, X. The role of lipocalin 2 in the regulation of inflammation in adipocytes and macrophages. Mol. Endocrinol., 2008, 22(6), 1416-1426.
[http://dx.doi.org/10.1210/me.2007-0420] [PMID: 18292240]
[242]
Zhang, Y.; Foncea, R.; Deis, J.A.; Guo, H.; Bernlohr, D.A.; Chen, X. Lipocalin 2 expression and secretion is highly regulated by metabolic stress, cytokines, and nutrients in adipocytes. PLoS One, 2014, 9(5), e96997.
[http://dx.doi.org/10.1371/journal.pone.0096997] [PMID: 24818605]
[243]
Yan, Q.W.; Yang, Q.; Mody, N.; Graham, T.E.; Hsu, C.H.; Xu, Z.; Houstis, N.E.; Kahn, B.B.; Rosen, E.D. The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes, 2007, 56(10), 2533-2540.
[http://dx.doi.org/10.2337/db07-0007] [PMID: 17639021]
[244]
Zhang, Y.; Guo, H.; Deis, J.A.; Mashek, M.G.; Zhao, M.; Ariyakumar, D.; Armien, A.G.; Bernlohr, D.A.; Mashek, D.G.; Chen, X. Lipocalin 2 regulates brown fat activation via a nonadrenergic activation mechanism. J. Biol. Chem., 2014, 289(32), 22063-22077.
[http://dx.doi.org/10.1074/jbc.M114.559104] [PMID: 24917675]
[245]
Auguet, T.; Quintero, Y.; Terra, X.; Martínez, S.; Lucas, A.; Pellitero, S.; Aguilar, C.; Hernández, M.; del Castillo, D.; Richart, C. Upregulation of lipocalin 2 in adipose tissues of severely obese women: positive relationship with proinflammatory cytokines. Obesity (Silver Spring), 2011, 19(12), 2295-2300.
[http://dx.doi.org/10.1038/oby.2011.61] [PMID: 21455126]
[246]
Elkhidir, A.E.; Eltaher, H.B.; Mohamed, A.O. Association of lipocalin-2 level, glycemic status and obesity in type 2 diabetes mellitus. BMC Res. Notes, 2017, 10(1), 285.
[http://dx.doi.org/10.1186/s13104-017-2604-y] [PMID: 28709459]
[247]
Law, I.K.; Xu, A.; Lam, K.S.; Berger, T.; Mak, T.W.; Vanhoutte, P.M.; Liu, J.T.; Sweeney, G.; Zhou, M.; Yang, B.; Wang, Y. Lipocalin-2 deficiency attenuates insulin resistance associated with aging and obesity. Diabetes, 2010, 59(4), 872-882.
[http://dx.doi.org/10.2337/db09-1541] [PMID: 20068130]
[248]
Guo, H.; Jin, D.; Zhang, Y.; Wright, W.; Bazuine, M.; Brockman, D.A.; Bernlohr, D.A.; Chen, X. Lipocalin-2 deficiency impairs thermogenesis and potentiates diet-induced insulin resistance in mice. Diabetes, 2010, 59(6), 1376-1385.
[http://dx.doi.org/10.2337/db09-1735] [PMID: 20332347]
[249]
Wu, C.; Wang, Q.; Lv, C.; Qin, N.; Lei, S.; Yuan, Q.; Wang, G. The changes of serum sKlotho and NGAL levels and their correlation in type 2 diabetes mellitus patients with different stages of urinary albumin. Diabetes Res. Clin. Pract., 2014, 106(2), 343-350.
[http://dx.doi.org/10.1016/j.diabres.2014.08.026] [PMID: 25263500]
[250]
Liu, X.; Hamnvik, O.P.; Petrou, M.; Gong, H.; Chamberland, J.P.; Christophi, C.A.; Kales, S.N.; Christiani, D.C.; Mantzoros, C.S. Circulating lipocalin 2 is associated with body fat distribution at baseline but is not an independent predictor of insulin resistance: the prospective Cyprus Metabolism Study. Eur. J. Endocrinol., 2011, 165(5), 805-812.
[http://dx.doi.org/10.1530/EJE-11-0660] [PMID: 21885675]
[251]
Ye, D.; Yang, K.; Zang, S.; Lin, Z.; Chau, H.T.; Wang, Y.; Zhang, J.; Shi, J.; Xu, A.; Lin, S.; Wang, Y. Lipocalin-2 mediates non-alcoholic steatohepatitis by promoting neutrophil-macrophage crosstalk via the induction of CXCR2. J. Hepatol., 2016, 65(5), 988-997.
[http://dx.doi.org/10.1016/j.jhep.2016.05.041] [PMID: 27266617]
[252]
Moschen, A.R.; Adolph, T.E.; Gerner, R.R.; Wieser, V.; Tilg, H. Lipocalin-2: A master mediator of intestinal and metabolic inflammation. Trends Endocrinol. Metab., 2017, 28(5), 388-397.
[http://dx.doi.org/10.1016/j.tem.2017.01.003] [PMID: 28214071]
[253]
Lou, Y.; Wu, C.; Wu, M.; Xie, C.; Ren, L. The changes of neutrophil gelatinase-associated lipocalin in plasma and its expression in adipose tissue in pregnant women with gestational diabetes. Diabetes Res. Clin. Pract., 2014, 104(1), 136-142.
[http://dx.doi.org/10.1016/j.diabres.2014.01.014] [PMID: 24530115]
[254]
Sweeting, A.N.; Wong, J.; Appelblom, H.; Ross, G.P.; Kouru, H.; Williams, P.F.; Sairanen, M.; Hyett, J.A. A novel early pregnancy risk prediction model for gestational diabetes mellitus. Fetal Diagn. Ther., 2019, 45(2), 76-84.
[http://dx.doi.org/10.1159/000486853] [PMID: 29898442]
[255]
Kang, Z.; Qiao, N.; Tan, Z.; Tang, Z.; Li, Y. Expression patterns and changes of the LCN2 gene in the testes of induced cryptorchidism and busulfan-treated mice. Syst Biol Reprod Med, 2017, 63(6), 364-369.
[http://dx.doi.org/10.1080/19396368.2017.1355416] [PMID: 28771045]
[256]
Chella Krishnan, K.; Sabir, S.; Shum, M.; Meng, Y.; Acín-Pérez, R.; Lang, J.M.; Floyd, R.R.; Vergnes, L.; Seldin, M.M.; Fuqua, B.K.; Jayasekera, D.W.; Nand, S.K.; Anum, D.C.; Pan, C.; Stiles, L.; Péterfy, M.; Reue, K.; Liesa, M.; Lusis, A.J. Sex-specific metabolic functions of adipose Lipocalin-2. Mol. Metab., 2019, 30, 30-47.
[http://dx.doi.org/10.1016/j.molmet.2019.09.009] [PMID: 31767179]
[257]
Xu, A.; Tso, A.W.; Cheung, B.M.; Wang, Y.; Wat, N.M.; Fong, C.H.; Yeung, D.C.; Janus, E.D.; Sham, P.C.; Lam, K.S. Circulating adipocyte-fatty acid binding protein levels predict the development of the metabolic syndrome: a 5-year prospective study. Circulation, 2007, 115(12), 1537-1543.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.647503] [PMID: 17389279]
[258]
Lee, J.J.; Pedley, A.; Hoffmann, U.; Massaro, J.M.; Keaney, J.F., Jr; Vasan, R.S.; Fox, C.S. Cross-sectional associations of computed tomography (CT)-derived adipose tissue density and adipokines: The framingham heart study. J. Am. Heart Assoc., 2016, 5(3), e002545.
[http://dx.doi.org/10.1161/JAHA.115.002545] [PMID: 26927600]
[259]
Fasshauer, M.; Blüher, M.; Stumvoll, M. Adipokines in gestational diabetes. Lancet Diabetes Endocrinol., 2014, 2(6), 488-499.
[http://dx.doi.org/10.1016/S2213-8587(13)70176-1] [PMID: 24731659]
[260]
Hida, K.; Wada, J.; Eguchi, J.; Zhang, H.; Baba, M.; Seida, A.; Hashimoto, I.; Okada, T.; Yasuhara, A.; Nakatsuka, A.; Shikata, K.; Hourai, S.; Futami, J.; Watanabe, E.; Matsuki, Y.; Hiramatsu, R.; Akagi, S.; Makino, H.; Kanwar, Y.S. Visceral adipose tissue-derived serine protease inhibitor: A unique insulin-sensitizing adipocytokine in obesity. Proc. Natl. Acad. Sci. USA, 2005, 102(30), 10610-10615.
[http://dx.doi.org/10.1073/pnas.0504703102] [PMID: 16030142]
[261]
Klöting, N.; Kovacs, P.; Kern, M.; Heiker, J.T.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Beck-Sickinger, A.G.; Blüher, M. Central vaspin administration acutely reduces food intake and has sustained blood glucose-lowering effects. Diabetologia, 2011, 54(7), 1819-1823.
[http://dx.doi.org/10.1007/s00125-011-2137-1] [PMID: 21465327]
[262]
Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty Acid-Binding Protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol., 2015, 8(Suppl. 3), 23-33.
[PMID: 25674026]
[263]
Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436(7049), 356-362.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[264]
Majerczyk, M.; Kocełak, P.; Choręza, P.; Arabzada, H.; Owczarek, A.J.; Bożentowicz-Wikarek, M.; Brzozowska, A.; Szybalska, A.; Puzianowska-Kuźnicka, M.; Grodzicki, T.; Więcek, A.; Olszanecka-Glinianowicz, M.; Chudek, J. Components of metabolic syndrome in relation to plasma levels of retinol binding protein 4 (RBP4) in a cohort of people aged 65 years and older. J. Endocrinol. Invest., 2018, 41(10), 1211-1219.
[http://dx.doi.org/10.1007/s40618-018-0856-6] [PMID: 29524177]
[265]
Seo, J.A.; Kim, N.H.; Park, S.Y.; Kim, H.Y.; Ryu, O.H.; Lee, K.W.; Lee, J.; Kim, D.L.; Choi, K.M.; Baik, S.H.; Choi, D.S.; Kim, S.G. Serum retinol-binding protein 4 levels are elevated in non-alcoholic fatty liver disease. Clin. Endocrinol. (Oxf.), 2008, 68(4), 555-560.
[http://dx.doi.org/10.1111/j.1365-2265.2007.03072.x] [PMID: 17941908]
[266]
Bekaert, M.; Verhelst, X.; Geerts, A.; Lapauw, B.; Calders, P. Association of recently described adipokines with liver histology in biopsy-proven non-alcoholic fatty liver disease: A systematic review. Obes. Rev., 2016, 17(1), 68-80.
[http://dx.doi.org/10.1111/obr.12333] [PMID: 26597657]
[267]
Alkhouri, N.; Lopez, R.; Berk, M.; Feldstein, A.E. Serum retinol-binding protein 4 levels in patients with nonalcoholic fatty liver disease. J. Clin. Gastroenterol., 2009, 43(10), 985-989.
[http://dx.doi.org/10.1097/MCG.0b013e3181a0998d] [PMID: 19525859]
[268]
Kaji, H. Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr. Physiol., 2016, 6(4), 1873-1896.
[http://dx.doi.org/10.1002/cphy.c160004] [PMID: 27783862]
[269]
Simpson, A.J.; Booth, N.A.; Moore, N.R.; Bennett, B. Distribution of plasminogen activator inhibitor (PAI-1) in tissues. J. Clin. Pathol., 1991, 44(2), 139-143.
[http://dx.doi.org/10.1136/jcp.44.2.139] [PMID: 1864986]
[270]
Aubin, K.; Safoine, M.; Proulx, M.; Audet-Casgrain, M.A.; Côté, J.F.T.; Têtu, F.A.; Roy, A.; Fradette, J. Characterization of in vitro engineered human adipose tissues: Relevant adipokine secretion and impact of TNF-α. PLoS One, 2015, 10(9), e0137612.
[http://dx.doi.org/10.1371/journal.pone.0137612] [PMID: 26367137]
[271]
Skurk, T.; Hauner, H. Obesity and impaired fibrinolysis: Role of adipose production of plasminogen activator inhibitor-1. Int. J. Obes. Relat. Metab. Disord., 2004, 28(11), 1357-1364.
[http://dx.doi.org/10.1038/sj.ijo.0802778] [PMID: 15356668]
[272]
Liang, X.; Kanjanabuch, T.; Mao, S.L.; Hao, C.M.; Tang, Y.W.; Declerck, P.J.; Hasty, A.H.; Wasserman, D.H.; Fogo, A.B.; Ma, L.J. Plasminogen activator inhibitor-1 modulates adipocyte differentiation. Am. J. Physiol. Endocrinol. Metab., 2006, 290(1), E103-E113.
[http://dx.doi.org/10.1152/ajpendo.00605.2004] [PMID: 16144810]
[273]
Scroyen, I.; Jacobs, F.; Cosemans, L.; De Geest, B.; Lijnen, H.R. Effect of plasminogen activator inhibitor-1 on adipogenesis in vivo. Thromb. Haemost., 2009, 101(2), 388-393.
[http://dx.doi.org/10.1160/TH08-06-0401] [PMID: 19190826]
[274]
Ma, L.J.; Mao, S.L.; Taylor, K.L.; Kanjanabuch, T.; Guan, Y.; Zhang, Y.; Brown, N.J.; Swift, L.L.; McGuinness, O.P.; Wasserman, D.H.; Vaughan, D.E.; Fogo, A.B. Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes, 2004, 53(2), 336-346.
[http://dx.doi.org/10.2337/diabetes.53.2.336] [PMID: 14747283]
[275]
Wolfs, M.G.; Gruben, N.; Rensen, S.S.; Verdam, F.J.; Greve, J.W.; Driessen, A.; Wijmenga, C.; Buurman, W.A.; Franke, L.; Scheja, L.; Koonen, D.P.; Shiri-Sverdlov, R.; van Haeften, T.W.; Hofker, M.H.; Fu, J. Determining the association between adipokine expression in multiple tissues and phenotypic features of non-alcoholic fatty liver disease in obesity. Nutr. Diabetes, 2015, 5, e146.
[http://dx.doi.org/10.1038/nutd.2014.43] [PMID: 25664838]
[276]
de Castro, J.; Sevillano, J.; Marciniak, J.; Rodriguez, R.; González-Martín, C.; Viana, M.; Eun-suk, O.H.; de Mouzon, S.H.; Herrera, E.; Ramos, M.P. Implication of low level inflammation in the insulin resistance of adipose tissue at late pregnancy. Endocrinology, 2011, 152(11), 4094-4105.
[http://dx.doi.org/10.1210/en.2011-0068] [PMID: 21914778]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy