Generic placeholder image

Mini-Reviews in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1389-5575
ISSN (Online): 1875-5607

Mini-Review Article

Anticancer and Antimicrobial Activities of Naproxen and Naproxen Derivatives

Author(s): M. İhsan Han and Ş. Güniz Küçükgüzel*

Volume 20, Issue 13, 2020

Page: [1300 - 1310] Pages: 11

DOI: 10.2174/1389557520666200505124922

Price: $65

Abstract

This review explains the effects of naproxen and the naproxen moiety in important biological activities. Naproxen, 2-(6-methoxynaphthalen-2-yl)propionic acid, is one of the most utilized propionic acid derivatives to the cure of many injuries or pains. Naproxen is a non-steroidal antiinflammatory drug (NSAID), which is generally used among the NSAIDs. Even though it has gastrointestinal side effects, naproxen has been safely used for many years because of the good cardiovascular sight. In the past years, except for anti-inflammatory effects, other pharmacological activities of naproxen, especially anticancer and antimicrobial activities, gain the attention of researchers. Naproxen shows its activity by inhibiting the COX-2 enzyme. There is significant interest in the possibility that COX-2 inhibitors might retard or prevent the development of various cancer types, which is often characterized by COX-2 expression. The activities of both naproxen and new molecules derived from naproxen were frequently investigated.

Keywords: Naproxen, non-steroidal anti-inflammatory drug, side effect, anticancer, antimicrobial, COX-2 enzyme.

Graphical Abstract

[1]
Hill, H.F.H.; Hill, A.G.S. Naproxen. A new non-hormonal antiinflammatory agent. Ann. Rheum. Dis., 1974, 33, 12-19.
[http://dx.doi.org/10.1136/ard.33.1.12] [PMID: 4595271]
[2]
Angiolillo, D.J.; Weisman, S.M. Clinical Pharmacology and Cardiovascular Safety of Naproxen. Am. J. Cardiovasc. Drugs, 2017, 17(2), 97-107.
[http://dx.doi.org/10.1007/s40256-016-0200-5] [PMID: 27826802]
[3]
Lupulescu, A. Prostaglandins, their inhibitors and cancer. Prostaglandins Leukot. Essent. Fatty Acids, 1996, 54(2), 83-94.
[http://dx.doi.org/10.1016/S0952-3278(96)90064-2] [PMID: 8848435]
[4]
Hawkey, C.J. COX-2 inhibitors. Lancet, 1999, 353(9149), 307-314.
[http://dx.doi.org/10.1016/S0140-6736(98)12154-2] [PMID: 9929039]
[5]
Vane, J.R.; Botting, R.M. Mechanism of action of anti-inflammatory drugs. Scand. J. Rheumatol. Suppl., 1996, 102, 9-21.
[http://dx.doi.org/10.3109/03009749609097226] [PMID: 8628981]
[6]
Hughes, A.; Saunders, F.R.; Wallace, H.M. Naproxen causes cytotoxicity and induces changes in polyamine metabolism independent of cyclo-oxygenase expression. Toxicol. Res., 2012, 1, 108-115.
[http://dx.doi.org/10.1039/c2tx20018j]
[7]
Ammar, Y.A.; Salem, M.A.; Fayed, E.A.; Helal, M.H.; El-Gaby, M.S.A.; Thabet, H.K. Naproxen derivatives: Synthesis, reactions, and biological applications. Synth. Commun., 2017, 47(15), 1341-1367.
[http://dx.doi.org/10.1080/00397911.2017.1328066]
[8]
Steele, V.E.; Rao, C.V.; Zhang, Y.; Patlolla, J.; Boring, D.; Kopelovich, L.; Juliana, M.M.; Grubbs, C.J.; Lubet, R.A. Chemopreventive efficacy of naproxen and nitric oxide-naproxen in rodent models of colon, urinary bladder, and mammary cancers. Cancer Prev. Res. (Phila.), 2009, 2(11), 951-956.
[http://dx.doi.org/10.1158/1940-6207.CAPR-09-0080 ] [PMID: 19892664]
[9]
Lubet, R.A.; Steele, V.E.; Juliana, M.M.; Grubbs, C.J. Screening agents for preventive efficacy in a bladder cancer model: Study design, end points, and gefitinib and naproxen efficacy. J. Urol., 2010, 183(4), 1598-1603.
[http://dx.doi.org/10.1016/j.juro.2009.12.001] [PMID: 20172542]
[10]
Kim, M.S.; Kim, J.E.; Lim, D.Y.; Huang, Z.; Chen, H.; Langfald, A.; Lubet, R.A.; Grubbs, C.J.; Dong, Z.; Bode, A.M. Naproxen induces cell-cycle arrest and apoptosis in human urinary bladder cancer cell lines and chemically induced cancers by targeting PI3K. Cancer Prev. Res. (Phila.), 2014, 7(2), 236-245.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0288 ] [PMID: 24327721]
[11]
Nicastro, H.L.; Grubbs, C.J.; Margaret Juliana, M.; Bode, A.M.; Kim, M.S.; Lu, Y.; You, M.; Milne, G.L.; Boring, D.; Steele, V.E.; Lubet, R.A. Preventive effects of NSAIDs, NO-NSAIDs, and NSAIDs plus difluoromethylornithine in a chemically induced urinary bladder cancer model. Cancer Prev. Res. (Phila.), 2014, 7(2), 246-254.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0164 ] [PMID: 24346344]
[12]
Zrieki, A.; Farinotti, R.; Buyse, M. Cyclooxygenase inhibitors down regulate P-glycoprotein in human colorectal Caco-2 cell line. Pharm. Res., 2008, 25(9), 1991-2001.
[http://dx.doi.org/10.1007/s11095-008-9596-1] [PMID: 18581209]
[13]
Banti, C.N.; Giannoulis, A.D.; Kourkoumelis, N.; Owczarzak, A.M.; Kubicki, M.; Hadjikakou, S.K. Novel metallo-therapeutics of the NSAID naproxen. Interaction with intracellular components that leads the cells to apoptosis. Dalton Trans., 2014, 43(18), 6848-6863.
[http://dx.doi.org/10.1039/c3dt53175a] [PMID: 24658365]
[14]
Deb, J.; Majumder, J.; Bhattacharyya, S.; Jana, S.S. A novel naproxen derivative capable of displaying anti-cancer and anti-migratory properties against human breast cancer cells. BMC Cancer, 2014, 14, 567-574.
[http://dx.doi.org/10.1186/1471-2407-14-567] [PMID: 25098498]
[15]
Paul, M.; Sarkar, K.; Deb, J.; Dastidar, P. Hand-Ground Nanoscale ZnII -Based Coordination Polymers Derived from NSAIDs: Cell migration inhibition of human breast cancer cells. Chemistry, 2017, 23(24), 5736-5747.
[http://dx.doi.org/10.1002/chem.201605674] [PMID: 28236430]
[16]
Wilder, P.T.; Weber, D.J.; Winstead, A.; Parnell, S.; Hinton, T.V.; Stevenson, M.; Giri, D.; Azemati, S.; Olczak, P.; Powell, B.V.; Odebode, T.; Tadesse, S.; Zhang, Y.; Pramanik, S.K.; Wachira, J.M.; Ghimire, S.; McCarthy, P.; Barfield, A.; Banerjee, H.N.; Chen, C.; Golen, J.A.; Rheingold, A.L.; Krause, J.A.; Ho, D.M.; Zavalij, P.Y.; Shaw, R.; Mandal, S.K. Unprecedented anticancer activities of organorhenium sulfonato and carboxylato complexes against hormone-dependent MCF-7 and hormone-independent triple-negative MDA-MB-231 breast cancer cells. Mol. Cell. Biochem., 2018, 441(1-2), 151-163.
[http://dx.doi.org/10.1007/s11010-017-3181-z] [PMID: 28913709]
[17]
Tolan, D.A.; Abdel‐Monem, Y.K.; El‐Nagar, M.A. Anti‐tumor platinum (IV) complexes bearing the anti‐inflammatory drug naproxen in the axial position. Appl. Organomet. Chem., 2019, 33(4763), 1-12.
[http://dx.doi.org/10.1002/aoc.4763]
[18]
Bharathi, S.; Mahendiran, D.; Kumar, R.S.; Kim, Y.G.; Gajendiran, M.; Kim, K.; Rahiman, A.K. Biocompatibility, in vitro antiproliferative, and in silico EGFR/VEGFR2 studies of heteroleptic metal(II) complexes of thiosemicarbazones and naproxen. Chem. Res. Toxicol., 2019, 32(8), 1554-1571.
[http://dx.doi.org/10.1021/acs.chemrestox.9b00087 ] [PMID: 31241919]
[19]
Deshpande, S.; Venugopal, E.; Ramagiri, S.; Bellare, J.R.; Kumaraswamy, G.; Singh, N. Enhancing cubosome functionality by coating with a single layer of poly-ε-lysine. ACS Appl. Mater. Interfaces, 2014, 6(19), 17126-17133.
[http://dx.doi.org/10.1021/am5047872] [PMID: 25184793]
[20]
Harris, R.E.; Beebe-Donk, J.; Alshafie, G.A. Similar reductions in the risk of human colon cancer by selective and nonselective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer, 2008, 8(237), 237.
[http://dx.doi.org/10.1186/1471-2407-8-237] [PMID: 18702823]
[21]
Suh, N.; Reddy, B.S.; DeCastro, A.; Paul, S.; Lee, H.J.; Smolarek, A.K.; So, J.Y.; Simi, B.; Wang, C.X.; Janakiram, N.B.; Steele, V.; Rao, C.V. Combination of atorvastatin with sulindac or naproxen profoundly inhibits colonic adenocarcinomas by suppressing the p65/β-catenin/cyclin D1 signaling pathway in rats. Cancer Prev. Res. (Phila.), 2011, 4(11), 1895-1902.
[http://dx.doi.org/10.1158/1940-6207.CAPR-11-0222 ] [PMID: 21764859]
[22]
Aboul-Fadl, T.; Al-Hamad, S.S.; Lee, K.; Li, N.; Gary, B.D.; Keeton, A.B.; Piazza, G.A.; Abdel-Hamid, M.K. Novel non-cyclooxygenase inhibitory derivatives of naproxen for colorectal cancer chemoprevention. Med. Chem. Res., 2014, 23(9), 4177-4188.
[http://dx.doi.org/10.1007/s00044-014-0979-z] [PMID: 27559271]
[23]
Hughes, A.; Smith, N.I.; Wallace, H.M. Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells. Biochem. J., 2003, 374(Pt 2), 481-488.
[http://dx.doi.org/10.1042/bj20030280] [PMID: 12793857]
[24]
Aboul-Fadl, T.; Al-Hamad, S.S.; Fouad, E.A. Pharmacokinetic studies of naproxen amides of some amino acid esters with promising colorectal cancer chemopreventive activity. Bioorg. Chem., 2018, 76, 370-379.
[http://dx.doi.org/10.1016/j.bioorg.2017.12.006] [PMID: 29241109]
[25]
Ribeiro, G.; Benadiba, M.; Colquhoun, A.; Silva, B.O. Diruthenium(II, III) complexes of ibuprofen, aspirin, Naproxen and indomethacin non-steroidal anti-inflammatory drugs: Synthesis, characterization and their effects on tumor-cell proliferation. Polyhedron, 2008, 27, 1131-1137.
[http://dx.doi.org/10.1016/j.poly.2007.12.011]
[26]
Alves, S.R.; Colquhoun, A.; Wu, X.Y.; de Oliveira Silva, D. Synthesis of terpolymer-lipid encapsulated diruthenium(II,III)-anti-inflammatory metallodrug nanoparticles to enhance activity against glioblastoma cancer cells. J. Inorg. Biochem., 2020. 205110984
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110984 ] [PMID: 31927403]
[27]
Chattopadhyay, M.; Kodela, R.; Duvalsaint, P.L.; Kashfi, K. Gastrointestinal safety, chemotherapeutic potential, and classic pharmacological profile of NOSH-naproxen (AVT-219) a dual NO- and H2S-releasing hybrid. Pharmacol. Res. Perspect., 2016, 4(2) e00224
[http://dx.doi.org/10.1002/prp2.224] [PMID: 27069635]
[28]
Srivastava, P.; Singh, K.; Verma, M.; Sivakumar, S.; Patra, A.K. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity. Eur. J. Med. Chem., 2018, 144, 243-254.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.025] [PMID: 29274491]
[29]
Kumar, R.; Siril, P.F.; Javid, F. Unusual anti-leukemia activity of nanoformulated naproxen and other non-steroidal anti-inflammatory drugs. Mater. Sci. Eng. C, 2016, 69, 1335-1344.
[http://dx.doi.org/10.1016/j.msec.2016.08.024] [PMID: 27612834]
[30]
Tabares, J.P.G.; Santos, R.L.S.R.; Cassiano, J.L.; Zaim, M.H.; Honorato, J.; Batista, A.A.; Teixeira, S.F.; Ferreira, A.K.; Viana, R.B.; Martínez, S.Q.; Stábile, A.C.; Silva, D.O.A. Ru(II)-p-cymene compound bearing naproxen-pyridineamide. Synthesis, spectroscopic studies, computational analysis and in vitro anticancer activity against lung cells compared to Ru(II)-p-cymene-naproxen and the corresponding drug ligands. Inorg. Chim. Acta, 2019, 489, 27-38.
[http://dx.doi.org/10.1016/j.ica.2019.01.030]
[31]
Kast, R.E. Melanoma inhibition by cyclooxygenase inhibitors: Role of interleukin-6 suppression, a putative mechanism of action, and clinical implications. Med. Oncol., 2007, 24(1), 1-6.
[http://dx.doi.org/10.1007/BF02685897] [PMID: 17673806]
[32]
Cheng, H.; Mollica, M.Y.; Lee, S.H.; Wang, L.; Velázquez-Martínez, C.A.; Wu, S. Effects of nitric oxide-releasing nonsteroidal anti-inflammatory drugs (NONO-NSAIDs) on melanoma cell adhesion. Toxicol. Appl. Pharmacol., 2012, 264(2), 161-166.
[http://dx.doi.org/10.1016/j.taap.2012.07.029] [PMID: 22889880]
[33]
Ercolano, G.; De Cicco, P.; Frecentese, F.; Saccone, I.; Corvino, A.; Giordano, F.; Magli, E.; Fiorino, F.; Severino, B.; Calderone, V.; Citi, V.; Cirino, G.; Ianaro, A. Anti-metastatic properties of naproxen-HBTA in a murine model of cutaneous melanoma. Front. Pharmacol., 2019, 10(66), 66.
[http://dx.doi.org/10.3389/fphar.2019.00066] [PMID: 30800067]
[34]
Takeuchi, Y.; Fujisawa, H.; Fujiwara, T.; Matsuura, M.; Komatsu, H.; Ueno, S.; Matsuzaki, T. Biological evaluation of 2-aryl-2-fluoropropionic acids as possible platforms for new medicinal agents. Chem. Pharm. Bull. (Tokyo), 2005, 53(8), 1062-1064.
[http://dx.doi.org/10.1248/cpb.53.1062] [PMID: 16079551]
[35]
Morré, D.J.; Morre, D.M. tNOX, an alternative target to COX-2 to explain the anticancer activities of non-steroidal anti-inflammatory drugs (NSAIDS). Mol. Cell. Biochem., 2006, 283(1-2), 159-167.
[http://dx.doi.org/10.1007/s11010-006-2568-z] [PMID: 16444599]
[36]
Kodela, R.; Chattopadhyay, M.; Kashfi, K. Synthesis and biological activity of NOSH-naproxen (AVT-219) and NOSH-sulindac (AVT-18A) as potent anti-inflammatory agents with chemotherapeutic potential. Med.Chem.Comm, 2013, 4(11), 1-20.
[http://dx.doi.org/10.1039/c3md00185g] [PMID: 24273639]
[37]
Chen, L.; Jiang, T.; Cai, C.; Wang, L.; Lin, J.; Cao, X. Polypeptide-based “smart” micelles for dual-drug delivery: A combination study of experiments and simulations. Adv. Healthc. Mater., 2014, 3(9), 1508-1517.
[http://dx.doi.org/10.1002/adhm.201300638] [PMID: 24652770]
[38]
Motawi, T.M.K.; Bustanji, Y.; El-Maraghy, S.; Taha, M.O.; Al-Ghussein, M.A. Evaluation of naproxen and cromolyn activities against cancer cells viability, proliferation, apoptosis, p53 and gene expression of survivin and caspase-3. J. Enzyme Inhib. Med. Chem., 2014, 29(2), 153-161.
[http://dx.doi.org/10.3109/14756366.2012.762645] [PMID: 23368763]
[39]
Lubet, R.A.; Scheiman, J.M.; Bode, A.; White, J.; Minasian, L.; Juliana, M.M.; Boring, D.L.; Steele, V.E.; Grubbs, C.J. Prevention of chemically induced urinary bladder cancers by naproxen: protocols to reduce gastric toxicity in humans do not alter preventive efficacy. Cancer Prev. Res. (Phila.), 2015, 8(4), 296-302.
[http://dx.doi.org/10.1158/1940-6207.CAPR-14-0347 ] [PMID: 25762530]
[40]
Mahendiran, D.; Gurumoorthy, P.; Gunasekaran, K.; Kumar, R.S.; Rahiman, A.K. Structural modeling, in vitro antiproliferative activity, and the effect of substituents on the DNA fastening and scission actions of heteroleptic copper (II) complexes with terpyridines and Naproxen. New J. Chem., 2015, 39, 7895-7911.
[http://dx.doi.org/10.1039/C5NJ01059D]
[41]
Lu, C.; Eskandari, A.; Cressey, P.B.; Suntharalingam, K. Cancer stem cell and bulk cancer cell active copper(ii) complexes with vanillin schiff base derivatives and naproxen. Chemistry, 2017, 23(47), 11366-11374.
[http://dx.doi.org/10.1002/chem.201701939] [PMID: 28658520]
[42]
Rico, S.R.A.; Abbasi, A.Z.; Ribeiro, G.; Ahmed, T.; Wu, Z.Y.; Silva, D.O. Diruthenium(II,III) metallodrugs of ibuprofen and Naproxen encapsulated in intravenously injectable polymer-lipid nanoparticles exhibit enhanced activity against breast and prostate cancer cells. Nanoscale, 2016, 00, 1-11.
[43]
El-Husseiny, W.M.; El-Sayed, M.A.A.; Abdel-Aziz, N.I.; El-Azab, A.S.; Asiri, Y.A.; Abdel-Aziz, A.A.M. Structural alterations based on naproxen scaffold: Synthesis, evaluation of antitumor activity and COX-2 inhibition, and molecular docking. Eur. J. Med. Chem., 2018, 158, 134-143.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.007] [PMID: 30216848]
[44]
Srivastava, P.; Mishra, R.; Verma, M.; Sivakumar, S.; Patra, A.K. Cytotoxic ruthenium(II) polypyridyl complexes with naproxen as NSAID: Synthesis, biological interactions and antioxidant activity. Polyhedron, 2019, 172, 132-140.
[http://dx.doi.org/10.1016/j.poly.2019.04.009]
[45]
Molinuevo, M.S.; Barrio, D.A.; Cortizo, A.M.; Etcheverry, S.B. Antitumoral properties of two new vanadyl(IV) complexes in osteoblasts in culture: Role of apoptosis and oxidative stress. Cancer Chemother. Pharmacol., 2004, 53(2), 163-172.
[http://dx.doi.org/10.1007/s00280-003-0708-7] [PMID: 14551736]
[46]
Correia, I.; Arantes-Rodrigues, R.; Pinto-Leite, R.; Gaivão, I. Effects of naproxen on cell proliferation and genotoxicity in MG-63 osteosarcoma cell line. J. Toxicol. Environ. Health A, 2014, 77(14-16), 916-923.
[http://dx.doi.org/10.1080/15287394.2014.911131] [PMID: 25072723]
[47]
Shokri, B.; Zarghi, A.; Shahhoseini, S.; Mohammadi, R.; Kobarfard, F. Design, synthesis and biological evaluation of peptide-NSAID conjugates for targeted cancer therapy. Arch. Pharm. (Weinheim), 2019, 352(8) e1800379
[http://dx.doi.org/10.1002/ardp.201800379] [PMID: 31318093]
[48]
Yoshimura, R.; Matsuyama, M.; Kawahito, Y.; Takemoto, Y.; Tsuchida, K.; Kuratsukuri, K.; Segawa, Y.; Shinnka, T.; Sano, H.; Nakatani, T. The effects of cyclooxygenase-2 inhibitors on urological cancer cells. Int. J. Mol. Med., 2004, 13(6), 789-793.
[http://dx.doi.org/10.3892/ijmm.13.6.789] [PMID: 15138613]
[49]
Moreno, J.; Krishnan, A.V.; Swami, S.; Nonn, L.; Peehl, D.M.; Feldman, D. Regulation of prostaglandin metabolism by calcitriol attenuates growth stimulation in prostate cancer cells. Cancer Res., 2005, 65(17), 7917-7925.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-1435 ] [PMID: 16140963]
[50]
Srinivas, S.; Feldman, D. A phase II trial of calcitriol and naproxen in recurrent prostate cancer. Anticancer Res., 2009, 29(9), 3605-3610.
[PMID: 19667155]
[51]
Nakka, M.; Begum, M.S.; Varaprasad, B.F.M.; Reddy, L.V.; Bhattacharya, A.; Helliwell, M.; Mukherjee, A.K.; Beevi, S.S.; Mangamoori, L.N.; Mukkanti, M.; Pal, S. Naproxen and ibuprofen based acyl hydrazone derivatives: Synthesis, structure analysis and cytotoxicity studies. J. Chem. Pharm. Res., 2010, 2(6), 393-409.
[52]
Adeniji, A.; Uddin, M.J.; Zang, T.; Tamae, D.; Wangtrakuldee, P.; Marnett, L.J.; Penning, T.M. Discovery of (R) 2-(6-methoxynaphthalen-2-yl)butanoic acid as a potent and selective aldo-keto reductase 1C3 ınhibitor. J. Med. Chem., 2016, 59(16), 7431-7444.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00160] [PMID: 27486833]
[53]
Han, M.İ.; Bekçi, H.; Uba, A.İ.; Yıldırım, Y.; Karasulu, E.; Cumaoğlu, A.; Karasulu, H.Y.; Yelekçi, K.; Yılmaz, Ö.; Küçükgüzel, Ş.G. Synthesis, molecular modeling, in vivo study, and anticancer activity of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-naproxen. Arch. Pharm. (Weinheim), 2019, 352(6) e1800365
[http://dx.doi.org/10.1002/ardp.201800365] [PMID: 31115928]
[54]
Han, M.İ.; Bekçi, H.; Cumaoğlu, A.; Küçükgüzel, Ş.G. Synthesis and characterization of 1,2,4-triazole containing hydrazide-hydrazones derived from (S)-Naproxen as anticancer agents. Marmara Pharm. J., 2018, 22(4), 559-569.
[55]
Abdul Hussein, A.; Al-Janabi, S. Investigation of anti-dermatophytic effects of non-steroidal anti-inflammatory drugs on trichophyton mentagrophytes and epidermophyton floccosum. Iran. J. Pharm. Res., 2011, 10(3), 547-552.
[PMID: 24250387]
[56]
Mamatha, N.; Babu, N.S.; Mukkanti, K.; Pal, S. 2-(6-methoxynaphthalen-2-yl)propionic acid (1,3-dimethyl-butylidene)-hydrazide. Molbank, 2011, 4, 1-4.
[57]
Lejal, N.; Tarus, B.; Bouguyon, E.; Chenavas, S.; Bertho, N.; Delmas, B.; Ruigrok, R.W.H.; Di Primo, C.; Slama-Schwok, A. Structure-based discovery of the novel antiviral properties of naproxen against the nucleoprotein of influenza A virus. Antimicrob. Agents Chemother., 2013, 57(5), 2231-2242.
[http://dx.doi.org/10.1128/AAC.02335-12] [PMID: 23459490]
[58]
Chiniforoshan, H.; Tabrizi, L.; Hadizade, M.; Sabzalian, M.R.; Chermahini, A.N.; Rezapour, M. Anti-inflammatory drugs interacting with Zn (II) metal ion based on thiocyanate and azide ligands: synthesis, spectroscopic studies, DFT calculations and antibacterial assays. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 128, 183-190.
[http://dx.doi.org/10.1016/j.saa.2014.02.135] [PMID: 24667423]
[59]
Fernandes, J.; Kumar, A.; Kumar, P.; Singh, S.; Meet, B.; Raju, B.; Mahaveer, J. Synthesis, anti-inflammatory and antimicrobial activity of some novel carboxamide derivatives of Naproxen. World J. Pharm. Pharm. Sci., 2014, 3(2), 2026-2034.
[60]
Caglar, S.; Adıguzel, E.; Sarıboga, B.; Temel, E.; Buyukgungor, O. Mono and dinuclear copper(II) naproxenato complexes containing 3-picoline and 4-picoline: Synthesis, structure, properties, catechol oxidase, and antimicrobial activities. J. Coord. Chem., 2014, 67(4), 670-683.
[http://dx.doi.org/10.1080/00958972.2014.891198]
[61]
Tarus, B.; Bertrand, H.; Zedda, G.; Di Primo, C.; Quideau, S.; Slama-Schwok, A. Structure-based design of novel naproxen derivatives targeting monomeric nucleoprotein of Influenza A virus. J. Biomol. Struct. Dyn., 2015, 33(9), 1899-1912.
[http://dx.doi.org/10.1080/07391102.2014.979230] [PMID: 25333630]
[62]
Abu Ali, H.; Fares, H.; Darawsheh, M.; Rappocciolo, E.; Akkawi, M.; Jaber, S. Synthesis, characterization and biological activity of new mixed ligand complexes of Zn(II) naproxen with nitrogen based ligands. Eur. J. Med. Chem., 2015, 89, 67-76.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.032] [PMID: 25462227]
[63]
Ammar, Y.A.; Fayed, E.A.; Bayoumi, A.H.; Saleh, M.A.; El-Araby, M.E. Design and synthesis of pyridine-amide based compounds appended naproxen moiety as anti-microbial and anti-inflammatory agents. Am. J. PharmTech. Res., 2015, 5(6), 245-273.
[64]
Hasan, S.; Begum, F. Transition metal complexation with naproxen and evaluation of their in vıtro antimicrobial, cytotoxic and anthelmintic properties. Int. J. Curr. Pharm. Res., 2015, 7(4), 63-69.
[65]
Sabah, M.; Jabor, M.A. Preparation of nanohybrid compound from the drugs (Naproxen and cephalexin) with zinc oxide and studying biological activities against Aeromonas bacteria. J. Contemp. Med. Sci., 2015, 1(4), 16-19.
[66]
Neeraja, P.; Srinivas, S.; Mukkanti, K.; Dubey, P.K.; Pal, S. 1H-1,2,3-Triazolyl-substituted 1,3,4-oxadiazole derivatives containing structural features of ibuprofen/naproxen: Their synthesis and antibacterial evaluation. Bioorg. Med. Chem. Lett., 2016, 26(21), 5212-5217.
[http://dx.doi.org/10.1016/j.bmcl.2016.09.059] [PMID: 27727124]
[67]
Laudy, A.E.; Mrowka, A.; Krajewska, J.; Tyski, S. The influence of efflux pump inhibitors on the activity of non-antibiotic nsaids against gram-negative rods. PLoS One, 2016, 11(1) e0147131
[http://dx.doi.org/10.1371/journal.pone.0147131] [PMID: 26771525]
[68]
Eissa, S.I.; Farrag, A.M.; Shawer, T.Z.; Ammar, Y.A. Design, synthesis, 3D pharmacophore, QSAR, and docking studies of some new (6-methoxy-2-naphthyl) propanamide derivatives with expected anti-bacterial activity as FABI inhibitör. Med. Chem. Res., 2017, 26, 2375-2398.
[http://dx.doi.org/10.1007/s00044-017-1939-1]
[69]
Shaheen, M.A.; Feng, S.; Anthony, M.; Tahir, M.N.; Hassan, M.; Seo, S.Y.; Ahmad, S.; Iqbal, M.; Saleem, M.; Lu, C. Metal-Based scaffolds of schiff bases derived from naproxen: Synthesis, antibacterial activities, and molecular docking studies. Molecules, 2019, 24(7), 1237-1239.
[http://dx.doi.org/10.3390/molecules24071237] [PMID: 30934936]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy