Review Article

唾液酸糖蛋白受体和甘草次酸受体介导的和/或pH响应性肝细胞癌靶向药物递送的最新进展

卷 28, 期 8, 2021

发表于: 05 May, 2020

页: [1508 - 1534] 页: 27

弟呕挨: 10.2174/0929867327666200505085756

价格: $65

摘要

背景:肝细胞癌(HCC)严重影响人体健康,特别是容易发展成多药耐药性(MDR),导致治疗失败。迫切需要开发高效,低毒的治疗剂来治疗HCC并克服其MDR。数十年来,已经研究了用于癌症治疗的靶向药物递送系统(DDS),包括纳米颗粒,脂质,微团和脂质体。近来,已经对包含各种配体例如聚合物部分,靶向部分和酸不稳定键的多功能DDS给予了更多关注。诸如聚乙二醇(PEG),壳聚糖(CTS),透明质酸,支链淀粉,聚环氧乙烷(PEO),聚环氧丙烷(PPO)等聚合物部分可保护DDS免受降解。去唾液酸糖蛋白受体(ASGPR)和甘草次酸受体(GAR)最常用作靶向部分,在肝细胞中过表达。适应肿瘤细胞和正常组织之间pH差异的酸不稳定键已被用来在肿瘤组织上释放药物。 目标:这篇综述总结了ASPGR和GAR介导的和/或pH响应的HCC靶向药物输送的最新进展。 结论:多功能DDS可延长体内循环,持续释放药物,增加药物在靶部位的蓄积,增强抗癌作用,并减少体内外副作用。但是很少用于研究肝癌的MDR。因此,在进行临床试验之前需要进一步研究。

关键词: 肝细胞癌,药物输送系统,去唾液酸糖蛋白受体,甘草次酸受体,pH响应,化学治疗药物。

[1]
Ferlay, J.; Soerjomataram, I.; Dikshit, R.; Eser, S.; Mathers, C.; Rebelo, M.; Parkin, D.M.; Forman, D.; Bray, F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int. J. Cancer, 2015, 136(5), E359-E386.
[http://dx.doi.org/10.1002/ijc.29210] [PMID: 25220842]
[2]
Mohamed, N.K.; Hamad, M.A.; Hafez, M.Z.; Wooley, K.L.; Elsabahy, M. Nanomedicine in management of hepatocellular carcinoma: challenges and opportunities. Int. J. Cancer, 2017, 140(7), 1475-1484.
[http://dx.doi.org/10.1002/ijc.30517] [PMID: 27861850]
[3]
Xiong, X.B.; Lavasanifar, A. Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin. ACS Nano, 2011, 5(6), 5202-5213.
[http://dx.doi.org/10.1021/nn2013707] [PMID: 21627074]
[4]
Tian, G.; Zheng, X.; Zhang, X.; Yin, W.; Yu, J.; Wang, D.; Zhang, Z.; Yang, X.; Gu, Z.; Zhao, Y. TPGS-stabilized NaYbF4: Er upconversion nanoparticles for dual-modal fluorescent/CT imaging and anticancer drug delivery to overcome multi-drug resistance. Biomaterials, 2015, 40, 107-116.
[http://dx.doi.org/10.1016/j.biomaterials.2014.11.022] [PMID: 25433607]
[5]
Markman, J.L.; Rekechenetskiy, A.; Holler, E.; Ljubimova, J.Y. Nanomedicine therapeutic approaches to overcome cancer drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1866-1879.
[http://dx.doi.org/10.1016/j.addr.2013.09.019] [PMID: 24120656]
[6]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]
[7]
Xue, X.; Liang, X-J. Overcoming drug efflux-based multidrug resistance in cancer with nanotechnology. Chin. J. Cancer, 2012, 31(2), 100-109.
[http://dx.doi.org/10.5732/cjc.011.10326] [PMID: 22237039]
[8]
Bupathi, M.; Kaseb, A.; Meric-Bernstam, F.; Naing, A. Hepatocellular carcinoma: where there is unmet need. Mol. Oncol., 2015, 9(8), 1501-1509.
[http://dx.doi.org/10.1016/j.molonc.2015.06.005] [PMID: 26160430]
[9]
Hong, Y.P.; Li, Z.D.; Prasoon, P.; Zhang, Q. Immunotherapy for hepatocellular carcinoma: from basic research to clinical use. World J. Hepatol., 2015, 7(7), 980-992.
[http://dx.doi.org/10.4254/wjh.v7.i7.980] [PMID: 25954480]
[10]
Chen, K.W.; Ou, T.M.; Hsu, C.W.; Horng, C.T.; Lee, C.C.; Tsai, Y.Y.; Tsai, C.C.; Liou, Y.S.; Yang, C.C.; Hsueh, C.W.; Kuo, W.H. Current systemic treatment of hepatocellular carcinoma: a review of the literature. World J. Hepatol., 2015, 7(10), 1412-1420.
[http://dx.doi.org/10.4254/wjh.v7.i10.1412] [PMID: 26052386]
[11]
Zeng, L.; Kuang, S.; Li, G.; Jin, C.; Ji, L.; Chao, H. A GSH-activatable ruthenium(ii)-azo photosensitizer for two-photon photodynamic therapy. Chem. Commun (CAMB.), 2017, 53(12), 1977-1980.
[http://dx.doi.org/10.1039/c6cc10330h] [PMID: 28119967]
[12]
Huang, H.; Yu, B.; Zhang, P.; Huang, J.; Chen, Y.; Gasser, G.; Ji, L.; Chao, H. Highly charged ruthenium(II) polypyridyl complexes as lysosome-localized photosensitizers for two-photon photodynamic therapy. Angew. Chem. Int. Ed. Engl., 2015, 54(47), 14049-14052.
[http://dx.doi.org/10.1002/anie.201507800] [PMID: 26447888]
[13]
Dolmans, D.E.; Fukumura, D.; Jain, R.K. Photodynamic therapy for cancer. Nat. Rev. Cancer, 2003, 3(5), 380-387.
[http://dx.doi.org/10.1038/nrc1071] [PMID: 12724736]
[14]
Huang, X.; Leroux, J.C.; Castagner, B. Well-defined multivalent ligands for hepatocytes targeting via asialoglycoprotein receptor. Bioconjug. Chem., 2017, 28(2), 283-295.
[http://dx.doi.org/10.1021/acs.bioconjchem.6b00651] [PMID: 27966887]
[15]
Cai, Y.; Xu, Y.; Chan, H.F.; Fang, X.; He, C.; Chen, M. Glycyrrhetinic acid mediated drug delivery carriers for hepatocellular carcinoma therapy. Mol. Pharm., 2016, 13(3), 699-709.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00677] [PMID: 26808002]
[16]
Carvalho, F.S.; Burgeiro, A.; Garcia, R.; Moreno, A.J.; Carvalho, R.A.; Oliveira, P.J. Doxorubicin-induced cardiotoxicity: from bioenergetic failure and cell death to cardiomyopathy. Med. Res. Rev., 2014, 34(1), 106-135.
[http://dx.doi.org/10.1002/med.21280] [PMID: 23494977]
[17]
Gentile, E.A.; Castronuovo, C.C.; Cuestas, M.L.; Gómez, N.; Davio, C.; Oubiña, J.R.; Mathet, V.L. F127 poloxamer effect on cytotoxicity induction of tumour cell cultures treated with doxorubicin. J. Pharm. Pharmacol., 2019, 71(11), 1655-1662.
[http://dx.doi.org/10.1111/jphp.13158] [PMID: 31456253]
[18]
Alvarez-Lorenzo, C.; Sosnik, A.; Concheiro, A. PEO-PPO block copolymers for passive micellar targeting and overcoming multidrug resistance in cancer therapy. Curr. Drug Targets, 2011, 12(8), 1112-1130.
[http://dx.doi.org/10.2174/138945011795906615] [PMID: 21443477]
[19]
Liu, J.; Huang, Y.; Kumar, A.; Tan, A.; Jin, S.; Mozhi, A.; Liang, X.J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv., 2014, 32(4), 693-710.
[http://dx.doi.org/10.1016/j.biotechadv.2013.11.009] [PMID: 24309541]
[20]
Chung, C.Y.; Fung, S.K.; Tong, K.C.; Wan, P.K.; Lok, C.N.; Huang, Y.; Chen, T.; Che, C.M. A multi-functional PEGylated gold(iii) compound: potent anti-cancer properties and self-assembly into nanostructures for drug co-delivery. Chem. Sci. (Camb.), 2017, 8(3), 1942-1953.
[http://dx.doi.org/10.1039/C6SC03210A] [PMID: 28451309]
[21]
Wang, B.; Xu, C.; Xie, J.; Yang, Z.; Sun, S. pH controlled release of chromone from chromone-Fe3O4 nanoparticles. J. Am. Chem. Soc., 2008, 130(44), 14436-14437.
[http://dx.doi.org/10.1021/ja806519m] [PMID: 18839952]
[22]
Liu, R.; Zhang, Y.; Zhao, X.; Agarwal, A.; Mueller, L.J.; Feng, P. pH-responsive nanogated ensemble based on gold-capped mesoporous silica through an acid-labile acetal linker. J. Am. Chem. Soc., 2010, 132(5), 1500-1501.
[http://dx.doi.org/10.1021/ja907838s] [PMID: 20085351]
[23]
Zhang, J.J.; Lu, W.; Sun, R.W.; Che, C.M. Organogold(III) supramolecular polymers for anticancer treatment. Angew. Chem. Int. Ed. Engl., 2012, 51(20), 4882-4886.
[http://dx.doi.org/10.1002/anie.201108466] [PMID: 22473661]
[24]
Cheng, R.; Feng, F.; Meng, F.; Deng, C.; Feijen, J.; Zhong, Z. Glutathione-responsive nano-vehicles as a promising platform for targeted intracellular drug and gene delivery. J. Control. Release, 2011, 152(1), 2-12.
[http://dx.doi.org/10.1016/j.jconrel.2011.01.030] [PMID: 21295087]
[25]
Huo, M.; Yuan, J.; Tao, L.; Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem., 2014, 5, 1519-1528.
[http://dx.doi.org/10.1039/C3PY01192E]
[26]
Santra, S.; Kaittanis, C.; Santiesteban, O.J.; Perez, J.M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc., 2011, 133(41), 16680-16688.
[http://dx.doi.org/10.1021/ja207463b] [PMID: 21910482]
[27]
Nam, J.; Won, N.; Jin, H.; Chung, H.; Kim, S. pH-Induced aggregation of gold nanoparticles for photothermal cancer therapy. J. Am. Chem. Soc., 2009, 131(38), 13639-13645.
[http://dx.doi.org/10.1021/ja902062j] [PMID: 19772360]
[28]
Vankayala, R.; Lin, C.C.; Kalluru, P.; Chiang, C.S.; Hwang, K.C. Gold nanoshells-mediated bimodal photodynamic and photothermal cancer treatment using ultra-low doses of near infra-red light. Biomaterials, 2014, 35(21), 5527-5538.
[http://dx.doi.org/10.1016/j.biomaterials.2014.03.065] [PMID: 24731706]
[29]
N’Guyen, T.T.; Duong, H.T.; Basuki, J.; Montembault, V.; Pascual, S.; Guibert, C.; Fresnais, J.; Boyer, C.; Whittaker, M.R.; Davis, T.P.; Fontaine, L. Functional iron oxide magnetic nanoparticles with hyperthermia-induced drug release ability by using a combination of orthogonal click reactions. Angew. Chem. Int. Ed. Engl., 2013, 52(52), 14152-14156.
[http://dx.doi.org/10.1002/anie.201306724] [PMID: 24255024]
[30]
D’Souza, A.A.; Devarajan, P.V. Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J. Control. Rel., 2015, 203, 126-139.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.022] [PMID: 25701309]
[31]
Felber, A.E.; Dufresne, M.H.; Leroux, J.C. pH-sensitive vesicles, polymeric micelles, and nanospheres prepared with polycarboxylates. Adv. Drug Deliv. Rev., 2012, 64(11), 979-992.
[http://dx.doi.org/10.1016/j.addr.2011.09.006] [PMID: 21996056]
[32]
Yu, J.; Chu, X.; Hou, Y. Stimuli-responsive cancer therapy based on nanoparticles. Chem. Commun. (Camb.), 2014, 50(79), 11614-11630.
[http://dx.doi.org/10.1039/C4CC03984J] [PMID: 25058003]
[33]
Lu, J.; Wang, J.; Ling, D. Surface Engineering of nanoparticles for targeted delivery to hepatocellular carcinoma. Small, 2018, 14(5)
[http://dx.doi.org/10.1002/smll.201702037] [PMID: 29251419]
[34]
Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell, 2000, 100(1), 57-70.
[http://dx.doi.org/10.1016/S0092-8674(00)81683-9] [PMID: 10647931]
[35]
Folberg, R.; Hendrix, M.J.; Maniotis, A.J. Vasculogenic mimicry and tumor angiogenesis. Am. J. Pathol., 2000, 156(2), 361-381.
[http://dx.doi.org/10.1016/S0002-9440(10)64739-6] [PMID: 10666364]
[36]
Semela, D.; Dufour, J.F. Angiogenesis and hepatocellular carcinoma. J. Hepatol., 2004, 41(5), 864-880.
[http://dx.doi.org/10.1016/j.jhep.2004.09.006] [PMID: 15519663]
[37]
Hashizume, H.; Baluk, P.; Morikawa, S.; McLean, J.W.; Thurston, G.; Roberge, S.; Jain, R.K.; McDonald, D.M. Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol., 2000, 156(4), 1363-1380.
[http://dx.doi.org/10.1016/S0002-9440(10)65006-7] [PMID: 10751361]
[38]
Ballet, F. Hepatic circulation: potential for therapeutic intervention. Pharmacol. Ther., 1990, 47(2), 281-328.
[http://dx.doi.org/10.1016/0163-7258(90)90091-F] [PMID: 2203072]
[39]
Roberts, W.G.; Palade, G.E. Neovasculature induced by vascular endothelial growth factor is fenestrated. Cancer Res., 1997, 57(4), 765-772.
[PMID: 9044858]
[40]
Liu, J.Y.; Chiang, T.; Liu, C.H.; Chern, G.G.; Lin, T.T.; Gao, D.Y.; Chen, Y. Delivery of siRNA using CXCR4-targeted nanoparticles modulates tumor microenvironment and achieves a potent antitumor response in liver cancer. Mol. Ther., 2015, 23(11), 1772-1782.
[http://dx.doi.org/10.1038/mt.2015.147] [PMID: 26278330]
[41]
Tong, R.T.; Boucher, Y.; Kozin, S.V.; Winkler, F.; Hicklin, D.J.; Jain, R.K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res., 2004, 64(11), 3731-3736.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0074] [PMID: 15172975]
[42]
Greish, K.; Iyer, A.k.; Fang, J.; Kawasuji, M.; Maeda, H. Enhanced permeability and retention (EPR) effect and tumor-selective delivery of anticancer drugs. Prot. Pept. Drug Ca, 2006, 37-52.
[http://dx.doi.org/10.1142/9781860948039_0003]
[43]
Matsumura, Y.; Maeda, H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res., 1986, 46(12 Pt 1), 6387-6392.
[PMID: 2946403]
[44]
Iyer, A.K.; Khaled, G.; Fang, J.; Maeda, H. Exploiting the enhanced permeability and retention effect for tumor targeting. Drug Discov. Today, 2006, 11(17-18), 812-818.
[http://dx.doi.org/10.1016/j.drudis.2006.07.005] [PMID: 16935749]
[45]
Greish, K. Enhanced permeability and retention of macromolecular drugs in solid tumors: a royal gate for targeted anticancer nanomedicines. J. Drug Target., 2007, 15(7-8), 457-464.
[http://dx.doi.org/10.1080/10611860701539584] [PMID: 17671892]
[46]
Danhier, F. To exploit the tumor microenvironment: since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release, 2016, 244(Pt A), 108-121.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[47]
Nichols, J.W.; Bae, Y.H. EPR: evidence and fallacy. J. Control. Release, 2014, 190, 451-464.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.057] [PMID: 24794900]
[48]
Kim, Y.; Lin, Q.; Glazer, P.M.; Yun, Z. Hypoxic tumor microenvironment and cancer cell differentiation. Curr. Mol. Med., 2009, 9(4), 425-434.
[http://dx.doi.org/10.2174/156652409788167113] [PMID: 19519400]
[49]
Michiels, C.; Tellier, C.; Feron, O. Cycling hypoxia: a key feature of the tumor microenvironment. Biochim. Biophys. Acta, 2016, 1866(1), 76-86.
[http://dx.doi.org/10.1016/j.bbcan.2016.06.004] [PMID: 27343712]
[50]
Trédan, O.; Galmarini, C.M.; Patel, K.; Tannock, I.F. Drug resistance and the solid tumor microenvironment. J. Natl. Cancer Inst., 2007, 99(19), 1441-1454.
[http://dx.doi.org/10.1093/jnci/djm135] [PMID: 17895480]
[51]
Iyer, A.K.; Singh, A.; Ganta, S.; Amiji, M.M. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1784-1802.
[http://dx.doi.org/10.1016/j.addr.2013.07.012] [PMID: 23880506]
[52]
Murphy, R.F.; Powers, S.; Cantor, C.R. Endosome pH measured in single cells by dual fluorescence flow cytometry: rapid acidification of insulin to pH 6. J. Cell Biol., 1984, 98(5), 1757-1762.
[http://dx.doi.org/10.1083/jcb.98.5.1757] [PMID: 6144684]
[53]
Vaupel, P.; Kallinowski, F.; Okunieff, P. Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res., 1989, 49(23), 6449-6465.
[PMID: 2684393]
[54]
Zhang, X.; Ng, H.L.H.; Lu, A.; Lin, C.; Zhou, L.; Lin, G.; Zhang, Y.; Yang, Z.; Zhang, H. Drug delivery system targeting advanced hepatocellular carcinoma: current and future. Nanomedicine (Lond.), 2016, 12(4), 853-869.
[http://dx.doi.org/10.1016/j.nano.2015.12.381] [PMID: 26772424]
[55]
Feron, O. Pyruvate into lactate and back: from the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol., 2009, 92(3), 329-333.
[http://dx.doi.org/10.1016/j.radonc.2009.06.025] [PMID: 19604589]
[56]
Brahimi-Horn, M.C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett., 2007, 581(19), 3582-3591.
[http://dx.doi.org/10.1016/j.febslet.2007.06.018] [PMID: 17586500]
[57]
Sedlakova, O.; Svastova, E.; Takacova, M.; Kopacek, J.; Pastorek, J.; Pastorekova, S. Carbonic anhydrase IX, a hypoxia-induced catalytic component of the pH regulating machinery in tumors. Front. Physiol., 2014, 4, 400-400.
[http://dx.doi.org/10.3389/fphys.2013.00400] [PMID: 24409151]
[58]
Yang, X.; Wang, D.; Dong, W.; Song, Z.; Dou, K. Inhibition of Na(+)/H(+) exchanger 1 by 5-(N-ethyl-N-isopropyl) amiloride reduces hypoxia-induced hepatocellular carcinoma invasion and motility. Cancer Lett., 2010, 295(2), 198-204.
[http://dx.doi.org/10.1016/j.canlet.2010.03.001] [PMID: 20338684]
[59]
Chi, S.L.; Pizzo, S.V. Angiostatin is directly cytotoxic to tumor cells at low extracellular pH: a mechanism dependent on cell surface-associated ATP synthase. Cancer Res., 2006, 66(2), 875-882.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2806] [PMID: 16424020]
[60]
Mo, R.; Gu, Z. Tumor microenvironment and intracellular signal-activated nanomaterials for anticancer drug delivery. Mater. Today, 2016, 19, 274-283.
[http://dx.doi.org/10.1016/j.mattod.2015.11.025]
[61]
Wang, Y.; Du, H.; Zhai, G. Recent advances in active hepatic targeting drug delivery system. Curr. Drug Targets, 2014, 15(6), 573-599.
[http://dx.doi.org/10.2174/1389450115666140309232100] [PMID: 24606040]
[62]
Zhou, X.; Zhang, M.; Yung, B.; Li, H.; Zhou, C.; Lee, L.J.; Lee, R.J. Lactosylated liposomes for targeted delivery of doxorubicin to hepatocellular carcinoma. Int. J. Nanomedicine, 2012, 7, 5465-5474.
[http://dx.doi.org/10.2147/ijn.s33965] [PMID: 23093902]
[63]
Wolschek, M.F.; Thallinger, C.; Kursa, M.; Rössler, V.; Allen, M.; Lichtenberger, C.; Kircheis, R.; Lucas, T.; Willheim, M.; Reinisch, W.; Gangl, A.; Wagner, E.; Jansen, B. Specific systemic nonviral gene delivery to human hepatocellular carcinoma xenografts in SCID mice. Hepatology, 2002, 36(5), 1106-1114.
[http://dx.doi.org/10.1053/jhep.2002.36372] [PMID: 12395320]
[64]
Holmström, P.; Gåfvels, M.; Eriksson, L.C.; Dzikaite, V.; Hultcrantz, R.; Eggertsen, G.; Stål, P. Expression of iron regulatory genes in a rat model of hepatocellular carcinoma. Liver Int., 2006, 26(8), 976-985.
[http://dx.doi.org/10.1111/j.1478-3231.2006.01316.x] [PMID: 16953838]
[65]
Niu, C.; Sun, Q.; Zhou, J.; Cheng, D.; Hong, G. Folate-functionalized polymeric micelles based on biodegradable PEG-PDLLA as a hepatic carcinoma-targeting delivery system. Asian Pac. J. Cancer Prev., 2011, 12(8), 1995-1999.
[PMID: 22292640]
[66]
Morell, A.G.; Irvine, R.A.; Sternlieb, I.; Scheinberg, I.H.; Ashwell, G. Physical and chemical studies on ceruloplasmin. V. Metabolic studies on sialic acid-free ceruloplasmin in vivo. J. Biol. Chem., 1968, 243(1), 155-159.
[PMID: 5635941]
[67]
Spiess, M. The asialoglycoprotein receptor: a model for endocytic transport receptors. Biochemistry, 1990, 29(43), 10009-10018.
[http://dx.doi.org/10.1021/bi00495a001] [PMID: 2125488]
[68]
Stockert, R.J. The asialoglycoprotein receptor: relationships between structure, function, and expression. Physiol. Rev., 1995, 75(3), 591-609.
[http://dx.doi.org/10.1152/physrev.1995.75.3.591] [PMID: 7624395]
[69]
Diao, J.; Michalak, T.I. Composition, antigenic properties and hepatocyte surface expression of the woodchuck asialoglycoprotein receptor. J. Recept. Signal Transduct. Res., 1996, 16(5-6), 243-271.
[http://dx.doi.org/10.3109/10799899609039951] [PMID: 8968961]
[70]
Li, Y.; Huang, G.; Diakur, J.; Wiebe, L.I. Targeted delivery of macromolecular drugs: asialoglycoprotein receptor (ASGPR) expression by selected hepatoma cell lines used in antiviral drug development. Curr. Drug Deliv., 2008, 5(4), 299-302.
[http://dx.doi.org/10.2174/156720108785915069] [PMID: 18855599]
[71]
Gao, S.; Chen, J.; Xu, X.; Ding, Z.; Yang, Y-H.; Hua, Z.; Zhang, J. Galactosylated low molecular weight chitosan as DNA carrier for hepatocyte-targeting. Int. J. Pharm., 2003, 255(1-2), 57-68.
[http://dx.doi.org/10.1016/S0378-5173(03)00082-6] [PMID: 12672602]
[72]
Quan, G.; Pan, X.; Wang, Z.; Wu, Q.; Li, G.; Dian, L.; Chen, B.; Wu, C. Lactosaminated mesoporous silica nanoparticles for asialoglycoprotein receptor targeted anticancer drug delivery. J. Nanobiotechnology, 2015, 13, 7.
[http://dx.doi.org/10.1186/s12951-015-0068-6] [PMID: 25643602]
[73]
Negishi, M.; Irie, A.; Nagata, N.; Ichikawa, A. Specific binding of glycyrrhetinic acid to the rat liver membrane. Biochim. Biophys. Acta, 1991, 1066(1), 77-82.
[http://dx.doi.org/10.1016/0005-2736(91)90253-5] [PMID: 2065071]
[74]
Ismair, M.G.; Stanca, C.; Ha, H.R.; Renner, E.L.; Meier, P.J.; Kullak-Ublick, G.A. Interactions of glycyrrhizin with organic anion transporting polypeptides of rat and human liver. Hepatol. Res., 2003, 26(4), 343-347.
[http://dx.doi.org/10.1016/S1386-6346(03)00154-2] [PMID: 12963436]
[75]
Shiki, Y.; Shirai, K.; Saito, Y.; Yoshida, S.; Mori, Y.; Wakashin, M. Effect of glycyrrhizin on lysis of hepatocyte membranes induced by anti-liver cell membrane antibody. J. Gastroenterol. Hepatol., 1992, 7(1), 12-16.
[http://dx.doi.org/10.1111/j.1440-1746.1992.tb00927.x] [PMID: 1543863]
[76]
Il’icheva, T.N.; Proniaeva, T.R.; Smetannikov, A.A.; Pokrovskiĭ, A.G. [Content of progesterone, glucocorticoid and glycyrrhizic acid receptors in normal and tumoral human breast tissue] Vopr. Onkol., 1998, 44(4), 390-394.
[PMID: 9807199]
[77]
Su, X.; Wu, L.; Hu, M.; Dong, W.; Xu, M.; Zhang, P. Glycyrrhizic acid: A promising carrier material for anticancer therapy. Biomed. Pharmacother., 2017, 95, 670-678.
[http://dx.doi.org/10.1016/j.biopha.2017.08.123] [PMID: 28886526]
[78]
Torchilin, V.P. Drug targeting. Eur. J. Pharm. Sci., 2000, 11(Suppl. 2), S81-S91.
[http://dx.doi.org/10.1016/S0928-0987(00)00166-4] [PMID: 11033430]
[79]
Zhi PingXu QH. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem. Eng. Sci., 2006, 61, 1027-1040.
[http://dx.doi.org/10.1016/j.ces.2005.06.019]
[80]
Yildiz, I.; Shukla, S.; Steinmetz, N.F. Applications of viral nanoparticles in medicine. Curr. Opin. Biotechnol., 2011, 22(6), 901-908.
[http://dx.doi.org/10.1016/j.copbio.2011.04.020] [PMID: 21592772]
[81]
Kim, C.H.; Lee, S.G.; Kang, M.J.; Lee, S.; Choi, Y.W. Surface modification of lipid-based nanocarriers for cancer cell-specific drug targeting. J. Pharm. Investig., 2017, 47, 203-227.
[http://dx.doi.org/10.1007/s40005-017-0329-5]
[82]
Chen, S.; Cheng, S.X.; Zhuo, R.X. Self-assembly strategy for the preparation of polymer-based nanoparticles for drug and gene delivery. Macromol. Biosci., 2011, 11(5), 576-589.
[http://dx.doi.org/10.1002/mabi.201000427] [PMID: 21188686]
[83]
Zhang, X.; Yang, X.; Ji, J.; Liu, A.; Zhai, G. Tumor targeting strategies for chitosan-based nanoparticles. Colloids Surf. B Biointerfaces, 2016, 148, 460-473.
[http://dx.doi.org/10.1016/j.colsurfb.2016.09.020] [PMID: 27665379]
[84]
Cheng, M.; Han, J.; Li, Q.; He, B.; Zha, B.; Wu, J.; Zhou, R.; Ye, T.; Wang, W.; Xu, H.; Hou, Y. Synthesis of galactosylated chitosan/5-fluorouracil nanoparticles and its characteristics, in vitro and in vivo release studies. J. Biomed. Mater. Res. B Appl. Biomater., 2012, 100(8), 2035-2043.
[http://dx.doi.org/10.1002/jbm.b.32767] [PMID: 22865703]
[85]
Yu, C-Y. N-ML Fabrication of galactosylated chitosan–5-fluorouracil acetic acid based nanoparticles for controlled drug delivery. J. Appl. Polym. Sci., 2015, 132, 42625.
[http://dx.doi.org/10.1002/app.42625]
[86]
Zhou, N.; Zan, X.; Wang, Z.; Wu, H.; Yin, D.; Liao, C.; Wan, Y. Galactosylated chitosan-polycaprolactone nanoparticles for hepatocyte-targeted delivery of curcumin. Carbohydr. Polym., 2013, 94(1), 420-429.
[http://dx.doi.org/10.1016/j.carbpol.2013.01.014] [PMID: 23544558]
[87]
Cheng, M.; Liu, Z.; Wan, T.; He, B.; Zha, B.; Han, J.; Chen, H.; Yang, F.; Li, Q.; Wang, W.; Xu, H.; Ye, T. Preliminary pharmacology of galactosylated chitosan/5-fluorouracil nanoparticles and its inhibition of hepatocellular carcinoma in mice. Cancer Biol. Ther., 2012, 13(14), 1407-1416.
[http://dx.doi.org/10.4161/cbt.22001] [PMID: 22954702]
[88]
Dosio, F.; Arpicco, S.; Stella, B.; Fattal, E. Hyaluronic acid for anticancer drug and nucleic acid delivery. Adv. Drug Deliv. Rev., 2016, 97, 204-236.
[http://dx.doi.org/10.1016/j.addr.2015.11.011] [PMID: 26592477]
[89]
Jiao, Y.; Pang, X.; Zhai, G. Advances in hyaluronic acid-based drug delivery systems. Curr. Drug Targets, 2016, 17(6), 720-730.
[http://dx.doi.org/10.2174/1389450116666150531155200] [PMID: 26028046]
[90]
Kaneo, Y.; Tanaka, T.; Nakano, T.; Yamaguchi, Y. Evidence for receptor-mediated hepatic uptake of pullulan in rats. J. Control. Release, 2001, 70(3), 365-373.
[http://dx.doi.org/10.1016/S0168-3659(00)00368-0] [PMID: 11182206]
[91]
Li, H.; Bian, S.; Huang, Y.; Liang, J.; Fan, Y.; Zhang, X. High drug loading pH-sensitive pullulan-DOX conjugate nanoparticles for hepatic targeting. J. Biomed. Mater. Res. A, 2014, 102(1), 150-159.
[http://dx.doi.org/10.1002/jbm.a.34680] [PMID: 23613258]
[92]
Wang, Y.; Chen, H.; Liu, Y.; Wu, J.; Zhou, P.; Wang, Y.; Li, R.; Yang, X.; Zhang, N. pH-sensitive pullulan-based nanoparticle carrier of methotrexate and combretastatin A4 for the combination therapy against hepatocellular carcinoma. Biomaterials, 2013, 34(29), 7181-7190.
[http://dx.doi.org/10.1016/j.biomaterials.2013.05.081] [PMID: 23791500]
[93]
Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov., 2003, 2(3), 214-221.
[http://dx.doi.org/10.1038/nrd1033] [PMID: 12612647]
[94]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[95]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[96]
Maeda, H.; Sawa, T.; Konno, T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release, 2001, 74(1-3), 47-61.
[http://dx.doi.org/10.1016/S0168-3659(01)00309-1] [PMID: 11489482]
[97]
Jain, N.K.; Jain, S.K. Development and in vitro characterization of galactosylated low molecular weight chitosan nanoparticles bearing doxorubicin. AAPS PharmSciTech, 2010, 11(2), 686-697.
[http://dx.doi.org/10.1208/s12249-010-9422-z] [PMID: 20414758]
[98]
Kimoto, T.; Shibuya, T.; Shiobara, S. Safety studies of a novel starch, pullulan: chronic toxicity in rats and bacterial mutagenicity. Food Chem. Toxicol., 1997, 35(3-4), 323-329.
[http://dx.doi.org/10.1016/S0278-6915(97)00001-X] [PMID: 9207894]
[99]
Akiyoshi, K.; Kobayashi, S.; Shichibe, S.; Mix, D.; Baudys, M.; Kim, S.W.; Sunamoto, J. Self-assembled hydrogel nanoparticle of cholesterol-bearing pullulan as a carrier of protein drugs: complexation and stabilization of insulin. J. Control. Release, 1998, 54(3), 313-320.
[http://dx.doi.org/10.1016/S0168-3659(98)00017-0] [PMID: 9766251]
[100]
Na, K.; Bae, Y.H. Self-assembled hydrogel nanoparticles responsive to tumor extracellular pH from pullulan derivative/sulfonamide conjugate: characterization, aggregation, and adriamycin release in vitro. Pharm. Res., 2002, 19(5), 681-688.
[http://dx.doi.org/10.1023/A:1015370532543] [PMID: 12069173]
[101]
Karakoti, A.S.; Das, S.; Thevuthasan, S.; Seal, S. PEGylated inorganic nanoparticles. Angew. Chem. Int. Ed. Engl., 2011, 50(9), 1980-1994.
[http://dx.doi.org/10.1002/anie.201002969] [PMID: 21275011]
[102]
Raja, K.S.; Wang, Q.; Gonzalez, M.J.; Manchester, M.; Johnson, J.E.; Finn, M.G. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules, 2003, 4(3), 472-476.
[http://dx.doi.org/10.1021/bm025740+] [PMID: 12741758]
[103]
Steinmetz, N.F.; Manchester, M. PEGylated viral nanoparticles for biomedicine: the impact of PEG chain length on VNP cell interactions in vitro and ex vivo. Biomacromolecules, 2009, 10(4), 784-792.
[http://dx.doi.org/10.1021/bm8012742] [PMID: 19281149]
[104]
Kaneo, Y.; Ueno, T.; Tanaka, T.; Iwase, H.; Yamaguchi, Y.; Uemura, T. Pharmacokinetics and biodisposition of fluorescein-labeled arabinogalactan in rats. Int. J. Pharm., 2000, 201(1), 59-69.
[http://dx.doi.org/10.1016/S0378-5173(00)00405-1] [PMID: 10867265]
[105]
Rekha, M.R.; Sharma, C.P. Blood compatibility and in vitro transfection studies on cationically modified pullulan for liver cell targeted gene delivery. Biomaterials, 2009, 30(34), 6655-6664.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.029] [PMID: 19726082]
[106]
Yim, H.; Yang, S.G.; Jeon, Y.S.; Park, I.S.; Kim, M.; Lee, D.H.; Bae, Y.H.; Na, K. The performance of gadolinium diethylene triamine pentaacetate-pullulan hepatocyte-specific T1 contrast agent for MRI. Biomaterials, 2011, 32(22), 5187-5194.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.069] [PMID: 21561660]
[107]
Seo, E.H.; Lee, C.S.; Na, K. Photomediated Reactive Oxygen Species-Generable Nanoparticles for Triggered Release and Endo/Lysosomal Escape of Drug upon Attenuated Single Light Irradiation. Adv. Healthc. Mater., 2015, 4(18), 2822-2830.
[http://dx.doi.org/10.1002/adhm.201500622] [PMID: 26449186]
[108]
Ding, J.; Xiao, C.; Li, Y.; Cheng, Y.; Wang, N.; He, C.; Zhuang, X.; Zhu, X.; Chen, X. Efficacious hepatoma-targeted nanomedicine self-assembled from galactopeptide and doxorubicin driven by two-stage physical interactions. J. Control. Release, 2013, 169(3), 193-203.
[http://dx.doi.org/10.1016/j.jconrel.2012.12.006] [PMID: 23247039]
[109]
Zhao, X.; Liu, P.; Song, Q.; Gong, N.; Yang, L.; Wu, W.D. Surface charge-reversible polyelectrolyte complex nanoparticles for hepatoma-targeting delivery of doxorubicin. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(30), 6185-6193.
[http://dx.doi.org/10.1039/C5TB00600G] [PMID: 32262737]
[110]
Yuan, R.; Zheng, F.; Zhong, S.; Tao, X.; Zhang, Y.; Gao, F.; Yao, F.; Chen, J.; Chen, Y.; Shi, G. Self-assembled nanoparticles of glycyrrhetic acid-modified pullulan as a novel carrier of curcumin. Molecules, 2014, 19(9), 13305-13318.
[http://dx.doi.org/10.3390/molecules190913305] [PMID: 25170951]
[111]
Guo, H.; Lai, Q.; Wang, W.; Wu, Y.; Zhang, C.; Liu, Y.; Yuan, Z. Functional alginate nanoparticles for efficient intracellular release of doxorubicin and hepatoma carcinoma cell targeting therapy. Int. J. Pharm., 2013, 451(1-2), 1-11.
[http://dx.doi.org/10.1016/j.ijpharm.2013.04.025] [PMID: 23618965]
[112]
Bae, Y.; Nishiyama, N.; Kataoka, K. In vivo antitumor activity of the folate-conjugated pH-sensitive polymeric micelle selectively releasing adriamycin in the intracellular acidic compartments. Bioconjug. Chem., 2007, 18(4), 1131-1139.
[http://dx.doi.org/10.1021/bc060401p] [PMID: 17488066]
[113]
Qu, X.; Yang, Z. Benzoic-imine-based physiological-pH-responsive materials for biomedical applications. Chem. Asian J., 2016, 11(19), 2633-2641.
[http://dx.doi.org/10.1002/asia.201600452] [PMID: 27410679]
[114]
Huang, W.; Wang, W.; Wang, P.; Zhang, C-N.; Tian, Q.; Zhang, Y.; Wang, X-H.; Cha, R-T.; Wang, C-H.; Yuan, Z. Glycyrrhetinic acid-functionalized degradable micelles as liver-targeted drug carrier. J. Mater. Sci. Mater. Med., 2011, 22(4), 853-863.
[http://dx.doi.org/10.1007/s10856-011-4262-2] [PMID: 21373811]
[115]
Liu, D.; Hu, H.; Zhang, J.; Zhao, X.; Tang, X.; Chen, D. Drug pH-sensitive release in vitro and targeting ability of polyamidoamine dendrimer complexes for tumor cells. Chem. Pharm. Bull. (Tokyo), 2011, 59(1), 63-71.
[http://dx.doi.org/10.1248/cpb.59.63] [PMID: 21212549]
[116]
Jung, S.; Nam, J.; Hwang, S.; Park, J.; Hur, J. Im, K.; Park, N.; Kim, S. Theragnostic pH-sensitive gold nanoparticles for the selective surface enhanced Raman scattering and photothermal cancer therapy. Anal. Chem., 2013, 85(16), 7674-7681.
[http://dx.doi.org/10.1021/ac401390m] [PMID: 23883363]
[117]
Ke, C-J.; Su, T-Y.; Chen, H-L.; Liu, H-L.; Chiang, W-L.; Chu, P-C.; Xia, Y.; Sung, H-W. Smart multifunctional hollow microspheres for the quick release of drugs in intracellular lysosomal compartments. Angew. Chem. Int. Ed. Engl., 2011, 50(35), 8086-8089.
[http://dx.doi.org/10.1002/anie.201102852] [PMID: 21751316]
[118]
Ke, C-J.; Lin, Y-J.; Hu, Y-C.; Chiang, W-L.; Chen, K-J.; Yang, W-C.; Liu, H-L.; Fu, C-C.; Sung, H-W. Multidrug release based on microneedle arrays filled with pH-responsive PLGA hollow microspheres. Biomaterials, 2012, 33(20), 5156-5165.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.056] [PMID: 22484044]
[119]
Ke, C-J.; Chiang, W-L.; Liao, Z-X.; Chen, H-L.; Lai, P-S.; Sun, J-S.; Sung, H-W. Real-time visualization of pH-responsive PLGA hollow particles containing a gas-generating agent targeted for acidic organelles for overcoming multi-drug resistance. Biomaterials, 2013, 34(1), 1-10.
[http://dx.doi.org/10.1016/j.biomaterials.2012.09.023] [PMID: 23044041]
[120]
Liu, J.; Ma, H.; Wei, T.; Liang, X-J. CO2 gas induced drug release from pH-sensitive liposome to circumvent doxorubicin resistant cells. Chem. Commun. (Camb.), 2012, 48(40), 4869-4871.
[http://dx.doi.org/10.1039/c2cc31697h] [PMID: 22498879]
[121]
Wang, Y.; Jiang, G.; Qiu, T.; Ding, F. Preparation and evaluation of paclitaxel-loaded nanoparticle incorporated with galactose-carrying polymer for hepatocyte targeted delivery. Drug Dev. Ind. Pharm., 2012, 38(9), 1039-1046.
[http://dx.doi.org/10.3109/03639045.2011.637052] [PMID: 22124381]
[122]
Li, J.; Xu, H.; Ke, X.; Tian, J. The anti-tumor performance of docetaxel liposomes surface-modified with glycyrrhetinic acid. J. Drug Target., 2012, 20(5), 467-473.
[http://dx.doi.org/10.3109/1061186X.2012.685475] [PMID: 22577855]
[123]
Cheng, M.; He, B.; Wan, T.; Zhu, W.; Han, J.; Zha, B.; Chen, H.; Yang, F.; Li, Q.; Wang, W.; Xu, H.; Ye, T. 5-Fluorouracil nanoparticles inhibit hepatocellular carcinoma via activation of the p53 pathway in the orthotopic transplant mouse model. PLoS One, 2012, 7(10)e47115
[http://dx.doi.org/10.1371/journal.pone.0047115] [PMID: 23077553]
[124]
Zheng, G.; Zhao, R.; Xu, A.; Shen, Z.; Chen, X.; Shao, J. Co-delivery of sorafenib and siVEGF based on mesoporous silica nanoparticles for ASGPR mediated targeted HCC therapy. Eur. J. Pharm. Sci., 2018, 111, 492-502.
[http://dx.doi.org/10.1016/j.ejps.2017.10.036] [PMID: 29107835]
[125]
Cabral, H.; Matsumoto, Y.; Mizuno, K.; Chen, Q.; Murakami, M.; Kimura, M.; Terada, Y.; Kano, M.R.; Miyazono, K.; Uesaka, M.; Nishiyama, N.; Kataoka, K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol., 2011, 6(12), 815-823.
[http://dx.doi.org/10.1038/nnano.2011.166] [PMID: 22020122]
[126]
Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; Ellithy, M. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother., 2017, 95, 1209-1218.
[http://dx.doi.org/10.1016/j.biopha.2017.09.059] [PMID: 28931213]
[127]
Zhang, C.; Wang, W.; Liu, T.; Wu, Y.; Guo, H.; Wang, P.; Tian, Q.; Wang, Y.; Yuan, Z. Doxorubicin-loaded glycyrrhetinic acid-modified alginate nanoparticles for liver tumor chemotherapy. Biomaterials, 2012, 33(7), 2187-2196.
[http://dx.doi.org/10.1016/j.biomaterials.2011.11.045] [PMID: 22169820]
[128]
Mezghrani, O.; Tang, Y.; Ke, X.; Chen, Y.; Hu, D.; Tu, J.; Zhao, L.; Bourkaib, N. Hepatocellular carcinoma dually-targeted nanoparticles for reduction triggered intracellular delivery of doxorubicin. Int. J. Pharm., 2015, 478(2), 553-568.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.041] [PMID: 25455765]
[129]
Xia, Y.; Zhong, J.; Zhao, M.; Tang, Y.; Han, N.; Hua, L.; Xu, T.; Wang, C.; Zhu, B. Galactose-modified selenium nanoparticles for targeted delivery of doxorubicin to hepatocellular carcinoma. Drug Deliv., 2019, 26(1), 1-11.
[http://dx.doi.org/10.1080/10717544.2018.1556359] [PMID: 31928356]
[130]
Ding, J.; Xu, W.; Zhang, Y.; Sun, D.; Xiao, C.; Liu, D.; Zhu, X.; Chen, X. Self-reinforced endocytoses of smart polypeptide nanogels for “on-demand” drug delivery. J. Control. Release, 2013, 172(2), 444-455.
[http://dx.doi.org/10.1016/j.jconrel.2013.05.029] [PMID: 23742879]
[131]
Feng, S-S.; Mu, L.; Win, K.Y.; Huang, G. Nanoparticles of biodegradable polymers for clinical administration of paclitaxel. Curr. Med. Chem., 2004, 11(4), 413-424.
[http://dx.doi.org/10.2174/0929867043455909] [PMID: 14965222]
[132]
Singla, A.K.; Garg, A.; Aggarwal, D. Paclitaxel and its formulations. Int. J. Pharm., 2002, 235(1-2), 179-192.
[http://dx.doi.org/10.1016/S0378-5173(01)00986-3] [PMID: 11879753]
[133]
Nagesh, P.K.B.; Johnson, N.R.; Boya, V.K.N.; Chowdhury, P.; Othman, S.F.; Khalilzad-Sharghi, V.; Hafeez, B.B.; Ganju, A.; Khan, S.; Behrman, S.W.; Zafar, N.; Chauhan, S.C.; Jaggi, M.; Yallapu, M.M. PSMA targeted docetaxel-loaded superparamagnetic iron oxide nanoparticles for prostate cancer. Colloids Surf. B Biointerfaces, 2016, 144, 8-20.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.071] [PMID: 27058278]
[134]
Xu, Z.; Chen, L.; Gu, W.; Gao, Y.; Lin, L.; Zhang, Z.; Xi, Y.; Li, Y. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials, 2009, 30(2), 226-232.
[http://dx.doi.org/10.1016/j.biomaterials.2008.09.014] [PMID: 18851881]
[135]
Huang, C.; Li, N.M.; Gao, P.; Yang, S.; Ning, Q.; Huang, W.; Li, Z.P.; Ye, P.J.; Xiang, L.; He, D.X.; Tan, X.W.; Yu, C.Y. In vitro and in vivo evaluation of macromolecular prodrug GC-FUA based nanoparticle for hepatocellular carcinoma chemotherapy. Drug Deliv., 2017, 24(1), 459-466.
[http://dx.doi.org/10.1080/10717544.2016.1264499] [PMID: 28219253]
[136]
Thapa, R.K.; Choi, J.Y.; Poudel, B.K.; Hiep, T.T.; Pathak, S.; Gupta, B.; Choi, H-G.; Yong, C.S.; Kim, J.O. Multilayer-coated liquid crystalline nanoparticles for effective sorafenib delivery to hepatocellular carcinoma. ACS Appl. Mater. Interfaces, 2015, 7(36), 20360-20368.
[http://dx.doi.org/10.1021/acsami.5b06203] [PMID: 26315487]
[137]
Yuan, F.; Dellian, M.; Fukumura, D.; Leunig, M.; Berk, D.A.; Torchilin, V.P.; Jain, R.K. Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res., 1995, 55(17), 3752-3756.
[PMID: 7641188]
[138]
Hobbs, S.K.; Monsky, W.L.; Yuan, F.; Roberts, W.G.; Griffith, L.; Torchilin, V.P.; Jain, R.K. Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc. Natl. Acad. Sci. USA, 1998, 95(8), 4607-4612.
[http://dx.doi.org/10.1073/pnas.95.8.4607] [PMID: 9539785]
[139]
Chauhan, V.P.; Stylianopoulos, T.; Martin, J.D.; Popović, Z.; Chen, O.; Kamoun, W.S.; Bawendi, M.G.; Fukumura, D.; Jain, R.K. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat. Nanotechnol., 2012, 7(6), 383-388.
[http://dx.doi.org/10.1038/nnano.2012.45] [PMID: 22484912]
[140]
Liang, H-F.; Yang, T-F.; Huang, C-T.; Chen, M-C.; Sung, H-W. Preparation of nanoparticles composed of poly(gamma-glutamic acid)-poly(lactide) block copolymers and evaluation of their uptake by HepG2 cells. J. Control. Release, 2005, 105(3), 213-225.
[http://dx.doi.org/10.1016/j.jconrel.2005.03.021] [PMID: 15916830]
[141]
Hashida, M.; Takemura, S.; Nishikawa, M.; Takakura, Y. Targeted delivery of plasmid DNA complexed with galactosylated poly(L-lysine). J. Control. Release, 1998, 53(1-3), 301-310.
[http://dx.doi.org/10.1016/S0168-3659(97)00263-0] [PMID: 9741938]
[142]
Wu, G.Y.; Wu, C.H. Receptor-mediated gene delivery and expression in vivo. J. Biol. Chem., 1988, 263(29), 14621-14624.
[PMID: 3049582]
[143]
Yu, W.; Zhang, N.; Li, C. Saccharide modified pharmaceutical nanocarriers for targeted drug and gene delivery. Curr. Pharm. Des., 2009, 15(32), 3826-3836.
[http://dx.doi.org/10.2174/138161209789649547] [PMID: 19925431]
[144]
Cai, L.; Gu, Z.; Zhong, J.; Wen, D.; Chen, G.; He, L.; Wu, J.; Gu, Z. Advances in glycosylation-mediated cancer-targeted drug delivery. Drug Discov. Today, 2018, 23(5), 1126-1138.
[http://dx.doi.org/10.1016/j.drudis.2018.02.009] [PMID: 29501708]
[145]
Pinho, S.S.; Reis, C.A. Glycosylation in cancer: mechanisms and clinical implications. Nat. Rev. Cancer, 2015, 15(9), 540-555.
[http://dx.doi.org/10.1038/nrc3982] [PMID: 26289314]
[146]
Guhagarkar, S.A.; Gaikwad, R.V.; Samad, A.; Malshe, V.C.; Devarajan, P.V. Polyethylene sebacate-doxorubicin nanoparticles for hepatic targeting. Int. J. Pharm., 2010, 401(1-2), 113-122.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.012] [PMID: 20854883]
[147]
Guhagarkar, S.A.; Majee, S.B.; Samad, A.; Devarajan, P.V. Evaluation of pullulan-functionalized doxorubicin nanoparticles for asialoglycoprotein receptor-mediated uptake in Hep G2 cell line. Cancer Nanotechnol., 2011, 2(1-6), 49-55.
[http://dx.doi.org/10.1007/s12645-011-0012-x] [PMID: 26069484]
[148]
Shen, Z.; Wei, W.; Tanaka, H.; Kohama, K.; Ma, G.; Dobashi, T.; Maki, Y.; Wang, H.; Bi, J.; Dai, S. A galactosamine-mediated drug delivery carrier for targeted liver cancer therapy. Pharmacol. Res., 2011, 64(4), 410-419.
[http://dx.doi.org/10.1016/j.phrs.2011.06.015] [PMID: 21723392]
[149]
Chen, W.; Zou, Y.; Meng, F.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z. Glyco-nanoparticles with sheddable saccharide shells: a unique and potent platform for hepatoma-targeting delivery of anticancer drugs. Biomacromolecules, 2014, 15(3), 900-907.
[http://dx.doi.org/10.1021/bm401749t] [PMID: 24460130]
[150]
Pathak, P.O.; Nagarsenker, M.S.; Barhate, C.R.; Padhye, S.G.; Dhawan, V.V.; Bhattacharyya, D.; Viswanathan, C.L.; Steiniger, F.; Fahr, A. Cholesterol anchored arabinogalactan for asialoglycoprotein receptor targeting: synthesis, characterization, and proof of concept of hepatospecific delivery. Carbohydr. Res., 2015, 408, 33-43.
[http://dx.doi.org/10.1016/j.carres.2015.03.003] [PMID: 25841057]
[151]
Pathak, P.; Dhawan, V.; Magarkar, A.; Danne, R.; Govindarajan, S.; Ghosh, S.; Steiniger, F.; Chaudhari, P.; Gopal, V.; Bunker, A.; Róg, T.; Fahr, A.; Nagarsenker, M. Design of cholesterol arabinogalactan anchored liposomes for asialoglycoprotein receptor mediated targeting to hepatocellular carcinoma: In silico modeling, in vitro and in vivo evaluation. Int. J. Pharm., 2016, 509(1-2), 149-158.
[http://dx.doi.org/10.1016/j.ijpharm.2016.05.041] [PMID: 27231122]
[152]
Elsadek, B.; Mansour, A.; Saleem, T.; Warnecke, A.; Kratz, F. The antitumor activity of a lactosaminated albumin conjugate of doxorubicin in a chemically induced hepatocellular carcinoma rat model compared to sorafenib. Dig. Liver Dis., 2017, 49(2), 213-222.
[http://dx.doi.org/10.1016/j.dld.2016.10.003] [PMID: 27825923]
[153]
Pranatharthiharan, S.; Patel, M.D.; Malshe, V.C.; Pujari, V.; Gorakshakar, A.; Madkaikar, M.; Ghosh, K.; Devarajan, P.V. Asialoglycoprotein receptor targeted delivery of doxorubicin nanoparticles for hepatocellular carcinoma. Drug Deliv., 2017, 24(1), 20-29.
[http://dx.doi.org/10.1080/10717544.2016.1225856] [PMID: 28155331]
[154]
Varshosaz, J.; Hassanzadeh, F.; Sadeghi, H.; Khadem, M. Galactosylated nanostructured lipid carriers for delivery of 5-FU to hepatocellular carcinoma. J. Liposome Res., 2012, 22(3), 224-236.
[http://dx.doi.org/10.3109/08982104.2012.662653] [PMID: 22385296]
[155]
Cheng, M.R.; Li, Q.; Wan, T.; He, B.; Han, J.; Chen, H.X.; Yang, F.X.; Wang, W.; Xu, H.Z.; Ye, T.; Zha, B.B. Galactosylated chitosan/5-fluorouracil nanoparticles inhibit mouse hepatic cancer growth and its side effects. World J. Gastroenterol., 2012, 18(42), 6076-6087.
[http://dx.doi.org/10.3748/wjg.v18.i42.6076] [PMID: 23155336]
[156]
Liang, H.F.; Chen, C.T.; Chen, S.C.; Kulkarni, A.R.; Chiu, Y.L.; Chen, M.C.; Sung, H.W. Paclitaxel-loaded poly(gamma-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials, 2006, 27(9), 2051-2059.
[http://dx.doi.org/10.1016/j.biomaterials.2005.10.027] [PMID: 16307794]
[157]
Liu, X.; Han, M.; Xu, J.; Geng, S.; Zhang, Y.; Ye, X.; Gou, J.; Yin, T.; He, H.; Tang, X. Asialoglycoprotein receptor-targeted liposomes loaded with a norcantharimide derivative for hepatocyte-selective targeting. Int. J. Pharm., 2017, 520(1-2), 98-110.
[http://dx.doi.org/10.1016/j.ijpharm.2017.02.010] [PMID: 28167263]
[158]
Wang, Q.; Zhang, L.; Hu, W.; Hu, Z.H.; Bei, Y.Y.; Xu, J.Y.; Wang, W.J.; Zhang, X.N.; Zhang, Q. Norcantharidin-associated galactosylated chitosan nanoparticles for hepatocyte-targeted delivery. Nanomedicine (Lond.), 2010, 6(2), 371-381.
[http://dx.doi.org/10.1016/j.nano.2009.07.006] [PMID: 19699319]
[159]
Lu, W.; He, L.C.; Wang, C.H.; Li, Y.H.; Zhang, S.Q. The use of solid lipid nanoparticles to target a lipophilic molecule to the liver after intravenous administration to mice. Int. J. Biol. Macromol., 2008, 43(3), 320-324.
[http://dx.doi.org/10.1016/j.ijbiomac.2008.06.006] [PMID: 18619484]
[160]
Li, W.J.; Lian, Y.W.; Guan, Q.S.; Li, N.; Liang, W.J.; Liu, W.X.; Huang, Y.B.; Cheng, Y.; Luo, H. Liver-targeted delivery of liposome-encapsulated curcumol using galactosylated-stearate. Exp. Ther. Med., 2018, 16(2), 925-930.
[http://dx.doi.org/10.3892/etm.2018.6210] [PMID: 30112045]
[161]
Liu, X.; Liu, B.; Gao, S.; Wang, Z.; Tian, Y.; Wu, M.; Jiang, S.; Niu, Z. Glyco-decorated tobacco mosaic virus as a vector for cisplatin delivery. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(11), 2078-2085.
[http://dx.doi.org/10.1039/C7TB00100B] [PMID: 32263681]
[162]
Tian, Q.; Zhang, C.N.; Wang, X.H.; Wang, W.; Huang, W.; Cha, R.T.; Wang, C.H.; Yuan, Z.; Liu, M.; Wan, H.Y.; Tang, H. Glycyrrhetinic acid-modified chitosan/poly(ethylene glycol) nanoparticles for liver-targeted delivery. Biomaterials, 2010, 31(17), 4748-4756.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.042] [PMID: 20303163]
[163]
Qi, W.W.; Yu, H.Y.; Guo, H.; Lou, J.; Wang, Z.M.; Liu, P.; Sapin-Minet, A.; Maincent, P.; Hong, X.C.; Hu, X.M.; Xiao, Y.L. Doxorubicin-loaded glycyrrhetinic acid modified recombinant human serum albumin nanoparticles for targeting liver tumor chemotherapy. Mol. Pharm., 2015, 12(3), 675-683.
[http://dx.doi.org/10.1021/mp500394v] [PMID: 25584860]
[164]
Wu, F.; Xu, T.; Liu, C.; Chen, C.; Song, X.; Zheng, Y.; He, G. Glycyrrhetinic acid-poly(ethylene glycol)-glycyrrhetinic acid tri-block conjugates based self-assembled micelles for hepatic targeted delivery of poorly water soluble drug. ScientificWorldJournal, 2013, 2013913654
[http://dx.doi.org/10.1155/2013/913654] [PMID: 24376388]
[165]
Feng, R.; Deng, P.; Song, Z.; Chu, W.; Zhu, W.; Teng, F.; Zhou, F. Glycyrrhetinic acid-modified PEG-PCL copolymeric micelles for the delivery of curcumin. React. Funct. Polym., 2017, 111, 30-37.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2016.12.011]
[166]
Jiang, H.; Li, Z.P.; Tian, G.X.; Pan, R.Y.; Xu, C.M.; Zhang, B.; Wu, J.L. Liver-targeted liposomes for codelivery of curcumin and combretastatin A4 phosphate: preparation, characterization, and antitumor effects. Int. J. Nanomedicine, 2019, 14, 1789-1804.
[http://dx.doi.org/10.2147/IJN.S188971] [PMID: 30880980]
[167]
Chen, F.; Zhang, J.; He, Y.; Fang, X.; Wang, Y.; Chen, M. Glycyrrhetinic acid-decorated and reduction-sensitive micelles to enhance the bioavailability and anti-hepatocellular carcinoma efficacy of tanshinone IIA. Biomater. Sci., 2016, 4(1), 167-182.
[http://dx.doi.org/10.1039/C5BM00224A] [PMID: 26484363]
[168]
Tian, Q.; Wang, X.H.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. Self-assembly and liver targeting of sulfated chitosan nanoparticles functionalized with glycyrrhetinic acid. Nanomedicine (Lond.), 2012, 8(6), 870-879.
[http://dx.doi.org/10.1016/j.nano.2011.11.002] [PMID: 22100756]
[169]
Wang, X.H.; Tian, Q.; Wang, W.; Zhang, C.N.; Wang, P.; Yuan, Z. In vitro evaluation of polymeric micelles based on hydrophobically-modified sulfated chitosan as a carrier of doxorubicin. J. Mater. Sci. Mater. Med., 2012, 23(7), 1663-1674.
[http://dx.doi.org/10.1007/s10856-012-4627-1] [PMID: 22538726]
[170]
Cheng, M.; Chen, H.; Wang, Y.; Xu, H.; He, B.; Han, J.; Zhang, Z. Optimized synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and their characteristics. Int. J. Nanomedicine, 2014, 9, 695-710.
[http://dx.doi.org/10.2147/ijn.s55255] [PMID: 24493926]
[171]
Cheng, M.; Gao, X.; Wang, Y.; Chen, H.; He, B.; Xu, H.; Li, Y.; Han, J.; Zhang, Z. Synthesis of glycyrrhetinic acid-modified chitosan 5-fluorouracil nanoparticles and its inhibition of liver cancer characteristics in vitro and in vivo. Mar. Drugs, 2013, 11(9), 3517-3536.
[http://dx.doi.org/10.3390/md11093517] [PMID: 24048270]
[172]
Rohilla, R.; Garg, T.; Bariwal, J.; Goyal, A.K.; Rath, G. Development, optimization and characterization of glycyrrhetinic acid-chitosan nanoparticles of atorvastatin for liver targeting. Drug Deliv., 2016, 23(7), 2290-2297.
[http://dx.doi.org/10.3109/10717544.2014.977460] [PMID: 25379806]
[173]
Yan, G.; Chen, Q.; Xu, L.; Wei, H.; Ma, C.; Sun, Y. Preparation and evaluation of liver-targeting micelles loaded with oxaliplatin. Artif. Cells Nanomed. Biotechnol., 2016, 44(2), 491-496.
[http://dx.doi.org/10.3109/21691401.2014.962747] [PMID: 25287740]
[174]
Zhang, L.; Yao, J.; Zhou, J.; Wang, T.; Zhang, Q. Glycyrrhetinic acid-graft-hyaluronic acid conjugate as a carrier for synergistic targeted delivery of antitumor drugs. Int. J. Pharm., 2013, 441(1-2), 654-664.
[http://dx.doi.org/10.1016/j.ijpharm.2012.10.030] [PMID: 23117024]
[175]
Wang, X.; Gu, X.; Wang, H.; Sun, Y.; Wu, H.; Mao, S. Synthesis, characterization and liver targeting evaluation of self-assembled hyaluronic acid nanoparticles functionalized with glycyrrhetinic acid. Eur. J. Pharm. Sci., 2017, 96, 255-262.
[http://dx.doi.org/10.1016/j.ejps.2016.09.036] [PMID: 27693297]
[176]
Tian, G.; Pan, R.; Zhang, B.; Qu, M.; Lian, B.; Jiang, H.; Gao, Z.; Wu, J. Liver-targeted combination therapy basing on glycyrrhizic acid-modified DSPE-PEG-PEI nanoparticles for co-delivery of doxorubicin and Bcl-2 siRNA. Front. Pharmacol., 2019, 10, 4.
[http://dx.doi.org/10.3389/fphar.2019.00004] [PMID: 30723405]
[177]
Zhang, C.; Wu, Y.; Liu, T.; Zhao, Y.; Wang, X.; Wang, W.; Yuan, Z. Antitumor activity of drug loaded glycyrrhetinic acid modified alginate nanoparticles on mice bearing orthotopic liver tumor. J. Control. Release, 2011, 152(Suppl. 1), e111-e113.
[http://dx.doi.org/10.1016/j.jconrel.2011.08.158] [PMID: 22195787]
[178]
Zu, Y.; Meng, L.; Zhao, X.; Ge, Y.; Yu, X.; Zhang, Y.; Deng, Y. Preparation of 10-hydroxycamptothecin-loaded glycyrrhizic acid-conjugated bovine serum albumin nanoparticles for hepatocellular carcinoma-targeted drug delivery. Int. J. Nanomedicine, 2013, 8, 1207-1222.
[http://dx.doi.org/10.2147/ijn.s40493] [PMID: 23569373]
[179]
Chen, J.; Jiang, H.; Wu, Y.; Li, Y.; Gao, Y. A novel glycyrrhetinic acid-modified oxaliplatin liposome for liver-targeting and in vitro/vivo evaluation. Drug Des. Devel. Ther., 2015, 9, 2265-2275.
[http://dx.doi.org/10.2147/dddt.s81722] [PMID: 25945038]
[180]
Tian, J.; Wang, L.; Wang, L.; Ke, X. A wogonin-loaded glycyrrhetinic acid-modified liposome for hepatic targeting with anti-tumor effects. Drug Deliv., 2014, 21(7), 553-559.
[http://dx.doi.org/10.3109/10717544.2013.853850] [PMID: 24215357]
[181]
Lv, Y.; Li, J.; Chen, H.; Bai, Y.; Zhang, L. Glycyrrhetinic acid-functionalized mesoporous silica nanoparticles as hepatocellular carcinoma-targeted drug carrier. Int. J. Nanomedicine, 2017, 12, 4361-4370.
[http://dx.doi.org/10.2147/IJN.S135626] [PMID: 28652738]
[182]
Chen, G.; Li, J.; Cai, Y.; Zhan, J.; Gao, J.; Song, M.; Shi, Y.; Yang, Z. A glycyrrhetinic acid-modified curcumin supramolecular hydrogel for liver tumor targeting therapy. Sci. Rep., 2017, 7, 44210.
[http://dx.doi.org/10.1038/srep44210] [PMID: 28281678]
[183]
Wang, F.Z.; Xing, L.; Tang, Z.H.; Lu, J.J.; Cui, P.F.; Qiao, J.B.; Jiang, L.; Jiang, H.L.; Zong, L. Codelivery of doxorubicin and shAkt1 by poly(ethylenimine)-glycyrrhetinic acid nanoparticles to induce autophagy-mediated liver cancer combination therapy. Mol. Pharm., 2016, 13(4), 1298-1307.
[http://dx.doi.org/10.1021/acs.molpharmaceut.5b00879] [PMID: 26894988]
[184]
Tao, Y.; He, J.; Zhang, M.; Hao, Y.; Liu, J.; Ni, P. Galactosylated biodegradable poly(ε-caprolactone-co-phosphoester) random copolymer nanoparticles for potent hepatoma-targeting delivery of doxorubicin. Polym. Chem., 2014, 5, 3443-3452.
[http://dx.doi.org/10.1039/C4PY00024B]
[185]
Shah, S.M.; Goel, P.N.; Jain, A.S.; Pathak, P.O.; Padhye, S.G.; Govindarajan, S.; Ghosh, S.S.; Chaudhari, P.R.; Gude, R.P.; Gopal, V.; Nagarsenker, M.S. Liposomes for targeting hepatocellular carcinoma: use of conjugated arabinogalactan as targeting ligand. Int. J. Pharm., 2014, 477(1-2), 128-139.
[http://dx.doi.org/10.1016/j.ijpharm.2014.10.014] [PMID: 25311181]
[186]
Qi, X.; Rui, Y.; Fan, Y.; Chen, H.; Ma, N.; Wu, Z. Galactosylated chitosan-grafted multiwall carbon nanotubes for pH-dependent sustained release and hepatic tumor-targeted delivery of doxorubicin in vivo. Colloids Surf. B Biointerfaces, 2015, 133, 314-322.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.003] [PMID: 26123852]
[187]
Li, H.; Cui, Y.; Sui, J.; Bian, S.; Sun, Y.; Liang, J.; Fan, Y.; Zhang, X. Efficient delivery of DOX to nuclei of hepatic carcinoma cells in the subcutaneous tumor model using pH-sensitive pullulan-DOX conjugates. ACS Appl. Mater. Interfaces, 2015, 7(29), 15855-15865.
[http://dx.doi.org/10.1021/acsami.5b03150] [PMID: 26140410]
[188]
Zhao, J.; Yan, C.; Chen, Z.; Liu, J.; Song, H.; Wang, W.; Liu, J.; Yang, N.; Zhao, Y.; Chen, L. Dual-targeting nanoparticles with core-crosslinked and pH/redox-bioresponsive properties for enhanced intracellular drug delivery. J. Colloid Interface Sci., 2019, 540, 66-77.
[http://dx.doi.org/10.1016/j.jcis.2019.01.021] [PMID: 30634060]
[189]
Zhao, R.; Li, T.; Zheng, G.; Jiang, K.; Fan, L.; Shao, J. Simultaneous inhibition of growth and metastasis of hepatocellular carcinoma by co-delivery of ursolic acid and sorafenib using lactobionic acid modified and pH-sensitive chitosan-conjugated mesoporous silica nanocomplex. Biomaterials, 2017, 143, 1-16.
[http://dx.doi.org/10.1016/j.biomaterials.2017.07.030] [PMID: 28755539]
[190]
Liu, Y.; Zong, Y.; Yang, Z.; Luo, M.; Li, G.; Yingsa, W.; Cao, Y.; Xiao, M.; Kong, T.; He, J.; Liu, X.; Lei, J. Dual-targeted controlled delivery based on folic acid modified pectin-based nanoparticles for combination therapy of liver cancer. ACS Sustain. Chem.& Eng., 2019, 7, 3614-3623.
[http://dx.doi.org/10.1021/acssuschemeng.8b06586]
[191]
Tian, Z.; Yang, C.; Wang, W.; Yuan, Z. Shieldable tumor targeting based on pH responsive self-assembly/disassembly of gold nanoparticles. ACS Appl. Mater. Interfaces, 2014, 6(20), 17865-17876.
[http://dx.doi.org/10.1021/am5045339] [PMID: 25233129]
[192]
Zhang, J.; Zhang, M.; Ji, J.; Fang, X.; Pan, X.; Wang, Y.; Wu, C.; Chen, M. Glycyrrhetinic acid-mediated polymeric drug delivery targeting the acidic microenvironment of hepatocellular carcinoma. Pharm. Res., 2015, 32(10), 3376-3390.
[http://dx.doi.org/10.1007/s11095-015-1714-2] [PMID: 26148773]
[193]
Chen, Q.; Ding, H.; Zhou, J.; Zhao, X.; Zhang, J.; Yang, C.; Li, K.; Qiao, M.; Hu, H.; Ding, P.; Zhao, X. Novel glycyrrhetinic acid conjugated pH-sensitive liposomes for the delivery of doxorubicin and its antitumor activities. RSC Advances, 2016, 6, 17782-17791.
[http://dx.doi.org/10.1039/C6RA01580H]
[194]
Yan, T.; Li, D.; Li, J.; Cheng, F.; Cheng, J.; Huang, Y.; He, J. Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(ε-caprolactone) copolymer micelle for combination cancer chemotherapy. Colloids Surf. B Biointerfaces, 2016, 145, 526-538.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.070] [PMID: 27281238]
[195]
Yan, T.; Cheng, J.; Liu, Z.; Cheng, F.; Wei, X.; Huang, Y.; He, J. Acid-sensitive polymeric vector targeting to hepatocarcinoma cells via glycyrrhetinic acid receptor-mediated endocytosis. Mater. Sci. Eng. C, 2018, 87, 32-40.
[http://dx.doi.org/10.1016/j.msec.2018.02.013] [PMID: 29549947]
[196]
Wu, J.L.; Tian, G.X.; Yu, W.J.; Jia, G.T.; Sun, T.Y.; Gao, Z.Q. pH-responsive hyaluronic acid-based mixed micelles for the hepatoma-targeting delivery of doxorubicin. Int. J. Mol. Sci., 2016, 17(4), 364.
[http://dx.doi.org/10.3390/ijms17040364] [PMID: 27043540]
[197]
Allen, T.M.; Cullis, P.R. Drug delivery systems: entering the mainstream. Science, 2004, 303(5665), 1818-1822.
[http://dx.doi.org/10.1126/science.1095833] [PMID: 15031496]
[198]
Thomas, M.B.; Abbruzzese, J.L. Opportunities for targeted therapies in hepatocellular carcinoma. J. Clin. Oncol., 2005, 23(31), 8093-8108.
[http://dx.doi.org/10.1200/JCO.2004.00.1537] [PMID: 16258107]
[199]
Patel, N.R.; Pattni, B.S.; Abouzeid, A.H.; Torchilin, V.P. Nanopreparations to overcome multidrug resistance in cancer. Adv. Drug Deliv. Rev., 2013, 65(13-14), 1748-1762.
[http://dx.doi.org/10.1016/j.addr.2013.08.004] [PMID: 23973912]
[200]
Cuestas, M.L.; Castillo, A.I.; Sosnik, A.; Mathet, V.L. Downregulation of mdr1 and abcg2 genes is a mechanism of inhibition of efflux pumps mediated by polymeric amphiphiles. Bioorg. Med. Chem. Lett., 2012, 22(21), 6577-6579.
[http://dx.doi.org/10.1016/j.bmcl.2012.09.012] [PMID: 23031592]
[201]
Batrakova, E.V.; Li, S.; Vinogradov, S.V.; Alakhov, V.Y.; Miller, D.W.; Kabanov, A.V. Mechanism of pluronic effect on P-glycoprotein efflux system in blood-brain barrier: contributions of energy depletion and membrane fluidization. J. Pharmacol. Exp. Ther., 2001, 299(2), 483-493.
[PMID: 11602658]
[202]
Cambón, A.; Brea, J.; Loza, M.I.; Alvarez-Lorenzo, C.; Concheiro, A.; Barbosa, S.; Taboada, P.; Mosquera, V. Cytocompatibility and P-glycoprotein inhibition of block copolymers: structure-activity relationship. Mol. Pharm., 2013, 10(8), 3232-3241.
[http://dx.doi.org/10.1021/mp4002848] [PMID: 23763603]
[203]
Bae, Y.H.; Park, K. Targeted drug delivery to tumors: myths, reality and possibility. J. Control. Release, 2011, 153(3), 198-205.
[http://dx.doi.org/10.1016/j.jconrel.2011.06.001] [PMID: 21663778]
[204]
Zhang, Y.N.; Poon, W.; Tavares, A.J.; McGilvray, I.D.; Chan, W.C.W. Nanoparticle-liver interactions: cellular uptake and hepatobiliary elimination. J. Control. Release, 2016, 240, 332-348.
[http://dx.doi.org/10.1016/j.jconrel.2016.01.020] [PMID: 26774224]
[205]
Kieber-Emmons, T; Hutchins, LF; Emanuel, PD; Pennisi, A; Makhoul, I Abstract P6-10-06: Inducing immune responses to tumor associated carbohydrate antigens by a carbohydrate mimetic peptide vaccine: clinical experience in phase I and phase II trials. Cancer Res,, 2017. 77, P6-10-06.
[http://dx.doi.org/10.1158/1538-7445.SABCS16-P6-10-06]
[206]
Chen, S.; Cao, Q.; Wen, W.; Wang, H. Targeted therapy for hepatocellular carcinoma: challenges and opportunities. Cancer Lett., 2019, 460, 1-9.
[http://dx.doi.org/10.1016/j.canlet.2019.114428] [PMID: 31207320]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy