Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Research Article

The Shift of HbF to HbA under Influence of SKA2 Gene; A Possible Link between Cortisol and Hematopoietic Maturation in Term and Preterm Newborns

Author(s): Janat Ijabi, Reza Afrisham, Hemen Moradi-Sardareh, Parisa Roozehdar, Fatemeh Seifi, Amirhossein Sahebkar and Roghayeh Ijabi*

Volume 21, Issue 3, 2021

Published on: 04 May, 2020

Page: [485 - 494] Pages: 10

DOI: 10.2174/1871530320666200504091354

Price: $65

Abstract

Background: We hypothesized that the SKA2 gene can convert hemoglobin F to A leading to the maturity of the hematopoietic system by glucocorticoid hormone; so, the present study aimed to investigate the health outcome of newborns by using the effect of SKA2 gene on hematopoietic maturation.

Methods: At first, 142 samples were divided into term and preterm. After sampling from the umbilical cord blood, the expression of SKA2 genes and HbA and F were evaluated by quantitative RT-PCR. The blood gases were measured by Campact 3 device. Finally, the cortisol level was measured by ELISA method and HbA and F levels were investigated by capillary electrophoresis.

Results: The blood gases and Apgar scores were more favorable in term newborns (P <0.001). Levels of protein/expression of HbF in newborns with Apgar score greater than 7 was lower than that of the newborns with Apgar score below 7 (P <0.001). Cortisol and HbA levels were considerably higher in term newborns compared to the preterm ones (P <0.001). In the preterm and term groups, SKA2 gene expression had a positive and significant relationship with cortisol and HbA levels as well as a negative relationship with the HbF level. In the preterm group, a positive and significant relationship was observed between the expression of SKA2 and HbF genes.

Conclusion: The results revealed that the SKA2 gene affected hematopoietic maturation in preterm and term newborns and the health outcome of newborns improved by increasing HbA level.

Keywords: Cortisol, hemoglobin A, hemoglobin F, preterm infant, SKA2 gene

Graphical Abstract

[1]
Bodnar, L.M.; Platt, R.W.; Simhan, H.N. Early-pregnancy vitamin D deficiency and risk of preterm birth subtypes. Obstet. Gynecol., 2015, 125(2), 439-447.
[http://dx.doi.org/10.1097/AOG.0000000000000621] [PMID: 25569002]
[2]
MacDorman, M.F.; Mathews, T.; Mohangoo, A.D.; Zeitlin, J. International comparisons of infant mortality and related factors: United States and Europe, 2010. Natl. Vital Stat. Rep., 2014, 63(5), 1-6.
[PMID: 25252091]
[3]
Gyamfi-Bannerman, C.; Thom, E.A.; Blackwell, S.C.; Tita, A.T.; Reddy, U.M.; Saade, G.R.; Rouse, D.J.; McKenna, D.S.; Clark, E.A.; Thorp, J.M., Jr; Chien, E.K.; Peaceman, A.M.; Gibbs, R.S.; Swamy, G.K.; Norton, M.E.; Casey, B.M.; Caritis, S.N.; Tolosa, J.E.; Sorokin, Y.; VanDorsten, J.P.; Jain, L. Antenatal betamethasone for women at risk for late preterm delivery. N. Engl. J. Med., 2016, 374(14), 1311-1320.
[http://dx.doi.org/10.1056/NEJMoa1516783] [PMID: 26842679]
[4]
Mwansa-Kambafwile, J.; Cousens, S.; Hansen, T.; Lawn, J.E. Antenatal steroids in preterm labour for the prevention of neonatal deaths due to complications of preterm birth. Int. J. Epidemiol., 2010, 39(suppl_1), i122-i33.,
[http://dx.doi.org/10.1093/ije/dyq029]
[5]
Schmitz, T. Prevention of preterm birth complications by antenatal corticosteroid administration. J. Gynecol. Obstet. Biol. Reprod. (Paris), 2016, 45(10), 1399-1417.
[http://dx.doi.org/10.1016/j.jgyn.2016.09.008] [PMID: 27776846]
[6]
Gázquez Serrano, I.M.; Arroyos Plana, A.; Díaz Morales, O.; Herráiz Perea, C.; Holgueras Bragado, A. Antenatal corticosteroid therapy and late preterm infant morbidity and mortality. An. Pediatr. (Barc.), 2014, 81(6), 374-382.
[PMID: 24593889]
[7]
Li, L.; Wu, R.; Kong, X.; Huang, L.; Wang, Z.; Hao, J. Effect of anemia and blood transfusion on tissue oxygen saturation and blood pressure in very preterm infants. Int. J. Clin. Exp. Med., 2017, 10(2), 2974-2979.
[8]
Sotiriadis, A.; Tsiami, A.; Papatheodorou, S.; Baschat, A.A.; Sarafidis, K.; Makrydimas, G. Neurodevelopmental outcome after a single course of antenatal steroids in children born preterm: a systematic review and meta-analysis. Obstet. Gynecol., 2015, 125(6), 1385-1396.
[http://dx.doi.org/10.1097/AOG.0000000000000748] [PMID: 26000510]
[9]
Roberts, D.; Brown, J.; Medley, N.; Dalziel, S.R. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev., 2017, (3)CD004454
[http://dx.doi.org/10.1002/14651858.CD004454.pub3]
[10]
Bauer, A.; Tronche, F.; Wessely, O.; Kellendonk, C.; Reichardt, H.M.; Steinlein, P.; Schütz, G.; Beug, H. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev., 1999, 13(22), 2996-3002.
[http://dx.doi.org/10.1101/gad.13.22.2996] [PMID: 10580006]
[11]
Liu, G.; Segrè, J.; Gülmezoglu, A.; Mathai, M.; Smith, J.M.; Hermida, J.; Simen-Kapeu, A.; Barker, P.; Jere, M.; Moses, E.; Moxon, S.G.; Dickson, K.E.; Lawn, J.E.; Althabe, F. Working group for UN commission of life saving commodities antenatal corticosteroids., Antenatal corticosteroids for management of preterm birth: a multi-country analysis of health system bottlenecks and potential solutions. BMC Pregnancy Childbirth, 2015, 15(2), (Suppl. 2), S3.
[http://dx.doi.org/10.1186/1471-2393-15-S2-S3] [PMID: 26390927]
[12]
Davis, E.P.; Head, K.; Buss, C.; Sandman, C.A. Prenatal maternal cortisol concentrations predict neurodevelopment in middle childhood. Psychoneuroendocrinology, 2017, 75, 56-63.
[http://dx.doi.org/10.1016/j.psyneuen.2016.10.005] [PMID: 27771566]
[13]
Brownfoot, F.C.; Gagliardi, D.I.; Bain, E.; Middleton, P.; Crowther, C.A. Different corticosteroids and regimens for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst. Rev., 2013, (8)CD006764
[http://dx.doi.org/10.1002/14651858.CD006764.pub3] [PMID: 23990333]
[14]
Prinz, P.N.; Bailey, S.L.; Woods, D.L. Sleep impairments in healthy seniors: roles of stress, cortisol, and interleukin-1 beta. Chronobiol. Int., 2000, 17(3), 391-404.
[http://dx.doi.org/10.1081/CBI-100101053] [PMID: 10841212]
[15]
Fast, M.D.; Hosoya, S.; Johnson, S.C.; Afonso, L.O. Cortisol response and immune-related effects of Atlantic salmon (Salmo salar Linnaeus) subjected to short- and long-term stress. Fish Shellfish Immunol., 2008, 24(2), 194-204.
[http://dx.doi.org/10.1016/j.fsi.2007.10.009] [PMID: 18065240]
[16]
Straub, R.H.; Cutolo, M. Glucocorticoids and chronic inflammation. Front. Mol. Neurosci., 2016, 5, 30.
[http://dx.doi.org/10.1093/rheumatology/kew348]
[17]
Deutsch, V.R.; Pick, M.; Perry, C.; Grisaru, D.; Hemo, Y.; Golan-Hadari, D.; Grant, A.; Eldor, A.; Soreq, H. The stress-associated acetylcholinesterase variant AChE-R is expressed in human CD34(+) hematopoietic progenitors and its C-terminal peptide ARP promotes their proliferation. Exp. Hematol., 2002, 30(10), 1153-1161.
[http://dx.doi.org/10.1016/S0301-472X(02)00900-1] [PMID: 12384146]
[18]
Gilboa-Geffen, A.; Hartmann, G.; Soreq, H. Stressing hematopoiesis and immunity: an acetylcholinesterase window into nervous and immune system interactions. Front. Mol. Neurosci., 2012, 5, 30.
[http://dx.doi.org/10.3389/fnmol.2012.00030] [PMID: 22448158]
[19]
Pataryas, H.A.; Stamatoyannopoulos, G. Hemoglobins in human fetuses: evidence for adult hemoglobin production after the 11th gestational week. Blood, 1972, 39(5), 688-696.
[http://dx.doi.org/10.1182/blood.V39.5.688.688] [PMID: 5022717]
[20]
Zitnik, G.; Peterson, K.; Stamatoyannopoulos, G.; Papayannopoulou, T. Effects of butyrate and glucocorticoids on gamma- to beta-globin gene switching in somatic cell hybrids. Mol. Cell. Biol., 1995, 15(2), 790-795.
[http://dx.doi.org/10.1128/MCB.15.2.790] [PMID: 7529873]
[21]
CHIBA, H; SASAKI, R Functions of 2, 3-bisphosphoglycerate and its metabolism. Current topics in cellular regulation. 14; Elsevier, 1978, pp. 75-116.
[22]
Barvitenko, N; Adragna, N; Weber, R Erythrocyte signal transduction pathways, their oxygenation dependence and functional significance., Cell. Physiol. Biochem., 2005, 15(1-4), 001-18.
[http://dx.doi.org/10.1159/000083634]
[23]
Rice, L.; Waters, C.E.; Eccles, J.; Garside, H.; Sommer, P.; Kay, P.; Blackhall, F.H.; Zeef, L.; Telfer, B.; Stratford, I.; Clarke, R.; Singh, D.; Stevens, A.; White, A.; Ray, D.W. Identification and functional analysis of SKA2 interaction with the glucocorticoid receptor. J. Endocrinol., 2008, 198(3), 499-509.
[http://dx.doi.org/10.1677/JOE-08-0019] [PMID: 18583474]
[24]
Glass, H.C.; Costarino, A.T.; Stayer, S.A.; Brett, C.M.; Cladis, F.; Davis, P.J. Outcomes for extremely premature infants. Anesth. Analg., 2015, 120(6), 1337-1351.
[http://dx.doi.org/10.1213/ANE.0000000000000705] [PMID: 25988638]
[25]
Ijabi, J.; Moradi-Sardareh, H.; Afrisham, R.; Seifi, F.; Ijabi, R. SKA2 gene - a novel biomarker for latent anxiety and preterm birth prediction. Eur. J. Obstet. Gynecol. Reprod. Biol., 2019, 237, 106-112.
[http://dx.doi.org/10.1016/j.ejogrb.2019.04.013] [PMID: 31035118]
[26]
DeLemos, R.A.; Shermeta, D.W.; Knelson, J.H.; Kotas, R.; Avery, M.E. Acceleration of appearance of pulmonary surfactant in the fetal lamb by administration of corticosteroids. Am. Rev. Respir. Dis., 1970, 102(3), 459-461.
[PMID: 5450911]
[27]
Shi, F.; Liao, Y.; Dong, Y.; Wang, Y.; Xie, Y.; Wan, H. Claudin18 associated with corticosteroid-induced expression of surfactant proteins in pulmonary epithelial cells. J. Matern. Fetal Neonatal Med., 2017, 1-6.
[PMID: 29082763]
[28]
Weaver, T.E.; Nogee, L.M.; Jobe, A.H. Surfactant During Lung Development; Fetal & Neonatal Lung Development, 2016, p. 141.
[29]
Orkin, S.H. Diversification of haematopoietic stem cells to specific lineages. Nat. Rev. Genet., 2000, 1(1), 57-64.
[http://dx.doi.org/10.1038/35049577] [PMID: 11262875]
[30]
Eaves, C.J. Hematopoietic stem cells: concepts, definitions and the new reality. Blood, 2015, 125(17), 2605-2613.
[http://dx.doi.org/10.1182/blood-2014-12-570200]
[31]
Delivoria-Papadopoulos, M.; Roncevic, N.P.; Oski, F.A. Postnatal changes in oxygen transport of term, premature, and sick infants: the role of red cell 2, 3-diphosphoglycerate and adult hemoglobin. Pediatr. Res., 1971, 5(6), 235.
[http://dx.doi.org/10.1203/00006450-197106000-00001]
[32]
Bureau, M.A.; Shapcott, D.; Berthiaume, Y.; Monette, J.; Blouin, D.; Blanchard, P.; Begin, R. Maternal cigarette smoking and fetal oxygen transport: a study of P50, 2,3-diphosphoglycerate, total hemoglobin, hematocrit, and type F hemoglobin in fetal blood. Pediatrics, 1983, 72(1), 22-26.
[PMID: 6191270]
[33]
Fujishima, M.; Sugi, T.; Choki, J.; Yamaguchi, T.; Omae, T. Cerebrospinal fluid and arterial lactate, pyruvate and acid-base balance in patients with intracranial hemorrhages. Stroke, 1975, 6(6), 707-714.
[http://dx.doi.org/10.1161/01.STR.6.6.707] [PMID: 1198637]
[34]
Zupping, R.; Kaasik, A.E.; Raudam, E. Cerebrospinal fluid metabolic acidosis and brain oxygen supply. Studies in patients with brain infarction. Arch. Neurol., 1971, 25(1), 33-38.
[http://dx.doi.org/10.1001/archneur.1971.00490010043006] [PMID: 5146409]
[35]
Go, S.L.; Singh, J.M. Pro/con debate: should PaCO2 be tightly controlled in all patients with acute brain injuries? Crit. Care, 2013, 17(1), 202.
[http://dx.doi.org/10.1186/cc11389] [PMID: 23360555]
[36]
Perrine, S.P.; Rudolph, A.; Faller, D.V.; Roman, C.; Cohen, R.A.; Chen, S-J.; Kan, Y.W. Butyrate infusions in the ovine fetus delay the biologic clock for globin gene switching. Proc. Natl. Acad. Sci. USA, 1988, 85(22), 8540-8542.
[http://dx.doi.org/10.1073/pnas.85.22.8540] [PMID: 2460870]
[37]
Dudakov, J.A.; Khong, D.M.; Boyd, R.L.; Chidgey, A.P. Feeding the fire: the role of defective bone marrow function in exacerbating thymic involution. Trends Immunol., 2010, 31(5), 191-198.
[http://dx.doi.org/10.1016/j.it.2010.02.002] [PMID: 20356793]
[38]
Rafii, S.; Shapiro, F.; Pettengell, R.; Ferris, B.; Nachman, R.L.; Moore, M.A.; Asch, A.S. Human bone marrow microvascular endothelial cells support long-term proliferation and differentiation of myeloid and megakaryocytic progenitors. Blood, 1995, 86(9), 3353-3363.
[http://dx.doi.org/10.1182/blood.V86.9.3353.bloodjournal8693353] [PMID: 7579438]
[39]
Cavazzana-Calvo, M.; Fischer, A.; Bushman, F.D.; Payen, E.; Hacein-Bey-Abina, S.; Leboulch, P. Is normal hematopoiesis maintained solely by long-term multipotent stem cells? Blood, 2011, 117(17), 4420-4424.
[http://dx.doi.org/10.1182/blood-2010-09-255679]
[40]
Hoogduijn, M.J.; Cheng, A.; Genever, P.G. Functional nicotinic and muscarinic receptors on mesenchymal stem cells. Stem Cells Dev., 2009, 18(1), 103-112.
[http://dx.doi.org/10.1089/scd.2008.0032] [PMID: 18393628]
[41]
Meshorer, E.; Erb, C.; Gazit, R.; Pavlovsky, L.; Kaufer, D.; Friedman, A.; Glick, D.; Ben-Arie, N.; Soreq, H. Alternative splicing and neuritic mRNA translocation under long-term neuronal hypersensitivity. Science, 2002, 295(5554), 508-512.
[http://dx.doi.org/10.1126/science.1066752] [PMID: 11799248]
[42]
Pick, M.; Perry, C.; Lapidot, T.; Guimaraes-Sternberg, C.; Naparstek, E.; Deutsch, V.; Soreq, H. Stress-induced cholinergic signaling promotes inflammation-associated thrombopoiesis. Blood, 2006, 107(8), 3397-3406.
[http://dx.doi.org/10.1182/blood-2005-08-3240] [PMID: 16380450]
[43]
Meshorer, E.; Bryk, B.; Toiber, D.; Cohen, J.; Podoly, E.; Dori, A.; Soreq, H. SC35 promotes sustainable stress-induced alternative splicing of neuronal acetylcholinesterase mRNA. Mol. Psychiatry, 2005, 10(11), 985-997.
[http://dx.doi.org/10.1038/sj.mp.4001735] [PMID: 16116489]
[44]
Guintivano, J.; Brown, T.; Newcomer, A.; Jones, M.; Cox, O.; Maher, B.S.; Eaton, W.W.; Payne, J.L.; Wilcox, H.C.; Kaminsky, Z.A. Identification and replication of a combined epigenetic and genetic biomarker predicting suicide and suicidal behaviors. Am. J. Psychiatry, 2014, 171(12), 1287-1296.
[http://dx.doi.org/10.1176/appi.ajp.2014.14010008] [PMID: 25073599]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy