Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

The Effect of Melatonin Modulation of Non-coding RNAs on Central Nervous System Disorders: An Updated Review

Author(s): Jianan Lu, Yujie Luo, Shuhao Mei, Yuanjian Fang, Jianmin Zhang* and Sheng Chen*

Volume 19, Issue 1, 2021

Published on: 02 May, 2020

Page: [3 - 23] Pages: 21

DOI: 10.2174/1570159X18666200503024700

Price: $65

Abstract

Melatonin is a hormone produced in and secreted by the pineal gland. Besides its role in regulating circadian rhythms, melatonin has a wide range of protective functions in the central nervous system (CNS) disorders. The mechanisms underlying this protective function are associated with the regulatory effects of melatonin on related genes and proteins. In addition to messenger ribonucleic acid (RNA) that can be translated into protein, an increasing number of non-coding RNAs in the human body are proven to participate in many diseases. This review discusses the current progress of research on the effects of melatonin modulation of non-coding RNAs (ncRNAs), including microRNA, long ncRNA, and circular RNA. The role of melatonin in regulating common pathological mechanisms through these ncRNAs is also summarized. Furthermore, the ncRNAs, currently shown to be involved in melatonin signaling in CNS diseases, are discussed. The information compiled in this review will open new avenues for future research into melatonin mechanisms and provide a further understanding of ncRNAs in the CNS.

Keywords: Central nervous system (CNS), circRNA, lncRNA, melatonin, microRNA, non-coding RNA (ncRNA).

Graphical Abstract

[1]
Tordjman, S.; Chokron, S.; Delorme, R.; Charrier, A.; Bellissant, E.; Jaafari, N.; Fougerou, C. Melatonin: pharmacology, functions and therapeutic benefits. Curr. Neuropharmacol., 2017, 15(3), 434-443.
[http://dx.doi.org/10.2174/1570159X14666161228122115] [PMID: 28503116]
[2]
Cipolla-Neto, J.; Amaral, F.G.D. Melatonin as a hormone: new physiological and clinical insights. Endocr. Rev., 2018, 39(6), 990-1028.
[http://dx.doi.org/10.1210/er.2018-00084] [PMID: 30215696]
[3]
Fernández, A.; Ordóñez, R.; Reiter, R.J.; González-Gallego, J.; Mauriz, J.L. Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J. Pineal Res., 2015, 59(3), 292-307.
[http://dx.doi.org/10.1111/jpi.12264] [PMID: 26201382]
[4]
Wang, Z.; Zhou, F.; Dou, Y.; Tian, X.; Liu, C.; Li, H.; Shen, H.; Chen, G. Melatonin alleviates intracerebral hemorrhage-induced secondary brain injury in rats via suppressing apoptosis, inflammation, oxidative stress, dna damage, and mitochondria injury. Transl. Stroke Res., 2018, 9(1), 74-91.
[http://dx.doi.org/10.1007/s12975-017-0559-x] [PMID: 28766251]
[5]
Kilic, E.; Ozdemir, Y.G.; Bolay, H.; Keleştimur, H.; Dalkara, T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J. Cereb. Blood Flow Metab., 1999, 19(5), 511-516.
[http://dx.doi.org/10.1097/00004647-199905000-00005] [PMID: 10326718]
[6]
Shukla, M.; Govitrapong, P.; Boontem, P.; Reiter, R.J.; Satayavivad, J. Mechanisms of melatonin in alleviating Alzheimer’s Disease. Curr. Neuropharmacol., 2017, 15(7), 1010-1031.
[http://dx.doi.org/10.2174/1570159X15666170313123454] [PMID: 28294066]
[7]
Polimeni, G.; Esposito, E.; Bevelacqua, V.; Guarneri, C.; Cuzzocrea, S. Role of melatonin supplementation in neurodegenerative disorders. Front. Biosci., 2014, 19, 429-446.
[http://dx.doi.org/10.2741/4217] [PMID: 24389194]
[8]
Consortium, E.P. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature, 2012, 489(7414), 57-74.
[http://dx.doi.org/10.1038/nature11247] [PMID: 22955616]
[9]
Djebali, S.; Davis, C.A.; Merkel, A.; Dobin, A.; Lassmann, T.; Mortazavi, A.; Tanzer, A.; Lagarde, J.; Lin, W.; Schlesinger, F.; Xue, C.; Marinov, G.K.; Khatun, J.; Williams, B.A.; Zaleski, C.; Rozowsky, J.; Röder, M.; Kokocinski, F.; Abdelhamid, R.F.; Alioto, T.; Antoshechkin, I.; Baer, M.T.; Bar, N.S.; Batut, P.; Bell, K.; Bell, I.; Chakrabortty, S.; Chen, X.; Chrast, J.; Curado, J.; Derrien, T.; Drenkow, J.; Dumais, E.; Dumais, J.; Duttagupta, R.; Falconnet, E.; Fastuca, M.; Fejes-Toth, K.; Ferreira, P.; Foissac, S.; Fullwood, M.J.; Gao, H.; Gonzalez, D.; Gordon, A.; Gunawardena, H.; Howald, C.; Jha, S.; Johnson, R.; Kapranov, P.; King, B.; Kingswood, C.; Luo, O.J.; Park, E.; Persaud, K.; Preall, J.B.; Ribeca, P.; Risk, B.; Robyr, D.; Sammeth, M.; Schaffer, L.; See, L.H.; Shahab, A.; Skancke, J.; Suzuki, A.M.; Takahashi, H.; Tilgner, H.; Trout, D.; Walters, N.; Wang, H.; Wrobel, J.; Yu, Y.; Ruan, X.; Hayashizaki, Y.; Harrow, J.; Gerstein, M.; Hubbard, T.; Reymond, A.; Antonarakis, S.E.; Hannon, G.; Giddings, M.C.; Ruan, Y.; Wold, B.; Carninci, P.; Guigó, R.; Gingeras, T.R. Landscape of transcription in human cells. Nature, 2012, 489(7414), 101-108.
[http://dx.doi.org/10.1038/nature11233] [PMID: 22955620]
[10]
Beermann, J.; Piccoli, M.T.; Viereck, J.; Thum, T. Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol. Rev., 2016, 96(4), 1297-1325.
[http://dx.doi.org/10.1152/physrev.00041.2015] [PMID: 27535639]
[11]
Su, S.C.; Reiter, R.J.; Hsiao, H.Y.; Chung, W.H.; Yang, S.F. Functional interaction between melatonin signaling and noncoding RNAs. Trends Endocrinol. Metab., 2018, 29(6), 435-445.
[http://dx.doi.org/10.1016/j.tem.2018.03.008] [PMID: 29631868]
[12]
Romano, G.; Veneziano, D.; Acunzo, M.; Croce, C.M. Small non-coding RNA and cancer. Carcinogenesis, 2017, 38(5), 485-491.
[http://dx.doi.org/10.1093/carcin/bgx026] [PMID: 28449079]
[13]
Chew, C.L.; Conos, S.A.; Unal, B.; Tergaonkar, V. Noncoding RNAs: master regulators of inflammatory signaling. Trends Mol. Med., 2018, 24(1), 66-84.
[http://dx.doi.org/10.1016/j.molmed.2017.11.003] [PMID: 29246760]
[14]
Gomes, C.P.C.; Spencer, H.; Ford, K.L.; Michel, L.Y.M.; Baker, A.H.; Emanueli, C.; Balligand, J.L.; Devaux, Y. Cardiolinc network. The function and therapeutic potential of long non-coding rnas in cardiovascular development and disease. Mol. Ther. Nucleic Acids, 2017, 8, 494-507.
[http://dx.doi.org/10.1016/j.omtn.2017.07.014] [PMID: 28918050]
[15]
Sarkar, S.N.; Russell, A.E.; Engler-Chiurazzi, E.B.; Porter, K.N.; Simpkins, J.W. MicroRNAs and the genetic nexus of brain aging, neuroinflammation, neurodegeneration, and brain trauma. Aging Dis., 2019, 10(2), 329-352.
[http://dx.doi.org/10.14336/AD.2018.0409] [PMID: 31011481]
[16]
Gu, J.; Lu, Z.; Ji, C.; Chen, Y.; Liu, Y.; Lei, Z.; Wang, L.; Zhang, H.T.; Li, X. Melatonin inhibits proliferation and invasion via repression of miRNA-155 in glioma cells. Biomed. Pharmacother., 2017, 93, 969-975.
[http://dx.doi.org/10.1016/j.biopha.2017.07.010] [PMID: 28724215]
[17]
Wang, T.H.; Hsueh, C.; Chen, C.C.; Li, W.S.; Yeh, C.T.; Lian, J.H.; Chang, J.L.; Chen, C.Y. Melatonin inhibits the progression of hepatocellular carcinoma through MicroRNA Let7i-3p mediated RAF1 reduction. Int. J. Mol. Sci., 2018, 19(9)E2687
[http://dx.doi.org/10.3390/ijms19092687] [PMID: 30201903]
[18]
Wang, T.H.; Wu, C.H.; Yeh, C.T.; Su, S.C.; Hsia, S.M.; Liang, K.H.; Chen, C.C.; Hsueh, C.; Chen, C.Y. Melatonin suppresses hepatocellular carcinoma progression via lncRNA-CPS1-IT-mediated HIF-1α inactivation. Oncotarget, 2017, 8(47), 82280-82293.
[http://dx.doi.org/10.18632/oncotarget.19316] [PMID: 29137263]
[19]
Bartel, D.P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[20]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[21]
Li, G.; Morris-Blanco, K.C.; Lopez, M.S.; Yang, T.; Zhao, H.; Vemuganti, R.; Luo, Y. Impact of microRNAs on ischemic stroke: From pre- to post-disease. Prog. Neurobiol., 2018, 163-164, 59-78.
[http://dx.doi.org/10.1016/j.pneurobio.2017.08.002] [PMID: 28842356]
[22]
Sørensen, S.S.; Nygaard, A.B.; Nielsen, M.Y.; Jensen, K.; Christensen, T. miRNA expression profiles in cerebrospinal fluid and blood of patients with acute ischemic stroke. Transl. Stroke Res., 2014, 5(6), 711-718.
[http://dx.doi.org/10.1007/s12975-014-0364-8] [PMID: 25127724]
[23]
Sun, P.; Liu, D.Z.; Jickling, G.C.; Sharp, F.R.; Yin, K.J. MicroRNA-based therapeutics in central nervous system injuries. J. Cereb. Blood Flow Metab., 2018, 38(7), 1125-1148.
[http://dx.doi.org/10.1177/0271678X18773871] [PMID: 29708005]
[24]
Tiedt, S.; Prestel, M.; Malik, R.; Schieferdecker, N.; Duering, M.; Kautzky, V.; Stoycheva, I.; Böck, J.; Northoff, B.H.; Klein, M.; Dorn, F.; Krohn, K.; Teupser, D.; Liesz, A.; Plesnila, N.; Holdt, L.M.; Dichgans, M. RNA-Seq identifies circulating miR-125a-5p, miR-125b-5p, and miR-143-3p as Potential biomarkers for acute ischemic stroke. Circ. Res., 2017, 121(8), 970-980.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311572] [PMID: 28724745]
[25]
Chen, J.; Cui, C.; Yang, X.; Xu, J.; Venkat, P.; Zacharek, A.; Yu, P.; Chopp, M. MiR-126 affects brain-heart interaction after cerebral ischemic stroke. Transl. Stroke Res., 2017, 8(4), 374-385.
[http://dx.doi.org/10.1007/s12975-017-0520-z] [PMID: 28101763]
[26]
Hicks, S.D.; Johnson, J.; Carney, M.C.; Bramley, H.; Olympia, R.P.; Loeffert, A.C.; Thomas, N.J. Overlapping MicroRNA Expression in saliva and cerebrospinal fluid accurately identifies pediatric traumatic brain injury. J. Neurotrauma, 2018, 35(1), 64-72.
[http://dx.doi.org/10.1089/neu.2017.5111] [PMID: 28762893]
[27]
Li, Z.; Wang, S.; Li, W.; Yuan, H. Ferulic Acid Improves functional recovery after acute spinal cord injury in rats by inducing hypoxia to inhibit microRNA-590 and elevate vascular endothelial growth factor expressions. Front. Mol. Neurosci., 2017, 10, 183.
[http://dx.doi.org/10.3389/fnmol.2017.00183] [PMID: 28642684]
[28]
Rivetti di Val Cervo, P.; Romanov, R.A.; Spigolon, G.; Masini, D.; Martín-Montañez, E.; Toledo, E.M.; La Manno, G.; Feyder, M.; Pifl, C.; Ng, Y.H.; Sánchez, S.P.; Linnarsson, S.; Wernig, M.; Harkany, T.; Fisone, G.; Arenas, E. Induction of functional dopamine neurons from human astrocytes in vitro and mouse astrocytes in a Parkinson’s disease model. Nat. Biotechnol., 2017, 35(5), 444-452.
[http://dx.doi.org/10.1038/nbt.3835] [PMID: 28398344]
[29]
Banzhaf-Strathmann, J.; Benito, E.; May, S.; Arzberger, T.; Tahirovic, S.; Kretzschmar, H.; Fischer, A.; Edbauer, D. MicroRNA-125b induces tau hyperphosphorylation and cognitive deficits in Alzheimer’s disease. EMBO J., 2014, 33(15), 1667-1680.
[http://dx.doi.org/10.15252/embj.201387576] [PMID: 25001178]
[30]
Paez-Colasante, X.; Figueroa-Romero, C.; Sakowski, S.A.; Goutman, S.A.; Feldman, E.L. Amyotrophic lateral sclerosis: mechanisms and therapeutics in the epigenomic era. Nat. Rev. Neurol., 2015, 11(5), 266-279.
[http://dx.doi.org/10.1038/nrneurol.2015.57] [PMID: 25896087]
[31]
Ghibaudi, M.; Boido, M.; Vercelli, A. Functional integration of complex miRNA networks in central and peripheral lesion and axonal regeneration. Prog. Neurobiol., 2017, 158, 69-93.
[http://dx.doi.org/10.1016/j.pneurobio.2017.07.005] [PMID: 28779869]
[32]
Ma, Y. The Challenge of microRNA as a Biomarker of Epilepsy. Curr. Neuropharmacol., 2018, 16(1), 37-42.
[PMID: 28676013]
[33]
Yue, X.; Lan, F.; Hu, M.; Pan, Q.; Wang, Q.; Wang, J. Downregulation of serum microRNA-205 as a potential diagnostic and prognostic biomarker for human glioma. J. Neurosurg., 2016, 124(1), 122-128.
[http://dx.doi.org/10.3171/2015.1.JNS141577] [PMID: 26230475]
[34]
Wei, X.; Chen, D.; Lv, T.; Li, G.; Qu, S. Serum MicroRNA-125b as a Potential Biomarker for Glioma Diagnosis. Mol. Neurobiol., 2016, 53(1), 163-170.
[http://dx.doi.org/10.1007/s12035-014-8993-1] [PMID: 25416859]
[35]
Renjie, W.; Haiqian, L. MiR-132, miR-15a and miR-16 synergistically inhibit pituitary tumor cell proliferation, invasion and migration by targeting Sox5. Cancer Lett., 2015, 356(2 Pt B), 568-578.
[http://dx.doi.org/10.1016/j.canlet.2014.10.003] [PMID: 25305447]
[36]
Simion, V.; Nadim, W.D.; Benedetti, H.; Pichon, C.; Morisset-Lopez, S.; Baril, P. Pharmacomodulation of microRNA expression in neurocognitive diseases: obstacles and future opportunities. Curr. Neuropharmacol., 2017, 15(2), 276-290.
[http://dx.doi.org/10.2174/1570159X14666160630210422] [PMID: 27397479]
[37]
Briggs, J.A.; Wolvetang, E.J.; Mattick, J.S.; Rinn, J.L.; Barry, G. Mechanisms of long non-coding rnas in mammalian nervous system development, plasticity, disease, and evolution. Neuron, 2015, 88(5), 861-877.
[http://dx.doi.org/10.1016/j.neuron.2015.09.045] [PMID: 26637795]
[38]
Bao, M.H.; Szeto, V.; Yang, B.B.; Zhu, S.Z.; Sun, H.S.; Feng, Z.P. Long non-coding RNAs in ischemic stroke. Cell Death Dis., 2018, 9(3), 281.
[http://dx.doi.org/10.1038/s41419-018-0282-x] [PMID: 29449542]
[39]
Molyneaux, B.J.; Goff, L.A.; Brettler, A.C.; Chen, H.H.; Hrvatin, S.; Rinn, J.L.; Arlotta, P. DeCoN: genome-wide analysis of in vivo transcriptional dynamics during pyramidal neuron fate selection in neocortex. Neuron, 2015, 85(2), 275-288.
[http://dx.doi.org/10.1016/j.neuron.2014.12.024] [PMID: 25556833]
[40]
Muslimov, I.A.; Banker, G.; Brosius, J.; Tiedge, H. Activity-dependent regulation of dendritic BC1 RNA in hippocampal neurons in culture. J. Cell Biol., 1998, 141(7), 1601-1611.
[http://dx.doi.org/10.1083/jcb.141.7.1601] [PMID: 9647652]
[41]
Tiedt, S.; Dichgans, M. Role of non-coding RNAs in stroke. Stroke, 2018, 49(12), 3098-3106.
[http://dx.doi.org/10.1161/STROKEAHA.118.021010] [PMID: 30571439]
[42]
Patel, N.A.; Moss, L.D.; Lee, J.Y.; Tajiri, N.; Acosta, S.; Hudson, C.; Parag, S.; Cooper, D.R.; Borlongan, C.V.; Bickford, P.C. Long noncoding RNA MALAT1 in exosomes drives regenerative function and modulates inflammation-linked networks following traumatic brain injury. J. Neuroinflammation, 2018, 15(1), 204.
[http://dx.doi.org/10.1186/s12974-018-1240-3] [PMID: 30001722]
[43]
Peng, Z.; Liu, C.; Wu, M. New insights into long noncoding RNAs and their roles in glioma. Mol. Cancer, 2018, 17(1), 61.
[http://dx.doi.org/10.1186/s12943-018-0812-2] [PMID: 29458374]
[44]
Russo, M.V.; McGavern, D.B. Inflammatory neuroprotection following traumatic brain injury. Science, 2016, 353(6301), 783-785.
[http://dx.doi.org/10.1126/science.aaf6260] [PMID: 27540166]
[45]
Ransohoff, R.M. How neuroinflammation contributes to neurodegeneration. Science, 2016, 353(6301), 777-783.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[46]
Iadecola, C.; Anrather, J. The immunology of stroke: from mechanisms to translation. Nat. Med., 2011, 17(7), 796-808.
[http://dx.doi.org/10.1038/nm.2399] [PMID: 21738161]
[47]
Sekerdag, E.; Solaroglu, I.; Gursoy-Ozdemir, Y. Cell death mechanisms in stroke and novel molecular and cellular treatment options. Curr. Neuropharmacol., 2018, 16(9), 1396-1415.
[http://dx.doi.org/10.2174/1570159X16666180302115544] [PMID: 29512465]
[48]
Millan, M.J. Linking deregulation of non-coding RNA to the core pathophysiology of Alzheimer’s disease: An integrative review. Prog. Neurobiol., 2017, 156, 1-68.
[http://dx.doi.org/10.1016/j.pneurobio.2017.03.004] [PMID: 28322921]
[49]
Salter, M.W.; Stevens, B. Microglia emerge as central players in brain disease. Nat. Med., 2017, 23(9), 1018-1027.
[http://dx.doi.org/10.1038/nm.4397] [PMID: 28886007]
[50]
Ponomarev, E.D.; Veremeyko, T.; Barteneva, N.; Krichevsky, A.M.; Weiner, H.L. MicroRNA-124 promotes microglia quiescence and suppresses EAE by deactivating macrophages via the C/EBP-α-PU.1 pathway. Nat. Med., 2011, 17(1), 64-70.
[http://dx.doi.org/10.1038/nm.2266] [PMID: 21131957]
[51]
Jovičić, A.; Roshan, R.; Moisoi, N.; Pradervand, S.; Moser, R.; Pillai, B.; Luthi-Carter, R. Comprehensive expression analyses of neural cell-type-specific miRNAs identify new determinants of the specification and maintenance of neuronal phenotypes. J. Neurosci., 2013, 33(12), 5127-5137.
[http://dx.doi.org/10.1523/JNEUROSCI.0600-12.2013] [PMID: 23516279]
[52]
Li, Y.; Zhou, D.; Ren, Y.; Zhang, Z.; Guo, X.; Ma, M.; Xue, Z.; Lv, J.; Liu, H.; Xi, Q.; Jia, L.; Zhang, L.; Liu, Y.; Zhang, Q.; Yan, J.; Da, Y.; Gao, F.; Yue, J.; Yao, Z.; Zhang, R. Mir223 restrains autophagy and promotes CNS inflammation by targeting ATG16L1. Autophagy, 2019, 15(3), 478-492.
[http://dx.doi.org/10.1080/15548627.2018.1522467] [PMID: 30208760]
[53]
Prada, I.; Gabrielli, M.; Turola, E.; Iorio, A.; D’Arrigo, G.; Parolisi, R.; De Luca, M.; Pacifici, M.; Bastoni, M.; Lombardi, M.; Legname, G.; Cojoc, D.; Buffo, A.; Furlan, R.; Peruzzi, F.; Verderio, C. Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol., 2018, 135(4), 529-550.
[http://dx.doi.org/10.1007/s00401-017-1803-x] [PMID: 29302779]
[54]
Yao, H.; Ma, R.; Yang, L.; Hu, G.; Chen, X.; Duan, M.; Kook, Y.; Niu, F.; Liao, K.; Fu, M.; Hu, G.; Kolattukudy, P.; Buch, S. MiR-9 promotes microglial activation by targeting MCPIP1. Nat. Commun., 2014, 5, 4386.
[http://dx.doi.org/10.1038/ncomms5386] [PMID: 25019481]
[55]
Åkerblom, M.; Sachdeva, R.; Quintino, L.; Wettergren, E.E.; Chapman, K.Z.; Manfre, G.; Lindvall, O.; Lundberg, C.; Jakobsson, J. Visualization and genetic modification of resident brain microglia using lentiviral vectors regulated by microRNA-9. Nat. Commun., 2013, 4, 1770.
[http://dx.doi.org/10.1038/ncomms2801] [PMID: 23612311]
[56]
Guedes, J.; Cardoso, A.L.; Pedroso de Lima, M.C. Involvement of microRNA in microglia-mediated immune response. Clin. Dev. Immunol., 2013, 2013186872
[http://dx.doi.org/10.1155/2013/186872] [PMID: 23762086]
[57]
Ma, Y.; Wang, J.; Wang, Y.; Yang, G.Y. The biphasic function of microglia in ischemic stroke. Prog. Neurobiol., 2017, 157, 247-272.
[http://dx.doi.org/10.1016/j.pneurobio.2016.01.005] [PMID: 26851161]
[58]
Zhang, X.; Zhu, X.L.; Ji, B.Y.; Cao, X.; Yu, L.J.; Zhang, Y.; Bao, X.Y.; Xu, Y.; Jin, J.L. LncRNA-1810034E14Rik reduces microglia activation in experimental ischemic stroke. J. Neuroinflammation, 2019, 16(1), 75.
[http://dx.doi.org/10.1186/s12974-019-1464-x] [PMID: 30961627]
[59]
Han, C.L.; Ge, M.; Liu, Y.P.; Zhao, X.M.; Wang, K.L.; Chen, N.; Meng, W.J.; Hu, W.; Zhang, J.G.; Li, L.; Meng, F.G. LncRNA H19 contributes to hippocampal glial cell activation via JAK/STAT signaling in a rat model of temporal lobe epilepsy. J. Neuroinflammation, 2018, 15(1), 103.
[http://dx.doi.org/10.1186/s12974-018-1139-z] [PMID: 29636074]
[60]
Carloni, S.; Favrais, G.; Saliba, E.; Albertini, M.C.; Chalon, S.; Longini, M.; Gressens, P.; Buonocore, G.; Balduini, W. Melatonin modulates neonatal brain inflammation through endoplasmic reticulum stress, autophagy, and miR-34a/silent information regulator 1 pathway. J. Pineal Res., 2016, 61(3), 370-380.
[http://dx.doi.org/10.1111/jpi.12354] [PMID: 27441728]
[61]
Hardeland, R. Melatonin and inflammation-story of a double-edged blade. J. Pineal Res., 2018, 65(4)e12525
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[62]
Ortiz, G.G.; Benítez-King, G.A.; Rosales-Corral, S.A.; Pacheco-Moisés, F.P.; Velázquez-Brizuela, I.E. Cellular and biochemical actions of melatonin which protect against free radicals: role in neurodegenerative disorders. Curr. Neuropharmacol., 2008, 6(3), 203-214.
[http://dx.doi.org/10.2174/157015908785777201] [PMID: 19506721]
[63]
Wu, D.M.; Wen, X.; Wang, Y.J.; Han, X.R.; Wang, S.; Shen, M.; Fan, S.H.; Zhuang, J.; Zhang, Z.F.; Shan, Q.; Li, M.Q.; Hu, B.; Sun, C.H.; Lu, J.; Chen, G.Q.; Zheng, Y.L. Effect of microRNA-186 on oxidative stress injury of neuron by targeting interleukin 2 through the janus kinase-signal transducer and activator of transcription pathway in a rat model of Alzheimer’s disease. J. Cell. Physiol., 2018, 233(12), 9488-9502.
[http://dx.doi.org/10.1002/jcp.26843] [PMID: 29995978]
[64]
Zhou, Y.; Wang, Z.F.; Li, W.; Hong, H.; Chen, J.; Tian, Y.; Liu, Z.Y. Protective effects of microRNA-330 on amyloid β-protein production, oxidative stress, and mitochondrial dysfunction in Alzheimer’s disease by targeting VAV1 via the MAPK signaling pathway. J. Cell. Biochem., 2018, 119(7), 5437-5448.
[http://dx.doi.org/10.1002/jcb.26700] [PMID: 29369410]
[65]
Yi, J.; Chen, B.; Yao, X.; Lei, Y.; Ou, F.; Huang, F. Upregulation of the lncRNA MEG3 improves cognitive impairment, alleviates neuronal damage, and inhibits activation of astrocytes in hippocampus tissues in Alzheimer’s disease through inactivating the PI3K/Akt signaling pathway. J. Cell. Biochem., 2019, 120(10), 18053-18065.
[http://dx.doi.org/10.1002/jcb.29108] [PMID: 31190362]
[66]
Zhang, L.; Fang, Y.; Cheng, X.; Lian, Y.J.; Xu, H.L. Silencing of Long Noncoding RNA SOX21-AS1 Relieves neuronal oxidative stress injury in mice with Alzheimer’s disease by upregulating FZD3/5 via the Wnt signaling pathway. Mol. Neurobiol., 2019, 56(5), 3522-3537.
[http://dx.doi.org/10.1007/s12035-018-1299-y] [PMID: 30143969]
[67]
Zhao, H.; Tao, Z.; Wang, R.; Liu, P.; Yan, F.; Li, J.; Zhang, C.; Ji, X.; Luo, Y. MicroRNA-23a-3p attenuates oxidative stress injury in a mouse model of focal cerebral ischemia-reperfusion. Brain Res., 2014, 1592, 65-72.
[http://dx.doi.org/10.1016/j.brainres.2014.09.055] [PMID: 25280466]
[68]
Li, P.; Shen, M.; Gao, F.; Wu, J.; Zhang, J.; Teng, F.; Zhang, C. An Antagomir to MicroRNA-106b-5p ameliorates cerebral ischemia and reperfusion injury in rats Via Inhibiting apoptosis and oxidative stress. Mol. Neurobiol., 2017, 54(4), 2901-2921.
[http://dx.doi.org/10.1007/s12035-016-9842-1] [PMID: 27023223]
[69]
Chang, M.; Qiao, L.; Li, B.; Wang, J.; Zhang, G.; Shi, W.; Liu, Z.; Gu, N.; Di, Z.; Wang, X.; Tian, Y. Suppression of SIRT6 by miR-33a facilitates tumor growth of glioma through apoptosis and oxidative stress resistance. Oncol. Rep., 2017, 38(2), 1251-1258.
[http://dx.doi.org/10.3892/or.2017.5780] [PMID: 28677777]
[70]
Cai, B.; Ma, W.; Bi, C.; Yang, F.; Zhang, L.; Han, Z.; Huang, Q.; Ding, F.; Li, Y.; Yan, G.; Pan, Z.; Yang, B.; Lu, Y. Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J. Pineal Res., 2016, 61(1), 82-95.
[http://dx.doi.org/10.1111/jpi.12331] [PMID: 27062045]
[71]
Zhao, Y.; Zhao, R.; Wu, J.; Wang, Q.; Pang, K.; Shi, Q.; Gao, Q.; Hu, Y.; Dong, X.; Zhang, J.; Sun, J. Melatonin protects against Aβ-induced neurotoxicity in primary neurons via miR-132/PTEN/AKT/FOXO3a pathway. Biofactors, 2018, 44(6), 609-618.
[http://dx.doi.org/10.1002/biof.1411] [PMID: 29322615]
[72]
Wu, X.; Ji, H.; Wang, Y.; Gu, C.; Gu, W.; Hu, L.; Zhu, L. Melatonin Alleviates Radiation-Induced Lung Injury via Regulation of miR-30e/NLRP3 Axis. Oxid. Med. Cell. Longev., 2019, 20194087298
[http://dx.doi.org/10.1155/2019/4087298] [PMID: 30755784]
[73]
Su, Y.; Wu, H.; Pavlosky, A.; Zou, L.L.; Deng, X.; Zhang, Z.X.; Jevnikar, A.M. Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis., 2016, 7(8)e2333
[http://dx.doi.org/10.1038/cddis.2016.210] [PMID: 27512954]
[74]
Sabirzhanov, B.; Zhao, Z.; Stoica, B.A.; Loane, D.J.; Wu, J.; Borroto, C.; Dorsey, S.G.; Faden, A.I. Downregulation of miR-23a and miR-27a following experimental traumatic brain injury induces neuronal cell death through activation of proapoptotic Bcl-2 proteins. J. Neurosci., 2014, 34(30), 10055-10071.
[http://dx.doi.org/10.1523/JNEUROSCI.1260-14.2014] [PMID: 25057207]
[75]
Zhang, L.; Dong, L.Y.; Li, Y.J.; Hong, Z.; Wei, W.S. miR-21 represses FasL in microglia and protects against microglia-mediated neuronal cell death following hypoxia/ischemia. Glia, 2012, 60(12), 1888-1895.
[http://dx.doi.org/10.1002/glia.22404] [PMID: 22907769]
[76]
Wapinski, O.; Chang, H.Y. Long noncoding RNAs and human disease. Trends Cell Biol., 2011, 21(6), 354-361.
[http://dx.doi.org/10.1016/j.tcb.2011.04.001] [PMID: 21550244]
[77]
Chen, J.; Qian, C.; Duan, H.; Cao, S.; Yu, X.; Li, J.; Gu, C.; Yan, F.; Wang, L.; Chen, G. Melatonin attenuates neurogenic pulmonary edema via the regulation of inflammation and apoptosis after subarachnoid hemorrhage in rats. J. Pineal Res., 2015, 59(4), 469-477.
[http://dx.doi.org/10.1111/jpi.12278] [PMID: 26383078]
[78]
Zhu, C.; Huang, Q.; Zhu, H. Melatonin Inhibits the Proliferation of Gastric Cancer Cells Through Regulating the miR-16-5p-Smad3 Pathway. DNA Cell Biol., 2018, 37(3), 244-252.
[http://dx.doi.org/10.1089/dna.2017.4040] [PMID: 29359963]
[79]
Kroemer, G.; Galluzzi, L.; Vandenabeele, P.; Abrams, J.; Alnemri, E.S.; Baehrecke, E.H.; Blagosklonny, M.V.; El-Deiry, W.S.; Golstein, P.; Green, D.R.; Hengartner, M.; Knight, R.A.; Kumar, S.; Lipton, S.A.; Malorni, W.; Nuñez, G.; Peter, M.E.; Tschopp, J.; Yuan, J.; Piacentini, M.; Zhivotovsky, B.; Melino, G. Nomenclature Committee on Cell Death 2009. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ., 2009, 16(1), 3-11.
[http://dx.doi.org/10.1038/cdd.2008.150] [PMID: 18846107]
[80]
Liu, Z.; Gan, L.; Xu, Y.; Luo, D.; Ren, Q.; Wu, S.; Sun, C. Melatonin alleviates inflammasome-induced pyroptosis through inhibiting NF-κB/GSDMD signal in mice adipose tissue. J. Pineal Res., 2017, 63(1)
[http://dx.doi.org/10.1111/jpi.12414] [PMID: 28398673]
[81]
Zhang, Y.; Liu, X.; Bai, X.; Lin, Y.; Li, Z.; Fu, J.; Li, M.; Zhao, T.; Yang, H.; Xu, R.; Li, J.; Ju, J.; Cai, B.; Xu, C.; Yang, B. Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J. Pineal Res., 2018, 64(2)
[http://dx.doi.org/10.1111/jpi.12449] [PMID: 29024030]
[82]
Shen, H.; Liu, C.; Zhang, D.; Yao, X.; Zhang, K.; Li, H.; Chen, G. Role for RIP1 in mediating necroptosis in experimental intracerebral hemorrhage model both in vivo and in vitro. Cell Death Dis., 2017, 8(3)e2641
[http://dx.doi.org/10.1038/cddis.2017.58] [PMID: 28252651]
[83]
Zhou, H.; Li, D.; Zhu, P.; Ma, Q.; Toan, S.; Wang, J.; Hu, S.; Chen, Y.; Zhang, Y. Inhibitory effect of melatonin on necroptosis via repressing the Ripk3-PGAM5-CypD-mPTP pathway attenuates cardiac microvascular ischemia-reperfusion injury. J. Pineal Res., 2018, 65(3)e12503
[http://dx.doi.org/10.1111/jpi.12503] [PMID: 29770487]
[84]
Lu, J.; Sun, Z.; Fang, Y.; Zheng, J.; Xu, S.; Xu, W.; Shi, L.; Mei, S.; Wu, H.; Liang, F.; Zhang, J. melatonin suppresses microglial necroptosis by regulating deubiquitinating enzyme A20 after intracerebral hemorrhage. Front. Immunol., 2019, 10, 1360.
[http://dx.doi.org/10.3389/fimmu.2019.01360] [PMID: 31258534]
[85]
Choi, H.S.; Kang, J.W.; Lee, S.M. Melatonin attenuates carbon tetrachloride-induced liver fibrosis via inhibition of necroptosis. Transl. Res., 2015, 166(3), 292-303.
[http://dx.doi.org/10.1016/j.trsl.2015.04.002] [PMID: 25936762]
[86]
Yang, T.; Cao, C.; Yang, J.; Liu, T.; Lei, X.G.; Zhang, Z.; Xu, S. miR-200a-5p regulates myocardial necroptosis induced by Se deficiency via targeting RNF11. Redox Biol., 2018, 15, 159-169.
[http://dx.doi.org/10.1016/j.redox.2017.11.025] [PMID: 29248830]
[87]
Afonso, M.B.; Rodrigues, P.M.; Simão, A.L.; Gaspar, M.M.; Carvalho, T.; Borralho, P.; Bañales, J.M.; Castro, R.E.; Rodrigues, C.M.P. miRNA-21 ablation protects against liver injury and necroptosis in cholestasis. Cell Death Differ., 2018, 25(5), 857-872.
[http://dx.doi.org/10.1038/s41418-017-0019-x] [PMID: 29229992]
[88]
Li, Q.; Han, X.; Lan, X.; Gao, Y.; Wan, J.; Durham, F.; Cheng, T.; Yang, J.; Wang, Z.; Jiang, C.; Ying, M.; Koehler, R.C.; Stockwell, B.R.; Wang, J. Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight, 2017, 2(7),. e90777
[PMID: 28405617] [http://dx.doi.org/10.1172/jci.insight.90777]
[89]
Tuo, Q.Z.; Lei, P.; Jackman, K.A.; Li, X.L.; Xiong, H.; Li, X.L.; Liuyang, Z.Y.; Roisman, L.; Zhang, S.T.; Ayton, S.; Wang, Q.; Crouch, P.J.; Ganio, K.; Wang, X.C.; Pei, L.; Adlard, P.A.; Lu, Y.M.; Cappai, R.; Wang, J.Z.; Liu, R.; Bush, A.I. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry, 2017, 22(11), 1520-1530.
[http://dx.doi.org/10.1038/mp.2017.171] [PMID: 28886009]
[90]
NaveenKumar, S.K.; Hemshekhar, M.; Kemparaju, K.; Girish, K.S. Hemin-induced platelet activation and ferroptosis is mediated through ROS-driven proteasomal activity and inflammasome activation: Protection by Melatonin. Biochim. Biophys. Acta Mol. Basis Dis., 2019, 1865(9), 2303-2316.
[http://dx.doi.org/10.1016/j.bbadis.2019.05.009] [PMID: 31102787]
[91]
Luo, M.; Wu, L.; Zhang, K.; Wang, H.; Zhang, T.; Gutierrez, L.; O’Connell, D.; Zhang, P.; Li, Y.; Gao, T.; Ren, W.; Yang, Y. miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ., 2018, 25(8), 1457-1472.
[http://dx.doi.org/10.1038/s41418-017-0053-8] [PMID: 29348676]
[92]
Boga, J.A.; Caballero, B.; Potes, Y.; Perez-Martinez, Z.; Reiter, R.J.; Vega-Naredo, I.; Coto-Montes, A. Therapeutic potential of melatonin related to its role as an autophagy regulator: A review. J. Pineal Res., 2019, 66(1)e12534
[http://dx.doi.org/10.1111/jpi.12534] [PMID: 30329173]
[93]
Liang, P.; Le, W. Role of autophagy in the pathogenesis of multiple sclerosis. Neurosci. Bull., 2015, 31(4), 435-444.
[http://dx.doi.org/10.1007/s12264-015-1545-5] [PMID: 26254059]
[94]
Zhen, C.; Feng, X.; Li, Z.; Wang, Y.; Li, B.; Li, L.; Quan, M.; Wang, G.; Guo, L. Suppression of murine experimental autoimmune encephalomyelitis development by 1,25-dihydroxyvitamin D3 with autophagy modulation. J. Neuroimmunol., 2015, 280, 1-7.
[http://dx.doi.org/10.1016/j.jneuroim.2015.01.012] [PMID: 25773147]
[95]
Wen, X.; Han, X.R.; Wang, Y.J.; Wang, S.; Shen, M.; Zhang, Z.F.; Fan, S.H.; Shan, Q.; Wang, L.; Li, M.Q.; Hu, B.; Sun, C.H.; Wu, D.M.; Lu, J.; Zheng, Y.L. MicroRNA-421 suppresses the apoptosis and autophagy of hippocampal neurons in epilepsy mice model by inhibition of the TLR/MYD88 pathway. J. Cell. Physiol., 2018, 233(9), 7022-7034.
[http://dx.doi.org/10.1002/jcp.26498] [PMID: 29380367]
[96]
Wu, Q.; Yi, X. Down-regulation of Long Noncoding RNA MALAT1 protects hippocampal neurons against excessive autophagy and apoptosis via the PI3K/Akt signaling pathway in rats with epilepsy. J. Mol., 2018, 65(2), 234-245.
[97]
Liu, Y.; Song, Y.; Zhu, X. MicroRNA-181a Regulates Apoptosis and Autophagy Process in Parkinson’s Disease by Inhibiting p38 Mitogen-Activated Protein Kinase (MAPK)/c-Jun N-Terminal Kinases (JNK) Signaling Pathways. Med. Sci. Monit., 2017, 23, 1597-1606.
[http://dx.doi.org/10.12659/MSM.900218] [PMID: 28365714]
[98]
Huang, T.; Wan, X.; Alvarez, A.A.; James, C.D.; Song, X.; Yang, Y.; Sastry, N.; Nakano, I.; Sulman, E.P.; Hu, B.; Cheng, S.Y. MIR93 (microRNA -93) regulates tumorigenicity and therapy response of glioblastoma by targeting autophagy. Autophagy, 2019, 15(6), 1100-1111.
[http://dx.doi.org/10.1080/15548627.2019.1569947] [PMID: 30654687]
[99]
Liu, C.; Zhang, Y.; She, X.; Fan, L.; Li, P.; Feng, J.; Fu, H.; Liu, Q.; Liu, Q.; Zhao, C.; Sun, Y.; Wu, M. A cytoplasmic long noncoding RNA LINC00470 as a new AKT activator to mediate glioblastoma cell autophagy. J. Hematol. Oncol., 2018, 11(1), 77.
[http://dx.doi.org/10.1186/s13045-018-0619-z] [PMID: 29866190]
[100]
Stacchiotti, A.; Grossi, I.; García-Gómez, R.; Patel, G.A.; Salvi, A.; Lavazza, A.; De Petro, G.; Monsalve, M.; Rezzani, R. Melatonin Effects on non-alcoholic fatty liver disease are related to MicroRNA-34a-5p/Sirt1 Axis and Autophagy. Cells, 2019, 8(9)E1053
[http://dx.doi.org/10.3390/cells8091053] [PMID: 31500354]
[101]
Wang, X.; Wang, Z.H.; Wu, Y.Y.; Tang, H.; Tan, L.; Wang, X.; Gao, X.Y.; Xiong, Y.S.; Liu, D.; Wang, J.Z.; Zhu, L.Q. Melatonin attenuates scopolamine-induced memory/synaptic disorder by rescuing EPACs/miR-124/Egr1 pathway. Mol. Neurobiol., 2013, 47(1), 373-381.
[http://dx.doi.org/10.1007/s12035-012-8355-9] [PMID: 23054680]
[102]
Zhu, L.Q.; Wang, S.H.; Ling, Z.Q.; Wang, D.L.; Wang, J.Z. Effect of inhibiting melatonin biosynthesis on spatial memory retention and tau phosphorylation in rat. J. Pineal Res., 2004, 37(2), 71-77.
[http://dx.doi.org/10.1111/j.1600-079X.2004.00136.x] [PMID: 15298664]
[103]
Qiu, J.; Zhang, J.; Zhou, Y.; Li, X.; Li, H.; Liu, J.; Gou, K.; Zhao, J.; Cui, S. MicroRNA-7 inhibits melatonin synthesis by acting as a linking molecule between leptin and norepinephrine signaling pathways in pig pineal gland. J. Pineal Res., 2019, 66(3)e12552
[http://dx.doi.org/10.1111/jpi.12552] [PMID: 30618087]
[104]
Clokie, S.J.; Lau, P.; Kim, H.H.; Coon, S.L.; Klein, D.C. MicroRNAs in the pineal gland: miR-483 regulates melatonin synthesis by targeting arylalkylamine N-acetyltransferase. J. Biol. Chem., 2012, 287(30), 25312-25324.
[http://dx.doi.org/10.1074/jbc.M112.356733] [PMID: 22908386]
[105]
Yang, Y.; Sun, B.; Huang, J.; Xu, L.; Pan, J.; Fang, C.; Li, M.; Li, G.; Tao, Y.; Yang, X.; Wu, Y.; Miao, P.; Wang, Y.; Li, H.; Ren, J.; Zhan, M.; Fang, Y.; Feng, X.; Ding, X. Up-regulation of miR-325-3p suppresses pineal aralkylamine N-acetyltransferase (Aanat) after neonatal hypoxia-ischemia brain injury in rats. Brain Res., 2017, 1668, 28-35.
[http://dx.doi.org/10.1016/j.brainres.2017.05.001] [PMID: 28502584]
[106]
Yao, G.Y.; Zhu, Q.; Xia, J.; Chen, F.J.; Huang, M.; Liu, J.; Zhou, T.T.; Wei, J.F.; Cui, G.Y.; Zheng, K.Y.; Hou, X.Y. Ischemic postconditioning confers cerebroprotection by stabilizing VDACs after brain ischemia. Cell Death Dis., 2018, 9(10), 1033.
[http://dx.doi.org/10.1038/s41419-018-1089-5] [PMID: 30305621]
[107]
Pagan, C.; Goubran-Botros, H.; Delorme, R.; Benabou, M.; Lemière, N.; Murray, K.; Amsellem, F.; Callebert, J.; Chaste, P.; Jamain, S.; Fauchereau, F.; Huguet, G.; Maronde, E.; Leboyer, M.; Launay, J.M.; Bourgeron, T. Disruption of melatonin synthesis is associated with impaired 14-3-3 and miR-451 levels in patients with autism spectrum disorders. Sci. Rep., 2017, 7(1), 2096.
[http://dx.doi.org/10.1038/s41598-017-02152-x] [PMID: 28522826]
[108]
Godlewski, J.; Nowicki, M.O.; Bronisz, A.; Nuovo, G.; Palatini, J.; De Lay, M.; Van Brocklyn, J.; Ostrowski, M.C.; Chiocca, E.A.; Lawler, S.E. MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol. Cell, 2010, 37(5), 620-632.
[http://dx.doi.org/10.1016/j.molcel.2010.02.018] [PMID: 20227367]
[109]
Godlewski, J.; Bronisz, A.; Nowicki, M.O.; Chiocca, E.A.; Lawler, S. microRNA-451: A conditional switch controlling glioma cell proliferation and migration. Cell Cycle, 2010, 9(14), 2742-2748.
[http://dx.doi.org/10.4161/cc.9.14.12248] [PMID: 20647762]
[110]
Makeyev, E.V.; Zhang, J.; Carrasco, M.A.; Maniatis, T. The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol. Cell, 2007, 27(3), 435-448.
[http://dx.doi.org/10.1016/j.molcel.2007.07.015] [PMID: 17679093]
[111]
Sun, Y.; Luo, Z.M.; Guo, X.M.; Su, D.F.; Liu, X. An updated role of microRNA-124 in central nervous system disorders: a review. Front. Cell. Neurosci., 2015, 9, 193.
[http://dx.doi.org/10.3389/fncel.2015.00193] [PMID: 26041995]
[112]
Liu, X.; Li, F.; Zhao, S.; Luo, Y.; Kang, J.; Zhao, H.; Yan, F.; Li, S.; Ji, X. MicroRNA-124-mediated regulation of inhibitory member of apoptosis-stimulating protein of p53 family in experimental stroke. Stroke, 2013, 44(7), 1973-1980.
[http://dx.doi.org/10.1161/STROKEAHA.111.000613] [PMID: 23696548]
[113]
Hamzei Taj, S.; Kho, W.; Riou, A.; Wiedermann, D.; Hoehn, M. MiRNA-124 induces neuroprotection and functional improvement after focal cerebral ischemia. Biomaterials, 2016, 91, 151-165.
[http://dx.doi.org/10.1016/j.biomaterials.2016.03.025] [PMID: 27031810]
[114]
Wang, X.; Liu, D.; Huang, H.Z.; Wang, Z.H.; Hou, T.Y.; Yang, X.; Pang, P.; Wei, N.; Zhou, Y.F.; Dupras, M.J.; Calon, F.; Wang, Y.T.; Man, H.Y.; Chen, J.G.; Wang, J.Z.; Hébert, S.S.; Lu, Y.; Zhu, L.Q. A Novel MicroRNA-124/PTPN1 Signal pathway mediates synaptic and memory deficits in Alzheimer’s Disease. Biol. Psychiatry, 2018, 83(5), 395-405.
[http://dx.doi.org/10.1016/j.biopsych.2017.07.023] [PMID: 28965984]
[115]
Saraiva, C.; Paiva, J.; Santos, T.; Ferreira, L.; Bernardino, L. MicroRNA-124 loaded nanoparticles enhance brain repair in Parkinson’s disease. J. Control. Release, 2016, 235, 291-305.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.005] [PMID: 27269730]
[116]
Wang, H.; Ye, Y.; Zhu, Z.; Mo, L.; Lin, C.; Wang, Q.; Wang, H.; Gong, X.; He, X.; Lu, G.; Lu, F.; Zhang, S. MiR-124 Regulates Apoptosis and autophagy process in mptp model of parkinson’s disease by targeting to bim. Brain Pathol., 2016, 26(2), 167-176.
[http://dx.doi.org/10.1111/bpa.12267] [PMID: 25976060]
[117]
Yang, Y.; Ye, Y.; Kong, C.; Su, X.; Zhang, X.; Bai, W.; He, X. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway. Neurochem. Res., 2019, 44(4), 811-828.
[http://dx.doi.org/10.1007/s11064-018-02714-z] [PMID: 30628018]
[118]
Zhao, Y.; Zhang, H.; Zhang, D.; Yu, C.Y.; Zhao, X.H.; Liu, F.F.; Bian, G.L.; Ju, G.; Wang, J. Loss of microRNA-124 expression in neurons in the peri-lesion area in mice with spinal cord injury. Neural Regen. Res., 2015, 10(7), 1147-1152.
[http://dx.doi.org/10.4103/1673-5374.156983] [PMID: 26330841]
[119]
Louw, A.M.; Kolar, M.K.; Novikova, L.N.; Kingham, P.J.; Wiberg, M.; Kjems, J.; Novikov, L.N. Chitosan polyplex mediated delivery of miRNA-124 reduces activation of microglial cells in vitro and in rat models of spinal cord injury. Nanomedicine (Lond.), 2016, 12(3), 643-653.
[http://dx.doi.org/10.1016/j.nano.2015.10.011] [PMID: 26582736]
[120]
Vismara, I.; Papa, S.; Rossi, F.; Forloni, G.; Veglianese, P. Current Options for cell therapy in spinal cord injury. Trends Mol. Med., 2017, 23(9), 831-849.
[http://dx.doi.org/10.1016/j.molmed.2017.07.005] [PMID: 28811172]
[121]
Silva, N.A.; Sousa, N.; Reis, R.L.; Salgado, A.J. From basics to clinical: a comprehensive review on spinal cord injury. Prog. Neurobiol., 2014, 114, 25-57.
[http://dx.doi.org/10.1016/j.pneurobio.2013.11.002] [PMID: 24269804]
[122]
Song, J.L.; Zheng, W.; Chen, W.; Qian, Y.; Ouyang, Y.M.; Fan, C.Y. Lentivirus-mediated microRNA-124 gene-modified bone marrow mesenchymal stem cell transplantation promotes the repair of spinal cord injury in rats. Exp. Mol. Med., 2017, 49(5)e332
[http://dx.doi.org/10.1038/emm.2017.48] [PMID: 28524176]
[123]
Zou, D.; Chen, Y.; Han, Y.; Lv, C.; Tu, G. Overexpression of microRNA-124 promotes the neuronal differentiation of bone marrow-derived mesenchymal stem cells. Neural Regen. Res., 2014, 9(12), 1241-1248.
[http://dx.doi.org/10.4103/1673-5374.135333] [PMID: 25206789]
[124]
Brennan, G.P.; Dey, D.; Chen, Y.; Patterson, K.P.; Magnetta, E.J.; Hall, A.M.; Dube, C.M.; Mei, Y.T.; Baram, T.Z. Dual and opposing roles of MicroRNA-124 in epilepsy are mediated through inflammatory and nrsf-dependent gene networks. Cell Rep., 2016, 14(10), 2402-2412.
[http://dx.doi.org/10.1016/j.celrep.2016.02.042] [PMID: 26947066]
[125]
Zhao, W.H.; Wu, S.Q.; Zhang, Y.D. Downregulation of miR-124 promotes the growth and invasiveness of glioblastoma cells involving upregulation of PPP1R13L. Int. J. Mol. Med., 2013, 32(1), 101-107.
[http://dx.doi.org/10.3892/ijmm.2013.1365] [PMID: 23624869]
[126]
Chen, T.; Wang, X.Y.; Li, C.; Xu, S.J. Downregulation of microRNA-124 predicts poor prognosis in glioma patients. Neurol. Sci., 2015, 36(1), 131-135.
[http://dx.doi.org/10.1007/s10072-014-1895-1] [PMID: 25112530]
[127]
Zhang, Z.; Gong, Q.; Li, M.; Xu, J.; Zheng, Y.; Ge, P.; Chi, G. MicroRNA-124 inhibits the proliferation of C6 glioma cells by targeting Smad4. Int. J. Mol. Med., 2017, 40(4), 1226-1234.
[http://dx.doi.org/10.3892/ijmm.2017.3088] [PMID: 28791348]
[128]
Mucaj, V.; Lee, S.S.; Skuli, N.; Giannoukos, D.N.; Qiu, B.; Eisinger-Mathason, T.S.; Nakazawa, M.S.; Shay, J.E.; Gopal, P.P.; Venneti, S.; Lal, P.; Minn, A.J.; Simon, M.C.; Mathew, L.K. MicroRNA-124 expression counteracts pro-survival stress responses in glioblastoma. Oncogene, 2015, 34(17), 2204-2214.
[http://dx.doi.org/10.1038/onc.2014.168] [PMID: 24954504]
[129]
Wang, R.; Zhang, S.; Chen, X.; Li, N.; Li, J.; Jia, R.; Pan, Y.; Liang, H. EIF4A3-induced circular RNA MMP9 (circMMP9) acts as a sponge of miR-124 and promotes glioblastoma multiforme cell tumorigenesis. Mol. Cancer, 2018, 17(1), 166.
[http://dx.doi.org/10.1186/s12943-018-0911-0] [PMID: 30470262]
[130]
Taganov, K.D.; Boldin, M.P.; Chang, K.J.; Baltimore, D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc. Natl. Acad. Sci. USA, 2006, 103(33), 12481-12486.
[http://dx.doi.org/10.1073/pnas.0605298103] [PMID: 16885212]
[131]
Cheng, H.S.; Sivachandran, N.; Lau, A.; Boudreau, E.; Zhao, J.L.; Baltimore, D.; Delgado-Olguin, P.; Cybulsky, M.I.; Fish, J.E. MicroRNA-146 represses endothelial activation by inhibiting pro-inflammatory pathways. EMBO Mol. Med., 2013, 5(7), 1017-1034.
[http://dx.doi.org/10.1002/emmm.201202318] [PMID: 23733368]
[132]
Karasek, M.; Gruszka, A.; Lawnicka, H.; Kunert-Radek, J.; Pawlikowski, M. Melatonin inhibits growth of diethylstilbestrol-induced prolactin-secreting pituitary tumor in vitro: possible involvement of nuclear RZR/ROR receptors. J. Pineal Res., 2003, 34(4), 294-296.
[http://dx.doi.org/10.1034/j.1600-079X.2003.00046.x] [PMID: 12662353]
[133]
Caballero, B.; Vega-Naredo, I.; Sierra, V.; Huidobro-Fernández, C.; Soria-Valles, C.; De Gonzalo-Calvo, D.; Tolivia, D.; Gutierrez-Cuesta, J.; Pallas, M.; Camins, A.; Rodríguez-Colunga, M.J.; Coto-Montes, A. Favorable effects of a prolonged treatment with melatonin on the level of oxidative damage and neurodegeneration in senescence-accelerated mice. J. Pineal Res., 2008, 45(3), 302-311.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00591.x] [PMID: 18410310]
[134]
Tian, C.; Li, Z.; Yang, Z.; Huang, Q.; Liu, J.; Hong, B. Plasma MicroRNA-16 is a biomarker for diagnosis, stratification, and prognosis of hyperacute cerebral infarction. PLoS One, 2016, 11(11)e0166688
[http://dx.doi.org/10.1371/journal.pone.0166688] [PMID: 27846323]
[135]
Liu, W.; Liu, C.; Zhu, J.; Shu, P.; Yin, B.; Gong, Y.; Qiang, B.; Yuan, J.; Peng, X. MicroRNA-16 targets amyloid precursor protein to potentially modulate Alzheimer’s-associated pathogenesis in SAMP8 mice. Neurobiol. Aging, 2012, 33(3), 522-534.
[http://dx.doi.org/10.1016/j.neurobiolaging.2010.04.034] [PMID: 20619502]
[136]
Yang, T.Q.; Lu, X.J.; Wu, T.F.; Ding, D.D.; Zhao, Z.H.; Chen, G.L.; Xie, X.S.; Li, B.; Wei, Y.X.; Guo, L.C.; Zhang, Y.; Huang, Y.L.; Zhou, Y.X.; Du, Z.W. MicroRNA-16 inhibits glioma cell growth and invasion through suppression of BCL2 and the nuclear factor-κB1/MMP9 signaling pathway. Cancer Sci., 2014, 105(3), 265-271.
[http://dx.doi.org/10.1111/cas.12351] [PMID: 24418124]
[137]
Chen, X.J.; Wu, M.Y.; Li, D.H.; You, J. Apigenin inhibits glioma cell growth through promoting microRNA-16 and suppression of BCL-2 and nuclear factor-κB/MMP9. Mol. Med. Rep., 2016, 14(3), 2352-2358.
[http://dx.doi.org/10.3892/mmr.2016.5460] [PMID: 27430517]
[138]
Li, C.; Chen, S.; Li, H.; Chen, L.; Zhao, Y.; Jiang, Y.; Liu, Z.; Liu, Y.; Gao, S.; Wang, F.; Yu, J.; Wang, H.; Rao, J.; Zhou, X. MicroRNA-16 modulates melatonin-induced cell growth in the mouse-derived spermatogonia cell line GC-1 spg cells by targeting Ccnd1. Biol. Reprod., 2016, 95(3), 57.
[http://dx.doi.org/10.1095/biolreprod.115.138313] [PMID: 27465135]
[139]
Yamakuchi, M.; Ferlito, M.; Lowenstein, C.J. miR-34a repression of SIRT1 regulates apoptosis. Proc. Natl. Acad. Sci. USA, 2008, 105(36), 13421-13426.
[http://dx.doi.org/10.1073/pnas.0801613105] [PMID: 18755897]
[140]
Castro, R.E.; Ferreira, D.M.; Afonso, M.B.; Borralho, P.M.; Machado, M.V.; Cortez-Pinto, H.; Rodrigues, C.M. miR-34a/SIRT1/p53 is suppressed by ursodeoxycholic acid in the rat liver and activated by disease severity in human non-alcoholic fatty liver disease. J. Hepatol., 2013, 58(1), 119-125.
[http://dx.doi.org/10.1016/j.jhep.2012.08.008] [PMID: 22902550]
[141]
Zhou, Y.; Liu, Y.; Hu, C.; Jiang, Y. MicroRNA-16 inhibits the proliferation, migration and invasion of glioma cells by targeting Sal-like protein 4. Int. J. Mol. Med., 2016, 38(6), 1768-1776.
[http://dx.doi.org/10.3892/ijmm.2016.2775] [PMID: 27748823]
[142]
Yang, Y.; Jiang, S.; Dong, Y.; Fan, C.; Zhao, L.; Yang, X.; Li, J.; Di, S.; Yue, L.; Liang, G.; Reiter, R.J.; Qu, Y. Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J. Pineal Res., 2015, 58(1), 61-70.
[http://dx.doi.org/10.1111/jpi.12193] [PMID: 25401748]
[143]
Shah, S.A.; Khan, M.; Jo, M.H.; Jo, M.G.; Amin, F.U.; Kim, M.O. Melatonin Stimulates the SIRT1/Nrf2 signaling pathway counteracting lipopolysaccharide (lps)-induced oxidative stress to rescue postnatal rat brain. CNS Neurosci. Ther., 2017, 23(1), 33-44.
[http://dx.doi.org/10.1111/cns.12588] [PMID: 27421686]
[144]
Zhao, L.; Liu, H.; Yue, L.; Zhang, J.; Li, X.; Wang, B.; Lin, Y.; Qu, Y. Melatonin Attenuates early brain injury via the melatonin receptor/sirt1/nf-κb signaling pathway following subarachnoid hemorrhage in mice. Mol. Neurobiol., 2017, 54(3), 1612-1621.
[http://dx.doi.org/10.1007/s12035-016-9776-7] [PMID: 26867656]
[145]
Carloni, S.; Riparini, G.; Buonocore, G.; Balduini, W. Rapid modulation of the silent information regulator 1 by melatonin after hypoxia-ischemia in the neonatal rat brain. J. Pineal Res., 2017, 63(3)
[http://dx.doi.org/10.1111/jpi.12434] [PMID: 28708259]
[146]
Ling, N.; Gu, J.; Lei, Z.; Li, M.; Zhao, J.; Zhang, H.T.; Li, X. microRNA-155 regulates cell proliferation and invasion by targeting FOXO3a in glioma. Oncol. Rep., 2013, 30(5), 2111-2118.
[http://dx.doi.org/10.3892/or.2013.2685] [PMID: 23970205]
[147]
Butz, H.; Likó, I.; Czirják, S.; Igaz, P.; Khan, M.M.; Zivkovic, V.; Bálint, K.; Korbonits, M.; Rácz, K.; Patócs, A. Down-regulation of Wee1 kinase by a specific subset of microRNA in human sporadic pituitary adenomas. J. Clin. Endocrinol. Metab., 2010, 95(10), E181-E191.
[http://dx.doi.org/10.1210/jc.2010-0581] [PMID: 20668041]
[148]
Amici, S.A.; Dong, J.; Guerau-de-Arellano, M. Molecular mechanisms modulating the phenotype of macrophages and microglia. Front. Immunol., 2017, 8, 1520.
[http://dx.doi.org/10.3389/fimmu.2017.01520] [PMID: 29176977]
[149]
Moore, C.S.; Rao, V.T.; Durafourt, B.A.; Bedell, B.J.; Ludwin, S.K.; Bar-Or, A.; Antel, J.P. miR-155 as a multiple sclerosis-relevant regulator of myeloid cell polarization. Ann. Neurol., 2013, 74(5), 709-720.
[http://dx.doi.org/10.1002/ana.23967] [PMID: 23818336]
[150]
O’Connell, R.M.; Taganov, K.D.; Boldin, M.P.; Cheng, G.; Baltimore, D. MicroRNA-155 is induced during the macrophage inflammatory response. Proc. Natl. Acad. Sci. USA, 2007, 104(5), 1604-1609.
[http://dx.doi.org/10.1073/pnas.0610731104] [PMID: 17242365]
[151]
Xia, Y.; Chen, S.; Zeng, S.; Zhao, Y.; Zhu, C.; Deng, B.; Zhu, G.; Yin, Y.; Wang, W.; Hardeland, R.; Ren, W. Melatonin in macrophage biology: Current understanding and future perspectives. J. Pineal Res., 2019, 66(2)e12547
[http://dx.doi.org/10.1111/jpi.12547] [PMID: 30597604]
[152]
Park, H.J.; Oh, S.H.; Kim, H.N.; Jung, Y.J.; Lee, P.H. Mesenchymal stem cells enhance α-synuclein clearance via M2 microglia polarization in experimental and human parkinsonian disorder. Acta Neuropathol., 2016, 132(5), 685-701.
[http://dx.doi.org/10.1007/s00401-016-1605-6] [PMID: 27497943]
[153]
Butovsky, O.; Jedrychowski, M.P.; Cialic, R.; Krasemann, S.; Murugaiyan, G.; Fanek, Z.; Greco, D.J.; Wu, P.M.; Doykan, C.E.; Kiner, O.; Lawson, R.J.; Frosch, M.P.; Pochet, N.; Fatimy, R.E.; Krichevsky, A.M.; Gygi, S.P.; Lassmann, H.; Berry, J.; Cudkowicz, M.E.; Weiner, H.L. Targeting miR-155 restores abnormal microglia and attenuates disease in SOD1 mice. Ann. Neurol., 2015, 77(1), 75-99.
[http://dx.doi.org/10.1002/ana.24304] [PMID: 25381879]
[154]
Pena-Philippides, J.C.; Caballero-Garrido, E.; Lordkipanidze, T.; Roitbak, T. In vivo inhibition of miR-155 significantly alters post-stroke inflammatory response. J. Neuroinflammation, 2016, 13(1), 287.
[http://dx.doi.org/10.1186/s12974-016-0753-x] [PMID: 27829437]
[155]
Guedes, J.R.; Custódia, C.M.; Silva, R.J.; de Almeida, L.P.; Pedroso de Lima, M.C.; Cardoso, A.L. Early miR-155 upregulation contributes to neuroinflammation in Alzheimer’s disease triple transgenic mouse model. Hum. Mol. Genet., 2014, 23(23), 6286-6301.
[http://dx.doi.org/10.1093/hmg/ddu348] [PMID: 24990149]
[156]
Wong, H.K.; Veremeyko, T.; Patel, N.; Lemere, C.A.; Walsh, D.M.; Esau, C.; Vanderburg, C.; Krichevsky, A.M. De-repression of FOXO3a death axis by microRNA-132 and -212 causes neuronal apoptosis in Alzheimer’s disease. Hum. Mol. Genet., 2013, 22(15), 3077-3092.
[http://dx.doi.org/10.1093/hmg/ddt164] [PMID: 23585551]
[157]
Salta, E.; Sierksma, A.; Vanden Eynden, E.; De Strooper, B. miR-132 loss de-represses ITPKB and aggravates amyloid and TAU pathology in Alzheimer’s brain. EMBO Mol. Med., 2016, 8(9), 1005-1018.
[http://dx.doi.org/10.15252/emmm.201606520] [PMID: 27485122]
[158]
Yang, Z.; Li, T.; Li, S.; Wei, M.; Qi, H.; Shen, B.; Chang, R.C.; Le, W.; Piao, F. Altered expression levels of MicroRNA-132 and Nurr1 in peripheral blood of parkinson’s disease: potential disease biomarkers. ACS Chem. Neurosci., 2019, 10(5), 2243-2249.
[http://dx.doi.org/10.1021/acschemneuro.8b00460] [PMID: 30817108]
[159]
Zhao, X.; Bai, F.; Zhang, E.; Zhou, D.; Jiang, T.; Zhou, H.; Wang, Q. Electroacupuncture improves neurobehavioral function through targeting of sox2-mediated axonal regeneration by MicroRNA-132 after ischemic stroke. Front. Mol. Neurosci., 2018, 11, 471.
[http://dx.doi.org/10.3389/fnmol.2018.00471] [PMID: 30618618]
[160]
Zuo, X.; Lu, J.; Manaenko, A.; Qi, X.; Tang, J.; Mei, Q.; Xia, Y.; Hu, Q. MicroRNA-132 attenuates cerebral injury by protecting blood-brain-barrier in MCAO mice. Exp. Neurol., 2019, 316, 12-19.
[http://dx.doi.org/10.1016/j.expneurol.2019.03.017] [PMID: 30930097]
[161]
Zhang, Y.; Han, B.; He, Y.; Li, D.; Ma, X.; Liu, Q.; Hao, J. MicroRNA-132 attenuates neurobehavioral and neuropathological changes associated with intracerebral hemorrhage in mice. Neurochem. Int., 2017, 107, 182-190.
[http://dx.doi.org/10.1016/j.neuint.2016.11.011] [PMID: 27940326]
[162]
Sun, Y.; Liu, B.; Zheng, X.; Wang, D. Notoginsenoside R1 alleviates lipopolysaccharide-triggered PC-12 inflammatory damage via elevating microRNA-132. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 1808-1814.
[http://dx.doi.org/10.1080/21691401.2019.1610414] [PMID: 31062615]
[163]
Huang, Y.; Guo, J.; Wang, Q.; Chen, Y. MicroRNA-132 silencing decreases the spontaneous recurrent seizures. Int. J. Clin. Exp. Med., 2014, 7(7), 1639-1649.
[PMID: 25126160]
[164]
Yuan, J.; Huang, H.; Zhou, X.; Liu, X.; Ou, S.; Xu, T.; Li, R.; Ma, L.; Chen, Y. MicroRNA-132 Interact with p250GAP/Cdc42 pathway in the hippocampal neuronal culture model of acquired epilepsy and associated with epileptogenesis process. Neural Plast., 2016, 20165108489
[http://dx.doi.org/10.1155/2016/5108489] [PMID: 27579184]
[165]
Xiang, L.; Ren, Y.; Cai, H.; Zhao, W.; Song, Y. MicroRNA-132 aggravates epileptiform discharges via suppression of BDNF/TrkB signaling in cultured hippocampal neurons. Brain Res., 2015, 1622, 484-495.
[http://dx.doi.org/10.1016/j.brainres.2015.06.046] [PMID: 26168887]
[166]
Jang, H.; Na, Y.; Hong, K.; Lee, S.; Moon, S.; Cho, M.; Park, M.; Lee, O.H.; Chang, E.M.; Lee, D.R.; Ko, J.J.; Lee, W.S.; Choi, Y. Synergistic effect of melatonin and ghrelin in preventing cisplatin-induced ovarian damage via regulation of FOXO3a phosphorylation and binding to the p27Kip1 promoter in primordial follicles. J. Pineal Res., 2017, 63(3)
[http://dx.doi.org/10.1111/jpi.12432] [PMID: 28658519]
[167]
Keniry, A.; Oxley, D.; Monnier, P.; Kyba, M.; Dandolo, L.; Smits, G.; Reik, W. The H19 lincRNA is a developmental reservoir of miR-675 that suppresses growth and Igf1r. Nat. Cell Biol., 2012, 14(7), 659-665.
[http://dx.doi.org/10.1038/ncb2521] [PMID: 22684254]
[168]
Bartel, D.P. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2), 215-233.
[http://dx.doi.org/10.1016/j.cell.2009.01.002] [PMID: 19167326]
[169]
Yang, S.; Tang, W.; He, Y.; Wen, L.; Sun, B.; Li, S. Long non-coding RNA and microRNA-675/let-7a mediates the protective effect of melatonin against early brain injury after subarachnoid hemorrhage via targeting TP53 and neural growth factor. Cell Death Dis., 2018, 9(2), 99.
[http://dx.doi.org/10.1038/s41419-017-0155-8] [PMID: 29367587]
[170]
Wang, R.; Zhou, S.; Wu, P.; Li, M.; Ding, X.; Sun, L.; Xu, X.; Zhou, X.; Zhou, L.; Cao, C.; Fei, G. Identifying involvement of H19-miR-675-3p-IGF1R and H19-miR-200a-PDCD4 in treating pulmonary hypertension with melatonin. Mol. Ther. Nucleic Acids, 2018, 13, 44-54.
[http://dx.doi.org/10.1016/j.omtn.2018.08.015] [PMID: 30240970]
[171]
Zhang, T.; Wang, Y.R.; Zeng, F.; Cao, H.Y.; Zhou, H.D.; Wang, Y.J. LncRNA H19 is overexpressed in glioma tissue, is negatively associated with patient survival, and promotes tumor growth through its derivative miR-675. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(23), 4891-4897.
[PMID: 27981546]
[172]
Shi, Y.; Wang, Y.; Luan, W.; Wang, P.; Tao, T.; Zhang, J.; Qian, J.; Liu, N.; You, Y. Long non-coding RNA H19 promotes glioma cell invasion by deriving miR-675. PLoS One, 2014, 9(1)e86295
[http://dx.doi.org/10.1371/journal.pone.0086295] [PMID: 24466011]
[173]
Martín, V.; Sanchez-Sanchez, A.M.; Puente-Moncada, N.; Gomez-Lobo, M.; Alvarez-Vega, M.A.; Antolín, I.; Rodriguez, C. Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J. Pineal Res., 2014, 57(3), 308-316.
[http://dx.doi.org/10.1111/jpi.12170] [PMID: 25163989]
[174]
Huang, E.J.; Reichardt, L.F. Neurotrophins: roles in neuronal development and function. Annu. Rev. Neurosci., 2001, 24, 677-736.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.677] [PMID: 11520916]
[175]
Mueller, M.; Zhou, J.; Yang, L.; Gao, Y.; Wu, F.; Schoeberlein, A.; Surbek, D.; Barnea, E.R.; Paidas, M.; Huang, Y. PreImplantation factor promotes neuroprotection by targeting microRNA let-7. Proc. Natl. Acad. Sci. USA, 2014, 111(38), 13882-13887.
[http://dx.doi.org/10.1073/pnas.1411674111] [PMID: 25205808]
[176]
Wang, X.R.; Luo, H.; Li, H.L.; Cao, L.; Wang, X.F.; Yan, W.; Wang, Y.Y.; Zhang, J.X.; Jiang, T.; Kang, C.S.; Liu, N.; You, Y.P. Chinese Glioma Cooperative Group (CGCG). Overexpressed let-7a inhibits glioma cell malignancy by directly targeting K-ras, independently of PTEN. Neuro-oncol., 2013, 15(11), 1491-1501.
[http://dx.doi.org/10.1093/neuonc/not107] [PMID: 24092860]
[177]
Sanger, H.L.; Klotz, G.; Riesner, D.; Gross, H.J.; Kleinschmidt, A.K. Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc. Natl. Acad. Sci. USA, 1976, 73(11), 3852-3856.
[http://dx.doi.org/10.1073/pnas.73.11.3852] [PMID: 1069269]
[178]
Salzman, J.; Chen, R.E.; Olsen, M.N.; Wang, P.L.; Brown, P.O. Cell-type specific features of circular RNA expression. PLoS Genet., 2013, 9(9)e1003777
[http://dx.doi.org/10.1371/journal.pgen.1003777] [PMID: 24039610]
[179]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[180]
Rybak-Wolf, A.; Stottmeister, C.; Glažar, P.; Jens, M.; Pino, N.; Giusti, S.; Hanan, M.; Behm, M.; Bartok, O.; Ashwal-Fluss, R.; Herzog, M.; Schreyer, L.; Papavasileiou, P.; Ivanov, A.; Öhman, M.; Refojo, D.; Kadener, S.; Rajewsky, N. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol. Cell, 2015, 58(5), 870-885.
[http://dx.doi.org/10.1016/j.molcel.2015.03.027] [PMID: 25921068]
[181]
Lu, Y.; Tan, L.; Wang, X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in Alzheimer’s Disease. Neurosci. Bull., 2019, 35(5), 877-888.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[182]
Mehta, S.L.; Pandi, G.; Vemuganti, R.; Circular, R.N.A. Expression profiles alter significantly in mouse brain after transient focal ischemia. Stroke, 2017, 48(9), 2541-2548.
[http://dx.doi.org/10.1161/STROKEAHA.117.017469] [PMID: 28701578]
[183]
Dong, Z.; Deng, L.; Peng, Q.; Pan, J.; Wang, Y. CircRNA expression profiles and function prediction in peripheral blood mononuclear cells of patients with acute ischemic stroke. J. Cell. Physiol., 2019.
[PMID: 31502677]
[184]
Han, B.; Zhang, Y.; Zhang, Y.; Bai, Y.; Chen, X.; Huang, R.; Wu, F.; Leng, S.; Chao, J.; Zhang, J.H.; Hu, G.; Yao, H. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14(7), 1164-1184.
[http://dx.doi.org/10.1080/15548627.2018.1458173] [PMID: 29938598]
[185]
Wu, F.; Han, B.; Wu, S.; Yang, L.; Leng, S.; Li, M.; Liao, J.; Wang, G.; Ye, Q.; Zhang, Y.; Chen, H.; Chen, X.; Zhong, M.; Xu, Y.; Liu, Q.; Zhang, J.H.; Yao, H.; Circular, R.N.A. Circular RNA TLK1 aggravates neuronal injury and neurological deficits after ischemic stroke via miR-335-3p/TIPARP. J. Neurosci., 2019, 39(37), 7369-7393.
[http://dx.doi.org/10.1523/JNEUROSCI.0299-19.2019] [PMID: 31311824]
[186]
Zhang, Y.; Yu, F.; Bao, S.; Sun, J. Systematic characterization of circular rna-associated CeRNA network identified novel circrna biomarkers in Alzheimer’s Disease. Front. Bioeng. Biotechnol., 2019, 7, 222.
[http://dx.doi.org/10.3389/fbioe.2019.00222] [PMID: 31572720]
[187]
Dube, U.; Del-Aguila, J.L.; Li, Z.; Budde, J.P.; Jiang, S.; Hsu, S.; Ibanez, L.; Fernandez, M.V.; Farias, F.; Norton, J.; Gentsch, J.; Wang, F.; Salloway, S.; Masters, C.L.; Lee, J.H.; Graff-Radford, N.R.; Chhatwal, J.P.; Bateman, R.J.; Morris, J.C.; Karch, C.M.; Harari, O.; Cruchaga, C. Dominantly Inherited Alzheimer Network (DIAN). An atlas of cortical circular RNA expression in Alzheimer disease brains demonstrates clinical and pathological associations. Nat. Neurosci., 2019, 22(11), 1903-1912.
[http://dx.doi.org/10.1038/s41593-019-0501-5] [PMID: 31591557]
[188]
Chen, Z.; Wang, H.; Zhong, J.; Yang, J.; Darwazeh, R.; Tian, X.; Huang, Z.; Jiang, L.; Cheng, C.; Wu, Y.; Guo, Z.; Sun, X. Significant changes in circular RNA in the mouse cerebral cortex around an injury site after traumatic brain injury. Exp. Neurol., 2019, 313, 37-48.
[http://dx.doi.org/10.1016/j.expneurol.2018.12.003] [PMID: 30529438]
[189]
Xie, B.S.; Wang, Y.Q.; Lin, Y.; Zhao, C.C.; Mao, Q.; Feng, J.F.; Cao, J.Y.; Gao, G.Y.; Jiang, J.Y. Circular RNA expression profiles alter significantly after traumatic brain injury in rats. J. Neurotrauma, 2018, 35(14), 1659-1666.
[http://dx.doi.org/10.1089/neu.2017.5468] [PMID: 29357736]
[190]
Lu, D.; Xu, A.D. Mini Review: Circular RNAs as potential clinical biomarkers for disorders in the central nervous system. Front. Genet., 2016, 7, 53.
[http://dx.doi.org/10.3389/fgene.2016.00053] [PMID: 27092176]
[191]
Zhang, Z.; Zhang, T.; Feng, R.; Huang, H.; Xia, T.; Sun, C. circARF3 Alleviates Mitophagy-mediated inflammation by targeting miR-103/TRAF3 in mouse adipose tissue. Mol. Ther. Nucleic Acids, 2019, 14, 192-203.
[http://dx.doi.org/10.1016/j.omtn.2018.11.014] [PMID: 30623853]
[192]
Yang, R.; Xing, L.; Zheng, X.; Sun, Y.; Wang, X.; Chen, J. The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol. Cancer, 2019, 18(1), 4.
[http://dx.doi.org/10.1186/s12943-018-0933-7] [PMID: 30621700]
[193]
Su, C.; Han, Y.; Zhang, H.; Li, Y.; Yi, L.; Wang, X.; Zhou, S.; Yu, D.; Song, X.; Xiao, N.; Cao, X.; Liu, Z. CiRS-7 targeting miR-7 modulates the progression of non-small cell lung cancer in a manner dependent on NF-κB signalling. J. Cell. Mol. Med., 2018, 22(6), 3097-3107.
[http://dx.doi.org/10.1111/jcmm.13587] [PMID: 29532994]
[194]
Li, R.C.; Ke, S.; Meng, F.K.; Lu, J.; Zou, X.J.; He, Z.G.; Wang, W.F.; Fang, M.H. CiRS-7 promotes growth and metastasis of esophageal squamous cell carcinoma via regulation of miR-7/HOXB13. Cell Death Dis., 2018, 9(8), 838.
[http://dx.doi.org/10.1038/s41419-018-0852-y] [PMID: 30082829]
[195]
Gabisonia, K.; Prosdocimo, G.; Aquaro, G.D.; Carlucci, L.; Zentilin, L.; Secco, I.; Ali, H.; Braga, L.; Gorgodze, N.; Bernini, F.; Burchielli, S.; Collesi, C.; Zandonà, L.; Sinagra, G.; Piacenti, M.; Zacchigna, S.; Bussani, R.; Recchia, F.A.; Giacca, M. MicroRNA therapy stimulates uncontrolled cardiac repair after myocardial infarction in pigs. Nature, 2019, 569(7756), 418-422.
[http://dx.doi.org/10.1038/s41586-019-1191-6] [PMID: 31068698]
[196]
Azedi, F.; Mehrpour, M.; Talebi, S.; Zendedel, A.; Kazemnejad, S.; Mousavizadeh, K.; Beyer, C.; Zarnani, A.H.; Joghataei, M.T. Melatonin regulates neuroinflammation ischemic stroke damage through interactions with microglia in reperfusion phase. Brain Res., 2019, 1723146401
[http://dx.doi.org/10.1016/j.brainres.2019.146401] [PMID: 31445031]
[197]
Chern, C.M.; Liao, J.F.; Wang, Y.H.; Shen, Y.C. Melatonin ameliorates neural function by promoting endogenous neurogenesis through the MT2 melatonin receptor in ischemic-stroke mice. Free Radic. Biol. Med., 2012, 52(9), 1634-1647.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.01.030] [PMID: 22330064]
[198]
Ritzenthaler, T.; Lhommeau, I.; Douillard, S.; Cho, T.H.; Brun, J.; Patrice, T.; Nighoghossian, N.; Claustrat, B. Dynamics of oxidative stress and urinary excretion of melatonin and its metabolites during acute ischemic stroke. Neurosci. Lett., 2013, 544, 1-4.
[http://dx.doi.org/10.1016/j.neulet.2013.02.073] [PMID: 23562888]
[199]
Bhattacharya, P.; Pandey, A.K.; Paul, S.; Patnaik, R. Melatonin renders neuroprotection by protein kinase C mediated aquaporin-4 inhibition in animal model of focal cerebral ischemia. Life Sci., 2014, 100(2), 97-109.
[http://dx.doi.org/10.1016/j.lfs.2014.01.085] [PMID: 24530291]
[200]
Patiño, P.; Parada, E.; Farré-Alins, V.; Molz, S.; Cacabelos, R.; Marco-Contelles, J.; López, M.G.; Tasca, C.I.; Ramos, E.; Romero, A.; Egea, J. Melatonin protects against oxygen and glucose deprivation by decreasing extracellular glutamate and Nox-derived ROS in rat hippocampal slices. Neurotoxicology, 2016, 57, 61-68.
[http://dx.doi.org/10.1016/j.neuro.2016.09.002] [PMID: 27620136]
[201]
Kilic, U.; Caglayan, A.B.; Beker, M.C.; Gunal, M.Y.; Caglayan, B.; Yalcin, E.; Kelestemur, T.; Gundogdu, R.Z.; Yulug, B.; Yılmaz, B.; Kerman, B.E.; Kilic, E. Particular phosphorylation of PI3K/Akt on Thr308 via PDK-1 and PTEN mediates melatonin’s neuroprotective activity after focal cerebral ischemia in mice. Redox Biol., 2017, 12, 657-665.
[http://dx.doi.org/10.1016/j.redox.2017.04.006] [PMID: 28395173]
[202]
Shah, F.A.; Liu, G.; Al Kury, L.T.; Zeb, A.; Abbas, M.; Li, T.; Yang, X.; Liu, F.; Jiang, Y.; Li, S.; Koh, P.O. Melatonin protects mcao-induced neuronal loss via NR2A mediated prosurvival pathways. Front. Pharmacol., 2019, 10, 297.
[http://dx.doi.org/10.3389/fphar.2019.00297] [PMID: 31024297]
[203]
Chumboatong, W.; Thummayot, S.; Govitrapong, P.; Tocharus, C.; Jittiwat, J.; Tocharus, J. Neuroprotection of agomelatine against cerebral ischemia/reperfusion injury through an antiapoptotic pathway in rat. Neurochem. Int., 2017, 102, 114-122.
[http://dx.doi.org/10.1016/j.neuint.2016.12.011] [PMID: 28012846]
[204]
Lin, Y.W.; Chen, T.Y.; Hung, C.Y.; Tai, S.H.; Huang, S.Y.; Chang, C.C.; Hung, H.Y.; Lee, E.J. Melatonin protects brain against ischemia/reperfusion injury by attenuating endoplasmic reticulum stress. Int. J. Mol. Med., 2018, 42(1), 182-192.
[http://dx.doi.org/10.3892/ijmm.2018.3607] [PMID: 29620280]
[205]
Feng, D.; Wang, B.; Wang, L.; Abraham, N.; Tao, K.; Huang, L.; Shi, W.; Dong, Y.; Qu, Y. Pre-ischemia melatonin treatment alleviated acute neuronal injury after ischemic stroke by inhibiting endoplasmic reticulum stress-dependent autophagy via PERK and IRE1 signalings. J. Pineal Res., 2017, 62(3)
[http://dx.doi.org/10.1111/jpi.12395] [PMID: 28178380]
[206]
Chen, B.H.; Park, J.H.; Lee, Y.L.; Kang, I.J.; Kim, D.W.; Hwang, I.K.; Lee, C.H.; Yan, B.C.; Kim, Y.M.; Lee, T.K.; Lee, J.C.; Won, M.H.; Ahn, J.H. Melatonin improves vascular cognitive impairment induced by ischemic stroke by remyelination via activation of ERK1/2 signaling and restoration of glutamatergic synapses in the gerbil hippocampus. Biomed. Pharmacother., 2018, 108, 687-697.
[http://dx.doi.org/10.1016/j.biopha.2018.09.077] [PMID: 30245469]
[207]
Xu, W.; Lu, X.; Zheng, J.; Li, T.; Gao, L.; Lenahan, C.; Shao, A.; Zhang, J.; Yu, J. Melatonin Protects Against Neuronal Apoptosis via Suppression of the ATF6/CHOP Pathway in a Rat Model of Intracerebral Hemorrhage. Front. Neurosci., 2018, 12, 638.
[http://dx.doi.org/10.3389/fnins.2018.00638] [PMID: 30283292]
[208]
Dong, Y.; Fan, C.; Hu, W.; Jiang, S.; Ma, Z.; Yan, X.; Deng, C.; Di, S.; Xin, Z.; Wu, G.; Yang, Y.; Reiter, R.J.; Liang, G. Melatonin attenuated early brain injury induced by subarachnoid hemorrhage via regulating NLRP3 inflammasome and apoptosis signaling. J. Pineal Res., 2016, 60(3), 253-262.
[http://dx.doi.org/10.1111/jpi.12300] [PMID: 26639408]
[209]
Cao, S.; Shrestha, S.; Li, J.; Yu, X.; Chen, J.; Yan, F.; Ying, G.; Gu, C.; Wang, L.; Chen, G. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci. Rep., 2017, 7(1), 2417.
[http://dx.doi.org/10.1038/s41598-017-02679-z] [PMID: 28546552]
[210]
Shi, L.; Liang, F.; Zheng, J.; Zhou, K.; Chen, S.; Yu, J.; Zhang, J. Melatonin regulates apoptosis and autophagy via ros-mst1 pathway in subarachnoid hemorrhage. Front. Mol. Neurosci., 2018, 11, 93.
[http://dx.doi.org/10.3389/fnmol.2018.00093] [PMID: 29632474]
[211]
Lin, C.; Chao, H.; Li, Z.; Xu, X.; Liu, Y.; Hou, L.; Liu, N.; Ji, J. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J. Pineal Res., 2016, 61(2), 177-186.
[http://dx.doi.org/10.1111/jpi.12337] [PMID: 27117839]
[212]
Wu, H.; Shao, A.; Zhao, M.; Chen, S.; Yu, J.; Zhou, J.; Liang, F.; Shi, L.; Dixon, B.J.; Wang, Z.; Ling, C.; Hong, Y.; Zhang, J. Melatonin attenuates neuronal apoptosis through up-regulation of K(+) -Cl(-) cotransporter KCC2 expression following traumatic brain injury in rats. J. Pineal Res., 2016, 61(2), 241-250.
[http://dx.doi.org/10.1111/jpi.12344] [PMID: 27159133]
[213]
Ding, K.; Xu, J.; Wang, H.; Zhang, L.; Wu, Y.; Li, T. Melatonin protects the brain from apoptosis by enhancement of autophagy after traumatic brain injury in mice. Neurochem. Int., 2015, 91, 46-54.
[http://dx.doi.org/10.1016/j.neuint.2015.10.008] [PMID: 26527380]
[214]
Babaee, A.; Eftekhar-Vaghefi, S.H.; Asadi-Shekaari, M.; Shahrokhi, N.; Soltani, S.D.; Malekpour-Afshar, R.; Basiri, M. Melatonin treatment reduces astrogliosis and apoptosis in rats with traumatic brain injury. Iran. J. Basic Med. Sci., 2015, 18(9), 867-872.
[PMID: 26523219]
[215]
Wang, J.; Jiang, C.; Zhang, K.; Lan, X.; Chen, X.; Zang, W.; Wang, Z.; Guan, F.; Zhu, C.; Yang, X.; Lu, H.; Wang, J. Melatonin receptor activation provides cerebral protection after traumatic brain injury by mitigating oxidative stress and inflammation via the Nrf2 signaling pathway. Free Radic. Biol. Med., 2019, 131, 345-355.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.12.014] [PMID: 30553970]
[216]
Rehman, S.U.; Ikram, M.; Ullah, N.; Alam, S.I.; Park, H.Y.; Badshah, H.; Choe, K.; Kim, M.O. Neurological enhancement effects of melatonin against brain injury-induced oxidative stress, neuroinflammation, and neurodegeneration via AMPK/CREB signaling. Cells, 2019, 8(7)E760
[http://dx.doi.org/10.3390/cells8070760] [PMID: 31330909]
[217]
Alluri, H.; Wilson, R.L.; Anasooya Shaji, C.; Wiggins-Dohlvik, K.; Patel, S.; Liu, Y.; Peng, X.; Beeram, M.R.; Davis, M.L.; Huang, J.H.; Tharakan, B. Melatonin preserves blood-brain barrier integrity and permeability via matrix metalloproteinase-9 inhibition. PLoS One, 2016, 11(5)e0154427
[http://dx.doi.org/10.1371/journal.pone.0154427] [PMID: 27152411]
[218]
Paterniti, I.; Campolo, M.; Cordaro, M.; Impellizzeri, D.; Siracusa, R.; Crupi, R.; Esposito, E.; Cuzzocrea, S. PPAR-α Modulates the anti-inflammatory effect of melatonin in the secondary events of spinal cord injury. Mol. Neurobiol., 2017, 54(8), 5973-5987.
[http://dx.doi.org/10.1007/s12035-016-0131-9] [PMID: 27686077]
[219]
Shen, Z.; Zhou, Z.; Gao, S.; Guo, Y.; Gao, K.; Wang, H.; Dang, X. Melatonin inhibits neural cell apoptosis and promotes locomotor recovery via activation of the wnt/β-catenin signaling pathway after spinal cord injury. Neurochem. Res., 2017, 42(8), 2336-2343.
[http://dx.doi.org/10.1007/s11064-017-2251-7] [PMID: 28417262]
[220]
Yuan, X.C.; Wang, P.; Li, H.W.; Wu, Q.B.; Zhang, X.Y.; Li, B.W.; Xiu, R.J. Effects of melatonin on spinal cord injury-induced oxidative damage in mice testis. Andrologia, 2017, 49(7)
[http://dx.doi.org/10.1111/and.12692] [PMID: 27595881]
[221]
Krityakiarana, W.; Sompup, K.; Jongkamonwiwat, N.; Mukda, S.; Pinilla, F.G.; Govitrapong, P.; Phansuwan-Pujito, P. Effects of melatonin on severe crush spinal cord injury-induced reactive astrocyte and scar formation. J. Neurosci. Res., 2016, 94(12), 1451-1459.
[http://dx.doi.org/10.1002/jnr.23930] [PMID: 27717042]
[222]
Gao, Y.; Bai, C.; Zheng, D.; Li, C.; Zhang, W.; Li, M.; Guan, W.; Ma, Y. Combination of melatonin and Wnt-4 promotes neural cell differentiation in bovine amniotic epithelial cells and recovery from spinal cord injury. J. Pineal Res., 2016, 60(3), 303-312.
[http://dx.doi.org/10.1111/jpi.12311] [PMID: 26762966]
[223]
Zhang, Y.; Liu, Z.; Zhang, W.; Wu, Q.; Zhang, Y.; Liu, Y.; Guan, Y.; Chen, X. Melatonin improves functional recovery in female rats after acute spinal cord injury by modulating polarization of spinal microglial/macrophages. J. Neurosci. Res., 2019, 97(7), 733-743.
[http://dx.doi.org/10.1002/jnr.24409] [PMID: 31006904]
[224]
Xu, G.; Shi, D.; Zhi, Z.; Ao, R.; Yu, B. Melatonin ameliorates spinal cord injury by suppressing the activation of inflammasomes in rats. J. Cell. Biochem., 2019, 120(4), 5183-5192.
[http://dx.doi.org/10.1002/jcb.27794] [PMID: 30257055]
[225]
Li, Y.; Guo, Y.; Fan, Y.; Tian, H.; Li, K.; Mei, X. Melatonin enhances autophagy and reduces apoptosis to promote locomotor recovery in spinal cord injury via the PI3K/AKT/mTOR signaling pathway. Neurochem. Res., 2019, 44(8), 2007-2019.
[http://dx.doi.org/10.1007/s11064-019-02838-w] [PMID: 31325156]
[226]
Paul, R.; Phukan, B.C.; Justin Thenmozhi, A.; Manivasagam, T.; Bhattacharya, P.; Borah, A. Melatonin protects against behavioral deficits, dopamine loss and oxidative stress in homocysteine model of Parkinson’s disease. Life Sci., 2018, 192, 238-245.
[http://dx.doi.org/10.1016/j.lfs.2017.11.016] [PMID: 29138117]
[227]
Su, L.Y.; Li, H.; Lv, L.; Feng, Y.M.; Li, G.D.; Luo, R.; Zhou, H.J.; Lei, X.G.; Ma, L.; Li, J.L.; Xu, L.; Hu, X.T.; Yao, Y.G. Melatonin attenuates MPTP-induced neurotoxicity via preventing CDK5-mediated autophagy and SNCA/α-synuclein aggregation. Autophagy, 2015, 11(10), 1745-1759.
[http://dx.doi.org/10.1080/15548627.2015.1082020] [PMID: 26292069]
[228]
Li, Y.; Wang, S.M.; Guo, L.; Zhu, J.; Wang, Y.; Li, L.; Zhao, Y.X. Effects of Melatonin Levels on Neurotoxicity of the medial prefrontal cortex in a rat model of Parkinson’s Disease. Chin. Med. J. (Engl.), 2017, 130(22), 2726-2731.
[http://dx.doi.org/10.4103/0366-6999.218025] [PMID: 29133763]
[229]
Ozsoy, O.; Yildirim, F.B.; Ogut, E.; Kaya, Y.; Tanriover, G.; Parlak, H.; Agar, A.; Aslan, M. Melatonin is protective against 6-hydroxydopamine-induced oxidative stress in a hemiparkinsonian rat model. Free Radic. Res., 2015, 49(8), 1004-1014.
[http://dx.doi.org/10.3109/10715762.2015.1027198] [PMID: 25791066]
[230]
Mendivil-Perez, M.; Soto-Mercado, V.; Guerra-Librero, A.; Fernandez-Gil, B.I.; Florido, J.; Shen, Y.Q.; Tejada, M.A.; Capilla-Gonzalez, V.; Rusanova, I.; Garcia-Verdugo, J.M.; Acuña-Castroviejo, D.; López, L.C.; Velez-Pardo, C.; Jimenez-Del-Rio, M.; Ferrer, J.M.; Escames, G. Melatonin enhances neural stem cell differentiation and engraftment by increasing mitochondrial function. J. Pineal Res., 2017, 63(2)
[http://dx.doi.org/10.1111/jpi.12415] [PMID: 28423196]
[231]
Chuang, J.I.; Pan, I.L.; Hsieh, C.Y.; Huang, C.Y.; Chen, P.C.; Shin, J.W. Melatonin prevents the dynamin-related protein 1-dependent mitochondrial fission and oxidative insult in the cortical neurons after 1-methyl-4-phenylpyridinium treatment. J. Pineal Res., 2016, 61(2), 230-240.
[http://dx.doi.org/10.1111/jpi.12343] [PMID: 27159033]
[232]
Rudnitskaya, E.A.; Muraleva, N.A.; Maksimova, K.Y.; Kiseleva, E.; Kolosova, N.G.; Stefanova, N.A. Melatonin attenuates memory impairment, amyloid-β accumulation, and neurodegeneration in a rat model of sporadic Alzheimer’s Disease. J. Alzheimers Dis., 2015, 47(1), 103-116.
[http://dx.doi.org/10.3233/JAD-150161] [PMID: 26402759]
[233]
Stefanova, N.A.; Maksimova, K.Y.; Kiseleva, E.; Rudnitskaya, E.A.; Muraleva, N.A.; Kolosova, N.G. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer’s disease-like pathology. J. Pineal Res., 2015, 59(2), 163-177.
[http://dx.doi.org/10.1111/jpi.12248] [PMID: 25988948]
[234]
Gong, Y.H.; Hua, N.; Zang, X.; Huang, T.; He, L. Melatonin ameliorates Aβ1-42 -induced Alzheimer’s cognitive deficits in mouse model. J. Pharm. Pharmacol., 2018, 70(1), 70-80.
[http://dx.doi.org/10.1111/jphp.12830] [PMID: 28994117]
[235]
Buendia, I.; Egea, J.; Parada, E.; Navarro, E.; León, R.; Rodríguez-Franco, M.I.; López, M.G. The melatonin-N,N-dibenzyl(N-methyl)amine hybrid ITH91/IQM157 affords neuroprotection in an in vitro Alzheimer’s model via hemo-oxygenase-1 induction. ACS Chem. Neurosci., 2015, 6(2), 288-296.
[http://dx.doi.org/10.1021/cn5002073] [PMID: 25393881]
[236]
Ali, T.; Badshah, H.; Kim, T.H.; Kim, M.O. Melatonin attenuates D-galactose-induced memory impairment, neuroinflammation and neurodegeneration via RAGE/NF-K B/JNK signaling pathway in aging mouse model. J. Pineal Res., 2015, 58(1), 71-85.
[http://dx.doi.org/10.1111/jpi.12194] [PMID: 25401971]
[237]
Wang, C.F.; Song, C.Y.; Wang, X.; Huang, L.Y.; Ding, M.; Yang, H.; Wang, P.; Xu, L.L.; Xie, Z.H.; Bi, J.Z. Protective effects of melatonin on mitochondrial biogenesis and mitochondrial structure and function in the HEK293-APPswe cell model of Alzheimer’s disease. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3542-3550.
[PMID: 31081111]
[238]
Khatoon, R.; Rasheed, M.Z.; Rawat, M.; Alam, M.M.; Tabassum, H.; Parvez, S. Effect of melatonin on Aβ42 induced changes in the mitochondrial function related to Alzheimer’s disease in Drosophila melanogaster. Neurosci. Lett., 2019, 711134376
[http://dx.doi.org/10.1016/j.neulet.2019.134376] [PMID: 31325578]
[239]
Luengo, E.; Buendia, I.; Fernández-Mendívil, C.; Trigo-Alonso, P.; Negredo, P.; Michalska, P.; Hernández-García, B.; Sánchez-Ramos, C.; Bernal, J.A.; Ikezu, T.; León, R.; López, M.G. Pharmacological doses of melatonin impede cognitive decline in tau-related Alzheimer models, once tauopathy is initiated, by restoring the autophagic flux. J. Pineal Res., 2019, 67(1)e12578
[http://dx.doi.org/10.1111/jpi.12578] [PMID: 30943316]
[240]
Shukla, M.; Htoo, H.H.; Wintachai, P.; Hernandez, J.F.; Dubois, C.; Postina, R.; Xu, H.; Checler, F.; Smith, D.R.; Govitrapong, P.; Vincent, B. Melatonin stimulates the nonamyloidogenic processing of βAPP through the positive transcriptional regulation of ADAM10 and ADAM17. J. Pineal Res., 2015, 58(2), 151-165.
[http://dx.doi.org/10.1111/jpi.12200] [PMID: 25491598]
[241]
Al-Olayan, E.M.; El-Khadragy, M.F.; Abdel Moneim, A.E. The protective properties of melatonin against aluminium-induced neuronal injury. Int. J. Exp. Pathol., 2015, 96(3), 196-202.
[http://dx.doi.org/10.1111/iep.12122] [PMID: 25891353]
[242]
Jeong, J.K.; Lee, J.H.; Moon, J.H.; Lee, Y.J.; Park, S.Y. Melatonin-mediated β-catenin activation protects neuron cells against prion protein-induced neurotoxicity. J. Pineal Res., 2014, 57(4), 427-434.
[http://dx.doi.org/10.1111/jpi.12182] [PMID: 25251028]
[243]
Muhammad, T.; Ali, T.; Ikram, M.; Khan, A.; Alam, S.I.; Kim, M.O. Melatonin rescue oxidative stress-mediated neuroinflammation/neurodegeneration and memory impairment in scopolamine-induced amnesia mice model. J. Neuroimmune Pharmacol., 2019, 14(2), 278-294.
[http://dx.doi.org/10.1007/s11481-018-9824-3] [PMID: 30478761]
[244]
Liu, W.C.; Wang, X.; Zhang, X.; Chen, X.; Jin, X. Melatonin supplementation, a strategy to prevent neurological diseases through maintaining integrity of blood brain barrier in old people. Front. Aging Neurosci., 2017, 9, 165.
[http://dx.doi.org/10.3389/fnagi.2017.00165] [PMID: 28596733]
[245]
Xu, C.S.; Wang, Z.F.; Huang, X.D.; Dai, L.M.; Cao, C.J.; Li, Z.Q. Involvement of ROS-alpha v beta 3 integrin-FAK/Pyk2 in the inhibitory effect of melatonin on U251 glioma cell migration and invasion under hypoxia. J. Transl. Med., 2015, 13, 95.
[http://dx.doi.org/10.1186/s12967-015-0454-8] [PMID: 25889845]
[246]
Sung, G.J.; Kim, S.H.; Kwak, S.; Park, S.H.; Song, J.H.; Jung, J.H.; Kim, H.; Choi, K.C. Inhibition of TFEB oligomerization by co-treatment of melatonin with vorinostat promotes the therapeutic sensitivity in glioblastoma and glioma stem cells. J. Pineal Res., 2019, 66(3)e12556
[http://dx.doi.org/10.1111/jpi.12556] [PMID: 30648757]
[247]
Wang, J.; Hao, H.; Yao, L.; Zhang, X.; Zhao, S.; Ling, E.A.; Hao, A.; Li, G. Melatonin suppresses migration and invasion via inhibition of oxidative stress pathway in glioma cells. J. Pineal Res., 2012, 53(2), 180-187.
[http://dx.doi.org/10.1111/j.1600-079X.2012.00985.x] [PMID: 22404622]
[248]
Martín, V.; García-Santos, G.; Rodriguez-Blanco, J.; Casado-Zapico, S.; Sanchez-Sanchez, A.; Antolín, I.; Medina, M.; Rodriguez, C. Melatonin sensitizes human malignant glioma cells against TRAIL-induced cell death. Cancer Lett., 2010, 287(2), 216-223.
[http://dx.doi.org/10.1016/j.canlet.2009.06.016] [PMID: 19632770]
[249]
Zhang, Y.; Liu, Q.; Wang, F.; Ling, E.A.; Liu, S.; Wang, L.; Yang, Y.; Yao, L.; Chen, X.; Wang, F.; Shi, W.; Gao, M.; Hao, A. Melatonin antagonizes hypoxia-mediated glioblastoma cell migration and invasion via inhibition of HIF-1α. J. Pineal Res., 2013, 55(2), 121-130.
[http://dx.doi.org/10.1111/jpi.12052] [PMID: 23551342]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy