Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Computational Approaches for the Design of (Mutant-)Selective Tyrosine Kinase Inhibitors: State-of-the-Art and Future Prospects

Author(s): Prashant S. Kharkar*

Volume 20, Issue 17, 2020

Page: [1564 - 1575] Pages: 12

DOI: 10.2174/1568026620666200502005853

Price: $65

Abstract

Kinases remain one of the major attractive therapeutic targets for a large number of indications such as cancer, rheumatoid arthritis, cardiac failure and many others. Design and development of kinase inhibitors (ATP-competitive, allosteric or covalent) is a clinically validated and successful strategy in the pharmaceutical industry. The perks come with limitations, particularly the development of resistance to highly potent and selective inhibitors. When this happens, the cycle needs to be repeated, i.e., the design and development of kinase inhibitors active against the mutated forms. The complexity of tumor milieu makes it awfully difficult for these molecularly-targeted therapies to work. Every year newer and better versions of these agents are introduced in the clinic. Several computational approaches such as structure-, ligand-based or hybrid ones continue to live up to their potential in discovering novel kinase inhibitors. New schools of thought in this area continue to emerge, e.g., development of dual-target kinase inhibitors. But there are fundamental issues with this approach. It is indeed difficult to selectively optimize binding at two entirely different or related kinases. In addition to the conventional strategies, modern technologies (machine learning, deep learning, artificial intelligence, etc.) started yielding the results and building success stories. Computational tools invariably played a critical role in catalysing the phenomenal progress in kinase drug discovery field. The present review summarized the progress in utilizing computational methods and tools for discovering (mutant-)selective tyrosine kinase inhibitor drugs in the last three years (2017-2019). Representative investigations have been discussed, while others are merely listed. The author believes that the enthusiastic reader will be inspired to dig out the cited literature extensively to appreciate the progress made so far and the future prospects of the field.

Keywords: Tyrosine kinases, Kinase selectivity, Kinase mutations, Computational approaches, Cancer, Dual-target kinase inhibitors.

« Previous
Graphical Abstract

[1]
Do, K.T.; Kummar, S. Therapeutic targeting of cancer cells: era of molecularly targeted agents. In: Abeloff’s Clinical Oncology, 6th ed; Niederhuber, J.E.; Armitage, J.O.; Kastan, M.B.; Doroshow, J.H.; Tepper, J.E., Eds.; Elsevier Inc.: Amsterdam, 2020; pp. 420-430. e2.
[2]
Duong-Ly, K.C.; Peterson, J.R. The human kinome and kinase inhibition. Curr. Protoc Pharmacol., 2013, 60(1), 1-14.
[http://dx.doi.org/10.1002/0471141755.ph0209s60]
[3]
Sawyers, C.L. Rational therapeutic intervention in cancer: kinases as drug targets. Curr. Opin. Genet. Dev., 2002, 12(1), 111-115.
[http://dx.doi.org/10.1016/S0959-437X(01)00273-8] [PMID: 11790564]
[4]
Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2000, 103(2), 211-225.
[http://dx.doi.org/10.1016/S0092-8674(00)00114-8] [PMID: 11057895]
[5]
Du, Z.; Lovly, C.M. Mechanisms of receptor tyrosine kinase activation in cancer. Mol. Cancer, 2018, 17(1), 58.
[http://dx.doi.org/10.1186/s12943-018-0782-4] [PMID: 29455648]
[6]
Receptor tyrosine kinases (RTKs). IUPHAR/BPS Guide to Pharmacology. Available from:. http://www.guidetopharmacology.org/GRAC/FamilyDisplay-Forward?familyId=304 (Accessed on 07-12-2019).
[7]
Roskoski, R., Jr Properties of FDA-approved small molecule protein kinase inhibitors. Pharmacol. Res., 2019, 144, 19-50.
[http://dx.doi.org/10.1016/j.phrs.2019.03.006] [PMID: 30877063]
[8]
Siveen, K.S.; Prabhu, K.S.; Achkar, I.W.; Kuttikrishnan, S.; Shyam, S.; Khan, A.Q.; Merhi, M.; Dermime, S.; Uddin, S. Role of non receptor tyrosine kinases in hematological malignances and its targeting by natural products. Mol. Cancer, 2018, 17(1), 31.
[http://dx.doi.org/10.1186/s12943-018-0788-y] [PMID: 29455667]
[9]
Schenk, P.W.; Snaar-Jagalska, B.E. Signal perception and transduction: the role of protein kinases. Biochim. Biophys. Acta, 1999, 1449(1), 1-24.
[http://dx.doi.org/10.1016/S0167-4889(98)00178-5] [PMID: 10076047]
[10]
Heldin, C.H. Dimerization of cell surface receptors in signal transduction. Cell, 1995, 80(2), 213-223.
[http://dx.doi.org/10.1016/0092-8674(95)90404-2] [PMID: 7834741]
[11]
FDA-approved small molecule protein kinase inhibitors. Available from:. http://www.brimr.org/PKI/-PKIs.htm (Accessed on January 5, 2020).
[12]
Capdeville, R.; Buchdunger, E.; Zimmermann, J.; Matter, A. Glivec (STI571, imatinib), a rationally developed, targeted anticancer drug. Nat. Rev. Drug Discov., 2002, 1(7), 493-502.
[http://dx.doi.org/10.1038/nrd839] [PMID: 12120256]
[13]
Duong-Ly, K. C.; Peterson, J. R. The human kinome and kinase inhibition as a therapeutic strategy. Curr. Protoc. Pharmacol., 2013, 2, Unit 2.9.
[14]
Bhullar, K.S.; Lagarón, N.O.; McGowan, E.M.; Parmar, I.; Jha, A.; Hubbard, B.P.; Rupasinghe, H.P.V. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol. Cancer, 2018, 17(1), 48.
[http://dx.doi.org/10.1186/s12943-018-0804-2] [PMID: 29455673]
[15]
Knight, Z.A.; Shokat, K.M. Features of selective kinase inhibitors. Chem. Biol., 2005, 12(6), 621-637.
[http://dx.doi.org/10.1016/j.chembiol.2005.04.011] [PMID: 15975507]
[16]
Singh, J.; Petter, R.C.; Kluge, A.F. Targeted covalent drugs of the kinase family. Curr. Opin. Chem. Biol., 2010, 14(4), 475-480.
[http://dx.doi.org/10.1016/j.cbpa.2010.06.168] [PMID: 20609616]
[17]
Barf, T.; Kaptein, A. Irreversible protein kinase inhibitors: balancing the benefits and risks. J. Med. Chem., 2012, 55(14), 6243-6262.
[http://dx.doi.org/10.1021/jm3003203] [PMID: 22621397]
[18]
Rodon Ahnert, J.; Gray, N.; Mok, T.; Gainor, J. What it takes to improve a first-generation inhibitor to a second- or third-generation small molecule. Am. Soc. Clin. Oncol. Educ. Book, 2019, 39, 196-205.
[http://dx.doi.org/10.1200/EDBK_242209] [PMID: 31099659]
[19]
Reid, T-E.; Fortunak, J.M.; Wutoh, A.; Simon Wang, X. Cheminformatics-based drug discovery of human tyrosine kinase inhibitors. Curr. Top. Med. Chem., 2016, 16(13), 1452-1462.
[http://dx.doi.org/10.2174/1568026615666150915120814] [PMID: 26369823]
[20]
Rossari, F.; Minutolo, F.; Orciuolo, E. Past, present, and future of Bcr-Abl inhibitors: from chemical development to clinical efficacy. J. Hematol. Oncol., 2018, 11(1), 84.
[http://dx.doi.org/10.1186/s13045-018-0624-2] [PMID: 29925402]
[21]
(a) RCSB PDB. Available from:. rcsb.org (Accessed on January 6, 2020).
(b) Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[22]
Erlanson, D.A.; Davis, B.J.; Jahnke, W. Fragment-based drug discovery: advancing fragments in the absence of crystal structures. Cell Chem. Biol., 2019, 26(1), 9-15.
[http://dx.doi.org/10.1016/j.chembiol.2018.10.001] [PMID: 30482678]
[23]
Gagic, Z.; Ruzic, D.; Djokovic, N.; Djikic, T.; Nikolic, K. In silico methods for design of kinase inhibitors as anticancer drugs. Front Chem., 2020, 7, 873.
[http://dx.doi.org/10.3389/fchem.2019.00873]
[24]
Zhao, Z.; Xie, L.; Bourne, P.E. Structural insights into characterizing binding sites in epidermal growth factor receptor kinase mutants. J. Chem. Inf. Model., 2019, 59(1), 453-462.
[http://dx.doi.org/10.1021/acs.jcim.8b00458] [PMID: 30582689]
[25]
De Clercq, D.J.H.; Heppner, D.E.; To, C.; Jang, J.; Park, E.; Yun, C.H.; Mushajiang, M.; Shin, B.H.; Gero, T.W.; Scott, D.A.; Jänne, P.A.; Eck, M.J.; Gray, N.S. Discovery and optimization of dibenzodiazepinones as allosteric mutant-selective EGFR inhibitors. ACS Med. Chem. Lett., 2019, 10(11), 1549-1553.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00381] [PMID: 31749909]
[26]
Kharkar, P.S.; Warrier, S.; Gaud, R.S. Reverse docking: a powerful tool for drug repositioning and drug rescue. Future Med. Chem., 2014, 6(3), 333-342.
[http://dx.doi.org/10.4155/fmc.13.207] [PMID: 24575968]
[27]
Debnath, S.; Kanakaraju, M.; Islam, M.; Yeeravalli, R.; Sen, D.; Das, A. In silico design, synthesis and activity of potential drug-like chrysin scaffold-derived selective EGFR inhibitors as anticancer agents. Comput. Biol. Chem., 2019, 83, 107156.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.107156] [PMID: 31710991]
[28]
(a) Bhujbal, S.P.; Keretsu, S.; Cho, S.J. Design of new therapeutic agents targeting FLT3 receptor tyrosine kinase using molecular docking and 3D-QSAR approach. Lett. Drug Des. Discov., 2020, 17, 583-594.
(b) Han, C.; Ren, J.; Su, F.; Hu, X.; Li, M.; Wang, Z.; Wu, L. Hybrids of quinoline and anilinopyrimidine: novel EGFRT790M inhibitors with antiproliferative activity against non-small cell lung cancer cell lines. Anticancer. Agents Med. Chem., 2020, 18(86)
[http://dx.doi.org/10.2174/1871520620666200302113206] [PMID: 32116203]
(c) Fatima, S.; Agarwal, S.M. Structure-activity relationship study on therapeutically relevant EGFR double mutant inhibitors. Med. Chem., 2020, 16(1), 52-62.
[http://dx.doi.org/10.2174/1573406415666190206204853] [PMID: 30727906]
(d) Niu, A.; Wang, Y.; Yang, Y.; Wei, J.; Ding, J.; Chen, Y.; Tong, L.; Xie, H. Synthesis and biological evaluation of oxopyrido[2,3-d] pyrimidine-7- ones derivatives as covalent L858R/T790M mutant selective epidermal growth factor receptor (EGFR) inhibitors. Lett. Drug Des. Discov., 2019, 16, 826-834.
[http://dx.doi.org/10.2174/1570180815666180523090558]
[29]
Whang, J.A.; Chang, B.Y. Bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. Drug Discov. Today, 2014, 19(8), 1200-1204.
[http://dx.doi.org/10.1016/j.drudis.2014.03.028] [PMID: 24721226]
[30]
Advani, R.H.; Buggy, J.J.; Sharman, J.P.; Smith, S.M.; Boyd, T.E.; Grant, B.; Kolibaba, K.S.; Furman, R.R.; Rodriguez, S.; Chang, B.Y.; Sukbuntherng, J.; Izumi, R.; Hamdy, A.; Hedrick, E.; Fowler, N.H. Bruton tyrosine kinase inhibitor ibrutinib (PCI-32765) has significant activity in patients with relapsed/refractory B-cell malignancies. J. Clin. Oncol., 2013, 31(1), 88-94.
[http://dx.doi.org/10.1200/JCO.2012.42.7906] [PMID: 23045577]
[31]
Yao, X.; Sun, X.; Jin, S.; Yang, L.; Xu, H.; Rao, Y. Discovery of 4- aminoquinoline-3-carboxamide derivatives as potent reversible bruton’s tyrosine kinase inhibitors for the treatment of rheumatoid arthritis. J. Med. Chem., 2019, 62(14), 6561-6574.
[http://dx.doi.org/10.1021/acs.jmedchem.9b00329] [PMID: 31260299]
[32]
Sharma, A.; Thelma, B.K. Pharmacophore modeling and virtual screening in search of novel Bruton’s tyrosine kinase inhibitors. J. Mol. Model., 2019, 25(7), 179.
[http://dx.doi.org/10.1007/s00894-019-4047-y] [PMID: 31172362]
[33]
Rampogu, S.; Baek, A.; Park, C.; Parate, S.; Parameswaran, S.; Park, Y.; Shaik, B.; Kim, J.H.; Park, S.J.; Lee, K.W. Discovery of small molecules that target vascular endothelial growth factor receptor-2 signalling pathway employing molecular modelling studies. Cells, 2019, 8(3) E269.
[http://dx.doi.org/10.3390/cells8030269] [PMID: 30901950]
[34]
Sun, D.; Zhao, Y.; Zhang, S.; Zhang, L.; Liu, B.; Ouyang, L. Dual target kinase drug design: Current strategies and future directions in cancer therapy. Eur. J. Med. Chem., 2020, 188112025
[http://dx.doi.org/10.1016/j.ejmech.2019.112025] [PMID: 31931340]
[35]
Liu, Y.; Gray, N.S. Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol., 2006, 2(7), 358-364.
[http://dx.doi.org/10.1038/nchembio799] [PMID: 16783341]
[36]
Miduturu, C.V.; Deng, X.; Kwiatkowski, N.; Yang, W.; Brault, L.; Filippakopoulos, P.; Chung, E.; Yang, Q.; Schwaller, J.; Knapp, S.; King, R.W.; Lee, J.D.; Herrgard, S.; Zarrinkar, P.; Gray, N.S. High throughput kinase profiling: a more efficient approach toward the discovery of new kinase inhibitors. Chem. Biol., 2011, 18(7), 868-879.
[http://dx.doi.org/10.1016/j.chembiol.2011.05.010] [PMID: 21802008]
[37]
Kothiwale, S.; Borza, C.; Pozzi, A.; Meiler, J. Quantitative structure-activity relationship modeling of kinase selectivity profiles. Molecules, 2017, 22(9) E1576.
[http://dx.doi.org/10.3390/molecules22091576] [PMID: 28925954]
[38]
BCL KinasePred Server., Available from:. http://www.meilerlab.org/index.php/servers/show?s_id=23 (Accessed on January 29, 2020).
[39]
Vrontaki, E.; Melagraki, G.; Afantitis, A.; Mavromoustakos, T.; Kollias, G. Searching for novel janus kinase-2 inhibitors using a combination of pharmacophore modeling, 3D-QSAR studies and virtual screening. Mini Rev. Med. Chem., 2017, 17(3), 268-294.
[http://dx.doi.org/10.2174/1389557516666160919163930] [PMID: 27659251]
[40]
Tu, J.; Song, L. T.; Zhai, H. L.; Wang, J.; Zhang, X. Y. Selective mechanisms and molecular design of 2,4 Diarylaminopyrimidines as ALK inhibitors. Int. J. Biol. Macromol., 2018, 118(Pt A), 1149-1156.
[41]
McSkimming, D.I.; Rasheed, K.; Kannan, N. Classifying kinase conformations using a machine learning approach. BMC Bioinformatics, 2017, 18(1), 86.
[http://dx.doi.org/10.1186/s12859-017-1506-2] [PMID: 28152981]
[42]
Machine learning approach to classifying kinase crystal structure conformations. Available from:. https://github.com/esbg/kinconform (Accessed on Janaury 29,, 2020).
[43]
D3SC: EAGER: Deep learning to design selective kinase inhibitors 2018. Available from:. http://grantome.com/grant/NSF/CHE-1836950 (Accessed on January 29,, 2020).
[44]
Janssen, A.P.A.; Grimm, S.H.; Wijdeven, R.H.M.; Lenselink, E.B.; Neefjes, J.; van Boeckel, C.A.A.; van Westen, G.J.P.; van der Stelt, M. Drug discovery maps, a machine learning model that visualizes and predicts kinome-inhibitor interaction landscapes. J. Chem. Inf. Model., 2019, 59(3), 1221-1229.
[http://dx.doi.org/10.1021/acs.jcim.8b00640] [PMID: 30372617]
[45]
Singla, H.; Munshi, A.; Banipal, R.P.S.; Kumar, V. Recent updates on the therapeutic potential of her2 tyrosine kinase inhibitors for the treatment of breast cancer. Curr. Cancer Drug Targets, 2018, 18(4), 306-327.
[http://dx.doi.org/10.2174/1568009617666170623122213] [PMID: 28669349]
[46]
Bommu, U.D.; Konidala, K.K.; Pamanji, R.; Yeguvapalli, S. Computational screening, ensemble docking and pharmacophore analysis of potential gefitinib analogues against epidermal growth factor receptor. J. Recept. Signal Transduct. Res., 2018, 38(1), 48-60.
[http://dx.doi.org/10.1080/10799893.2018.1426603] [PMID: 29369008]
[47]
Wang, X.; Xue, G.; Pan, Z. Design, synthesis and structure-activity relationship of indolylindazoles as potent and selective covalent inhibitors of interleukin-2 inducible T-cell kinase (ITK). Eur. J. Med. Chem., 2020, 187, 111918.
[http://dx.doi.org/10.1016/j.ejmech.2019.111918] [PMID: 31830635]
[48]
Cichonska, A.; Ravikumar, B.; Parri, E.; Timonen, S.; Pahikkala, T.; Airola, A.; Wennerberg, K.; Rousu, J.; Aittokallio, T. Computational-experimental approach to drug-target interaction mapping: A case study on kinase inhibitors. PLOS Comput. Biol., 2017, 13(8)e1005678
[http://dx.doi.org/10.1371/journal.pcbi.1005678] [PMID: 28787438]
[49]
Kim, C.; Kim, E. Rational drug design approach of receptor tyrosine kinase type iii inhibitors. Curr. Med. Chem., 2019, 26(42), 7623-7640.
[http://dx.doi.org/10.2174/0929867325666180622143548] [PMID: 29932031]
[50]
Shaik, N.A.; Al-Kreathy, H.M.; Ajabnoor, G.M.; Verma, P.K.; Banaganapalli, B. Molecular designing, virtual screening and docking study of novel curcumin analogue as mutation (S769L and K846R) selective inhibitor for EGFR. Saudi J. Biol. Sci., 2019, 26(3), 439-448.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.026] [PMID: 30899155]
[51]
Liu, F-T.; Li, N-G.; Zhang, Y-M.; Xie, W-C.; Yang, S-P.; Lu, T.; Shi, Z-H. Recent advance in the development of novel, selective and potent FGFR inhibitors. Eur. J. Med. Chem., 2020, 186111884
[http://dx.doi.org/10.1016/j.ejmech.2019.111884] [PMID: 31761386]
[52]
Engelhardt, H.; Böse, D.; Petronczki, M.; Scharn, D.; Bader, G.; Baum, A.; Bergner, A.; Chong, E.; Döbel, S.; Egger, G.; Engelhardt, C.; Ettmayer, P.; Fuchs, J.E.; Gerstberger, T.; Gonnella, N.; Grimm, A.; Grondal, E.; Haddad, N.; Hopfgartner, B.; Kousek, R.; Krawiec, M.; Kriz, M.; Lamarre, L.; Leung, J.; Mayer, M.; Patel, N.D.; Simov, B.P.; Reeves, J.T.; Schnitzer, R.; Schrenk, A.; Sharps, B.; Solca, F.; Stadtmüller, H.; Tan, Z.; Wunberg, T.; Zoephel, A.; McConnell, D.B. Start selective and rigidify: the discovery path toward a next generation of EGFR tyrosine kinase inhibitors. J. Med. Chem., 2019, 62(22), 10272-10293.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01169] [PMID: 31689114]
[53]
Ran, F.; Liu, Y.; Yu, S.; Guo, K.; Tang, W.; Chen, X.; Zhao, G. Design and synthesis of novel 1-substituted 3-(6-phenoxypyridin-3- yl)-1H-pyrazolo[3,4-d]pyrimidin-4-amine analogs as selective BTK inhibitors for the treatment of mantle cell lymphoma. Bioorg. Chem., 2020, 94, 103367.
[http://dx.doi.org/10.1016/j.bioorg.2019.103367] [PMID: 31685258]
[54]
Baska, F.; Sipos, A.; Őrfi, Z.; Nemes, Z.; Dobos, J.; Szántai-Kis, C.; Szabó, E.; Szénási, G.; Dézsi, L.; Hamar, P.; Cserepes, M.T.; Tóvári, J.; Garamvölgyi, R.; Krekó, M.; Őrfi, L. Discovery and development of extreme selective inhibitors of the ITD and D835Y mutant FLT3 kinases. Eur. J. Med. Chem., 2019, 184, 111710.
[http://dx.doi.org/10.1016/j.ejmech.2019.111710] [PMID: 31614258]
[55]
El-Sayed, N.A.; Nour, M.S.; Salem, M.A.; Arafa, R.K. New oxadiazoles with selective-COX-2 and EGFR dual inhibitory activity: Design, synthesis, cytotoxicity evaluation and in silico studies. Eur. J. Med. Chem., 2019, 183, 111693.
[http://dx.doi.org/10.1016/j.ejmech.2019.111693] [PMID: 31539778]
[56]
Wei, H.; Duan, Y.; Gou, W.; Cui, J.; Ning, H.; Li, D.; Qin, Y.; Liu, Q.; Li, Y. Design, synthesis and biological evaluation of novel 4- anilinoquinazoline derivatives as hypoxia-selective EGFR and VEGFR-2 dual inhibitors. Eur. J. Med. Chem., 2019, 181, 111552.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.055] [PMID: 31387063]
[57]
Fayyazi, N.; Fassihi, A.; Esmaeili, S.; Taheri, S.; Ghasemi, J.B.; Saghaie, L. Molecular dynamics simulation and 3D-pharmacophore analysis of new quinoline-based analogues with dual potential against EGFR and VEGFR-2. Int. J. Biol. Macromol., 2020, 142, 94-113.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.077] [PMID: 31521657]
[58]
Ramanathan, K.; Maiti, S.; Santhi, V.; Shin, W-H.; Kihara, D. Implementation of pharmacophore-based 3D QSAR model and scaffold analysis in order to excavate pristine ALK inhibitors. Med. Chem. Res., 2019, 28, 1726-1739.
[http://dx.doi.org/10.1007/s00044-019-02410-9]
[59]
Itteboina, R.; Ballu, S.; Sivan, S.K.; Manga, V. Molecular docking, 3D-QSAR, molecular dynamics, synthesis and anticancer activity of tyrosine kinase 2 (TYK 2) inhibitors. J. Recept. Signal Transduct. Res., 2018, 38(5-6), 462-474.
[http://dx.doi.org/10.1080/10799893.2019.1585453] [PMID: 31038024]
[60]
Balasubramanian, P.K.; Balupuri, A.; Bhujbal, S.P.; Cho, S.J. 3D-QSAR-aided design of potent c-Met inhibitors using molecular dynamics simulation and binding free energy calculation. J. Biomol. Struct. Dyn., 2019, 37(8), 2165-2178.
[http://dx.doi.org/10.1080/07391102.2018.1479309] [PMID: 30044205]
[61]
Balachandar, N.; Liu, C.; Wang, W. Prediction of small molecule kinase inhibitors for chemotherapy using deep learning. arXiv.org, e-Print Archive. Quant. Biol., 2019, 1-15.
[62]
Crunkhorn, S. Deep learning identifies DDR1 kinase inhibitors. Nat. Rev. Drug Discov., 2019, 18(11), 826.
[PMID: 31673133]
[63]
Chen, H.; Engkvist, O. Has drug design augmented by artificial intelligence become a reality? Trends Pharmacol. Sci., 2019, 40(11), 806-809.
[http://dx.doi.org/10.1016/j.tips.2019.09.004] [PMID: 31629547]
[64]
Miljković, F.; Rodríguez-Pérez, R.; Bajorath, J. Machine learning models for accurate prediction of kinase inhibitors with different binding modes. J. Med. Chem., 2019. [ePub ahead of print
[http://dx.doi.org/10.1021/acs.jmedchem.9b00867] [PMID: 31469557]
[65]
Rodríguez-Pérez, R.; Bajorath, J. Multitask machine learning for classifying highly and weakly potent kinase inhibitors. ACS Omega, 2019, 4, 4367-4375.
[http://dx.doi.org/10.1021/acsomega.9b00298]
[66]
Kumari, C.; Abulaish, M.; Subbarao, N. Exploring molecular descriptors and fingerprints to predict mTOR kinase inhibitors using machine learning techniques. Comput. Biol. Bioinform., 2020. [ePub ahead of print
[http://dx.doi.org/10.1109/TCBB.2020.2964203] [PMID: 31905145]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy