Research Article

主动免疫疗法与12聚体Aβ1-42组装疫苗在3×Tg-AD老年小鼠中显示功效

卷 21, 期 1, 2021

发表于: 27 April, 2020

页: [45 - 55] 页: 11

弟呕挨: 10.2174/1566524020666200427101231

价格: $65

摘要

背景:阿尔茨海默氏病(AD)是最常见的进行性神经退行性疾病,其特征是老年斑和神经原纤维缠结(NFT)。淀粉样蛋白低聚物假说表明体内毒性低聚物的积累可能会损害记忆和突触功能。 方法:在本研究中,开发了一种新型的重组嵌合12×(Aβ1-15-Th)抗原作为12聚体Aβ1-42组装疫苗。我们设计了这种12×(Aβ1-15-Th)抗原,以使用十二倍的Aβ1-15(人类Aβ1-42的B细胞表位)和外来人类T辅助(Th)表位(作为T)模拟Aβ1-42的组装状态。 Aβ1-42)构建体的细胞表位。在C57 / BL6小鼠上测试了其作为亚单位疫苗的免疫原性,并通过将其应用于AD小鼠显示了其功效。 结果:这种12x(Aβ1-15-Th)疫苗在3xTg-AD和C57 / BL6小鼠中诱导了强大的Aβ特异性抗体。作为AD的早期免疫治疗剂,12×(Aβ1-15-Th)疫苗显着改善了3×Tg-AD衰老小鼠的行为表现,并降低了大脑中可溶性Aβ低聚物和可溶性Aβ的水平。在3只Tg-AD老龄小鼠中,用12x(Aβ1-15-Th)疫苗免疫治疗可以预防Aβ诱导的突触蛋白减少,这表明它对大脑具有神经保护作用。 结论:针对Aβ寡聚体病理构象的新型重组12×(Aβ1-15-Th)嵌合疫苗在临床前AD模型小鼠中显示出明显的神经保护作用,表明它是预防AD的良好候选疫苗。

关键词: 阿尔茨海默氏病,淀粉样β蛋白,嵌合疫苗,免疫疗法,钙蛋白酶,突触蛋白。

[1]
Gilbert BJ. The role of amyloid β in the pathogenesis of Alzheimer’s disease. J Clin Pathol 2013; 66(5): 362-6.
[http://dx.doi.org/10.1136/jclinpath-2013-201515] [PMID: 23526599]
[2]
Cummings JG, Lee T. Mortsdorf, A. Ritter, K. Zhong. Alzheimer’s disease drug development pipeline. Alzheimers Dement (N Y) 2017; 3: 367-84.
[http://dx.doi.org/10.1016/j.trci.2017.05.002] [PMID: 29067343]
[3]
Lannfelt L, Relkin NR, Siemers ER. Amyloid-ß-directed immunotherapy for Alzheimer’s disease. J Intern Med 2014; 275(3): 284-95.
[http://dx.doi.org/10.1111/joim.12168] [PMID: 24605809]
[4]
Panza F, Solfrizzi V, Imbimbo BP, Tortelli R, Santamato A, Logroscino G. Amyloid-based immunotherapy for Alzheimer’s disease in the time of prevention trials: the way forward. Expert Rev Clin Immunol 2014; 10(3): 405-19.
[http://dx.doi.org/10.1586/1744666X.2014.883921] [PMID: 24490853]
[5]
Wisniewski T, Drummond E. Developing therapeutic vaccines against Alzheimer’s disease. Expert Rev Vaccines 2016; 15(3): 401-15.
[http://dx.doi.org/10.1586/14760584.2016.1121815] [PMID: 26577574]
[6]
Martin F, Bachmann Jennings G T. Monique Vogel. A vaccine against Alzheimer`s disease: anything left but faith, expert opinion on biological therapy, 19 2019; 1: 73-8..
[7]
Zahs KR, Ashe KH. β-Amyloid oligomers in aging and Alzheimer’s disease. Front Aging Neurosci 2013; 5: 28.
[http://dx.doi.org/10.3389/fnagi.2013.00028] [PMID: 23847532]
[8]
Hillen H, Barghorn S, Striebinger A, et al. Generation and therapeutic efficacy of highly oligomer-specific beta-amyloid antibodies. J Neurosci 2010; 30(31): 10369-79.
[http://dx.doi.org/10.1523/JNEUROSCI.5721-09.2010] [PMID: 20685980]
[9]
Klyubin I, Walsh DM, Lemere CA, et al. Amyloid beta protein immunotherapy neutralizes Abeta oligomers that disrupt synaptic plasticity in vivo. Nat Med 2005; 11(5): 556-61.
[http://dx.doi.org/10.1038/nm1234] [PMID: 15834427]
[10]
Lee EB, Leng LZ, Zhang B, et al. Targeting amyloid-beta peptide (Abeta) oligomers by passive immunization with a conformation-selective monoclonal antibody improves learning and memory in Abeta precursor protein (APP) transgenic mice. J Biol Chem 2006; 281(7): 4292-9.
[http://dx.doi.org/10.1074/jbc.M511018200] [PMID: 16361260]
[11]
Wang SW, Liu DQ, Zhang LX, et al. A vaccine with Aβ oligomer-specific mimotope attenuates cognitive deficits and brain pathologies in transgenic mice with Alzheimer’s disease. Alzheimers Res Ther 2017; 9(1): 41.
[http://dx.doi.org/10.1186/s13195-017-0267-5] [PMID: 28592267]
[12]
Arndt JW, Qian F, Smith BA, et al. Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β. Sci Rep 2018; 8(1): 6412.
[http://dx.doi.org/10.1038/s41598-018-24501-0] [PMID: 29686315]
[13]
Budd Haeberlein S, O’Gorman J, Chiao P, et al. Clinical Development of Aducanumab, an Anti-Aβ Human Monoclonal Antibody Being Investigated for the Treatment of Early Alzheimer’s Disease. J Prev Alzheimers Dis 2017; 4(4): 255-63.
[PMID: 29181491]
[14]
Sevigny J, Chiao P, Bussière T, et al. The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease. Nature 2016; 537(7618): 50-6.
[http://dx.doi.org/10.1038/nature19323] [PMID: 27582220]
[15]
Selkoe D J. Alzheimer disease and aducanumab: adjusting our approach Nature reviews 2019; 15-365..
[16]
Abbasi J. Promising Results in 18-Month Analysis of Alzheimer Drug Candidate. JAMA 2018 Sep;; 11320(10): 965.
[17]
Panza F, Lozupone M, Seripa D, Imbimbo BP. Amyloid-β immunotherapy for alzheimer disease: Is it now a long shot? Ann Neurol 2019; 85(3): 303-15.
[http://dx.doi.org/10.1002/ana.25410] [PMID: 30635926]
[18]
Panza F, Lozupone M, Logroscino G, Imbimbo BP. A critical appraisal of amyloid-β-targeting therapies for Alzheimer disease. Nat Rev Neurol 2019; 15(2): 73-88.
[http://dx.doi.org/10.1038/s41582-018-0116-6] [PMID: 30610216]
[19]
Yu YZ, Xu Q. Prophylactic immunotherapy of Alzheimer’s disease using recombinant amyloid-β B-cell epitope chimeric protein as subunit vaccine. Hum Vaccin Immunother 2016; 12(11): 2801-4.
[http://dx.doi.org/10.1080/21645515.2016.1197456] [PMID: 27379885]
[20]
Agadjanyan MG, Ghochikyan A, Petrushina I, et al. Prototype Alzheimer’s disease vaccine using the immunodominant B cell epitope from beta-amyloid and promiscuous T cell epitope pan HLA DR-binding peptide. J Immunol 2005; 174(3): 1580-6.
[http://dx.doi.org/10.4049/jimmunol.174.3.1580] [PMID: 15661919]
[21]
Diethelm-Okita BM, Okita DK, Banaszak L, Conti-Fine BM. Universal epitopes for human CD4+ cells on tetanus and diphtheria toxins. J Infect Dis 2000; 181(3): 1001-9.
[http://dx.doi.org/10.1086/315324] [PMID: 10720523]
[22]
Yu YZ, Wang WB, Chen A, et al. Strikingly reduced amyloid burden and improved behavioral performance in Alzheimer’s disease mice immunized with recombinant chimeric vaccines by hexavalent foldable Aβ₁₋₁₅ fused to toxin-derived carrier proteins. J Alzheimers Dis 2014; 41(1): 243-60.
[http://dx.doi.org/10.3233/JAD-132177] [PMID: 24625800]
[23]
Billings LM, Oddo S, Green KN, McGaugh JL, LaFerla FM. Intraneuronal Abeta causes the onset of early Alzheimer’s disease-related cognitive deficits in transgenic mice. Neuron 2005; 45(5): 675-88.
[http://dx.doi.org/10.1016/j.neuron.2005.01.040] [PMID: 15748844]
[24]
Oddo S, Caccamo A, Shepherd JD, et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Abeta and synaptic dysfunction. Neuron 2003; 39(3): 409-21.
[http://dx.doi.org/10.1016/S0896-6273(03)00434-3] [PMID: 12895417]
[25]
Yu YZ, Li QL, Wang HC, et al. Improved synaptic and cognitive function in aged 3 × Tg-AD mice with reduced amyloid-β after immunotherapy with a novel recombinant 6Aβ15-TF chimeric vaccine. Clin Immunol 2018; 193: 12-23.
[http://dx.doi.org/10.1016/j.clim.2018.05.005] [PMID: 29803820]
[26]
Wang HC, Yu YZ, Liu S, Zhao M, Xu Q. Peripherally administered sera antibodies recognizing amyloid-β oligomers mitigate Alzheimer’s disease-like pathology and cognitive decline in aged 3× Tg-AD mice. Vaccine 2016; 34(15): 1758-66.
[http://dx.doi.org/10.1016/j.vaccine.2016.02.056] [PMID: 26945100]
[27]
Czogalla A, Sikorski AF. Spectrin and calpain: a ‘target’ and a ‘sniper’ in the pathology of neuronal cells. Cell Mol Life Sci 2005; 62(17): 1913-24.
[http://dx.doi.org/10.1007/s00018-005-5097-0] [PMID: 15990959]
[28]
Getz GS. Calpain inhibition as a potential treatment of Alzheimer’s disease. Am J Pathol 2012; 181(2): 388-91.
[http://dx.doi.org/10.1016/j.ajpath.2012.04.027] [PMID: 22733009]
[29]
Kelly BL, Ferreira A. beta-Amyloid-induced dynamin 1 degradation is mediated by N-methyl-D-aspartate receptors in hippocampal neurons. J Biol Chem 2006; 281(38): 28079-89.
[http://dx.doi.org/10.1074/jbc.M605081200] [PMID: 16864575]
[30]
Savioz A, Leuba G, Vallet PG. A framework to understand the variations of PSD-95 expression in brain aging and in Alzheimer’s disease. Ageing Res Rev 2014; 18: 86-94.
[http://dx.doi.org/10.1016/j.arr.2014.09.004] [PMID: 25264360]
[31]
Yu YZ, Liu S, Wang HC, et al. A Novel Aβ B-Cell Epitope Vaccine (rCV01) for Alzheimer’s Disease Improved Synaptic and Cognitive Functions in 3 × Tg-AD Mice. J Neuroimmune Pharmacol 2016; 11(4): 657-68.
[http://dx.doi.org/10.1007/s11481-016-9678-5] [PMID: 27147259]
[32]
Sokolow S, Henkins KM, Bilousova T, et al. AD synapses contain abundant Aβ monomer and multiple soluble oligomers, including a 56-kDa assembly. Neurobiol Aging 2012; 33(8): 1545-55.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.05.011] [PMID: 21741125]
[33]
Tu S, Okamoto S, Lipton SA, Xu H. Oligomeric Aβ-induced synaptic dysfunction in Alzheimer’s disease. Mol Neurodegener 2014; 9: 48.
[http://dx.doi.org/10.1186/1750-1326-9-48] [PMID: 25394486]
[34]
Chen G, Chen KS, Kobayashi D, et al. Active beta-amyloid immunization restores spatial learning in PDAPP mice displaying very low levels of beta-amyloid. J Neurosci 2007; 27(10): 2654-62.
[http://dx.doi.org/10.1523/JNEUROSCI.3710-06.2007] [PMID: 17344403]
[35]
Movsesyan N, Davtyan H, Mkrtichyan M, et al. Low concentrations of anti-Aβ antibodies generated in Tg2576 mice by DNA epitope vaccine fused with 3C3d molecular adjuvant do not affect AD pathology. Hum Gene Ther 2010; 21(11): 1569-76.
[http://dx.doi.org/10.1089/hum.2009.219] [PMID: 20528468]
[36]
Petrushina I, Ghochikyan A, Mktrichyan M, et al. Alzheimer’s disease peptide epitope vaccine reduces insoluble but not soluble/oligomeric Abeta species in amyloid precursor protein transgenic mice. J Neurosci 2007; 27(46): 12721-31.
[http://dx.doi.org/10.1523/JNEUROSCI.3201-07.2007] [PMID: 18003852]
[37]
Pozueta J, Lefort R, Shelanski ML. Synaptic changes in Alzheimer’s disease and its models. Neuroscience 2013; 251: 51-65.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.050] [PMID: 22687952]
[38]
Leuba G, Vernay A, Kraftsik R, Tardif E, Riederer BM, Savioz A. Pathological reorganization of NMDA receptors subunits and postsynaptic protein PSD-95 distribution in Alzheimer’s disease. Curr Alzheimer Res 2014; 11(1): 86-96.
[http://dx.doi.org/10.2174/15672050113106660170] [PMID: 24156266]
[39]
Nakanishi N, Ryan SD, Zhang X, et al. Synaptic protein α1-takusan mitigates amyloid-β-induced synaptic loss via interaction with tau and postsynaptic density-95 at postsynaptic sites. J Neurosci 2013; 33(35): 14170-83.
[http://dx.doi.org/10.1523/JNEUROSCI.4646-10.2013] [PMID: 23986251]
[40]
Zhao WQ, Santini F, Breese R, et al. Inhibition of calcineurin-mediated endocytosis and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors prevents amyloid beta oligomer-induced synaptic disruption. J Biol Chem 2010; 285(10): 7619-32.
[http://dx.doi.org/10.1074/jbc.M109.057182] [PMID: 20032460]
[41]
Liu J, Chang L, Roselli F, et al. Amyloid-β induces caspase-dependent loss of PSD-95 and synaptophysin through NMDA receptors. J Alzheimers Dis 2010; 22(2): 541-56.
[http://dx.doi.org/10.3233/JAD-2010-100948] [PMID: 20847396]
[42]
Buttini M, Masliah E, Barbour R, et al. Beta-amyloid immunotherapy prevents synaptic degeneration in a mouse model of Alzheimer’s disease. J Neurosci 2005; 25(40): 9096-101.
[http://dx.doi.org/10.1523/JNEUROSCI.1697-05.2005] [PMID: 16207868]
[43]
Dorostkar MM, Burgold S, Filser S, et al. Immunotherapy alleviates amyloid-associated synaptic pathology in an Alzheimer’s disease mouse model. Brain 2014; 137(Pt 12): 3319-26.
[http://dx.doi.org/10.1093/brain/awu280] [PMID: 25281869]
[44]
Medeiros R, Kitazawa M, Chabrier MA, et al. Calpain inhibitor A-705253 mitigates Alzheimer’s disease-like pathology and cognitive decline in aged 3xTgAD mice. Am J Pathol 2012; 181(2): 616-25.
[http://dx.doi.org/10.1016/j.ajpath.2012.04.020] [PMID: 22688056]
[45]
Sinjoanu RC, Kleinschmidt S, Bitner RS, Brioni JD, Moeller A, Ferreira A. The novel calpain inhibitor A-705253 potently inhibits oligomeric beta-amyloid-induced dynamin 1 and tau cleavage in hippocampal neurons. Neurochem Int 2008; 53(3-4): 79-88.
[http://dx.doi.org/10.1016/j.neuint.2008.06.003] [PMID: 18590784]
[46]
St-Amour I, Paré I, Tremblay C, Coulombe K, Bazin R, Calon F. IVIg protects the 3xTg-AD mouse model of Alzheimer’s disease from memory deficit and Aβ pathology. J Neuroinflammation 2014; 11: 54.
[http://dx.doi.org/10.1186/1742-2094-11-54] [PMID: 24655894]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy