Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Fascinating Chemopreventive Story of Wogonin: A Chance to Hit on the Head in Cancer Treatment

Author(s): Rajesh Kumar, Seetha Harilal, Della G.T. Parambi, Siju E. Narayanan, Md. Sahab Uddin, Akash Marathakam, Jobin Jose, Githa E. Mathew and Bijo Mathew*

Volume 27, Issue 4, 2021

Published on: 27 April, 2020

Page: [467 - 478] Pages: 12

DOI: 10.2174/1385272824999200427083040

Price: $65

Abstract

Cancer, global havoc, is a group of debilitating diseases that strikes family as well as society. Cancer cases are drastically increasing these days. Despite many therapies and surgical procedures available, cancer is still difficult to control due to limited effective therapies or targeted therapies. Natural products can produce lesser side effects to the normal cells, which are the major demerit of chemotherapies and radiation. Wogonin, a natural product extracted from the plant, Scutellaria baicalensis has been widely studied and found with a high caliber to tackle most of the cancers via several mechanisms that include intrinsic as well as extrinsic apoptosis signaling pathways, carcinogenesis diminution, telomerase activity inhibition, metastasis inhibition in the inflammatory microenvironment, anti-angiogenesis, cell growth inhibition and arrest of the cell cycle, increased generation of H2O2 and accumulation of Ca2+ and also as an adjuvant along with anticancer drugs. This article discusses the role of wogonin in various cancers, its synergism with various drugs, and the mechanism by which wogonin controls tumor growth.

Keywords: Wogonin, apoptosis, carcinogenesis diminution, anti-angiogenesis, metastasis, chemosensitizer, cell cycle arrest.

[1]
Jose J, Kumar R, Harilal S, et al. Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res Int 2019; 1-12.
[http://dx.doi.org/10.1007/s11356-019-07231-2] [PMID: 31884543]
[2]
Kumar R, Harilal S, Gupta SV, et al. Exploring the new horizons of drug repurposing: A vital tool for turning hard work into smart work. Eur J Med Chem 2019.182111602
[http://dx.doi.org/10.1016/j.ejmech.2019.111602] [PMID: 31421629]
[3]
Ling CQ, Yue XQ, Ling C. Three advantages of using traditional Chinese medicine to prevent and treat tumor. J Integr Med 2014; 12(4): 331-5.
[http://dx.doi.org/10.1016/S2095-4964(14)60038-8] [PMID: 25074882]
[4]
Wang X, Wang N, Cheung F, Lao L, Li C, Feng Y. Chinese medicines for prevention and treatment of human hepatocellular carcinoma: current progress on pharmacological actions and mechanisms. J Integr Med 2015; 13(3): 142-64.
[http://dx.doi.org/10.1016/S2095-4964(15)60171-6] [PMID: 26006028]
[5]
De Smet P. Scutellaria SpeciesAdverse Effects of Herbal Drugs 2. Springer 1993; pp. 289-96.
[http://dx.doi.org/10.1007/978-3-642-48906-8_24]
[6]
Zhao Q, Chen X-Y, Martin C. Scutellaria baicalensis, the golden herb from the garden of Chinese medicinal plants. Sci Bull (Beijing) 2016; 61(18): 1391-8.
[http://dx.doi.org/10.1007/s11434-016-1136-5] [PMID: 27730005]
[7]
Cohen I. Scutellaria Barbata Extract and Combinations for the Treatment of Cancer Patent no: WO2009067555, May 2009.
[8]
Gaire BP, Moon S-K, Kim H. Scutellaria baicalensis in stroke management: nature’s blessing in traditional Eastern medicine. Chin J Integr Med 2014; 20(9): 712-20.
[http://dx.doi.org/10.1007/s11655-014-1347-9] [PMID: 24752475]
[9]
Li-Weber M. New therapeutic aspects of flavones: the anticancer properties of Scutellaria and its main active constituents Wogonin, Baicalein and Baicalin. Cancer Treat Rev 2009; 35(1): 57-68.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.005] [PMID: 19004559]
[10]
Tai MC, Tsang SY, Chang LY, Xue H. Therapeutic potential of wogonin: a naturally occurring flavonoid. CNS Drug Rev 2005; 11(2): 141-50.
[http://dx.doi.org/10.1111/j.1527-3458.2005.tb00266.x] [PMID: 16007236]
[11]
Luo H, Vong CT, Chen H, et al. Naturally occurring anti-cancer compounds: shining from Chinese herbal medicine. Chin Med 2019; 14(1): 48.
[http://dx.doi.org/10.1186/s13020-019-0270-9] [PMID: 31719837]
[12]
Mathew B, Suresh J, Vinod D. Antitumor Activity of 5-[(2E)-1-(1H- benzimidazol-2-yl)-3-substituted phenylprop-2-en-1-ylidene] pyrimidine-2, 4, 6(1H, 3H, 5H) triones against Dalton’s Ascitic Lymphoma in mice. Med Chem Res 2013; 22: 3911-7.
[http://dx.doi.org/10.1007/s00044-012-0407-1]
[13]
Dev S, Dhaneshwar SR, Mathew B. Virtual combinatorial library design, synthesis and in vitro anticancer assessment of -2-amino-3-cyanopyridine derivatives. Comb Chem High Throughput Screen 2018; 21(2): 138-48.
[http://dx.doi.org/10.2174/1386207321666180228113925] [PMID: 29493450]
[14]
Fulda S. Targeting Apoptosis for Anticancer TherapySeminars in cancer biology. Elsevier 2015; Vol. 31: pp. 84-8.
[15]
Proskuryakov SY, Gabai VL. Mechanisms of tumor cell necrosis. Curr Pharm Des 2010; 16(1): 56-68.
[http://dx.doi.org/10.2174/138161210789941793] [PMID: 20214618]
[16]
Riss TL, Moravec RA, Niles AL. Cytotoxicity Testing: Measuring Viable Cells, Dead Cells, and Detecting Mechanism of Cell DeathMammalian Cell Viability. Springer 2011; pp. 103-14.
[http://dx.doi.org/10.1007/978-1-61779-108-6_12]
[17]
Singh S, Sharma B, Kanwar SS, Kumar A. Lead Phytochemicals for Anticancer Drug Development. Front Plant Sci 2016; 7: 1667.
[http://dx.doi.org/10.3389/fpls.2016.01667] [PMID: 27877185]
[18]
Mathew B, Suresh J, Mathew GE, Rasheed SA, Vilapurathu JK, Jayaraj P. Flavonoids: An outstanding structural core for the inhibition of Xanthine oxidase enzyme. Curr Enzym Inhib 2015; 12: 108-15.
[http://dx.doi.org/10.2174/1573408011666150730204108]
[19]
Hassanin M, Tolba M, Tadros M, Elmazar M, Singab A-N. Wogonin a Promising Component of Scutellaria Baicalensis: A Review on Its Chemistry, Pharmacokinetics and Biological Activities. Archives of Pharmaceutical Sciences Ain Shams University 2019; 3(2): 170-9.
[http://dx.doi.org/10.21608/aps.2019.18854.1016]
[20]
Özmen A, Madlener S, Bauer S, et al. In vitro anti-leukemic activity of the ethno-pharmacological plant Scutellaria orientalis ssp. carica endemic to western Turkey. Phytomedicine 2010; 17(1): 55-62.
[http://dx.doi.org/10.1016/j.phymed.2009.06.001] [PMID: 19576743]
[21]
Lin C-C, Lin J-J, Wu P-P, et al. et al. Wogonin, a Natural and Biologically- Active Flavonoid, Influences a Murine WEHI-3 Leukemia Model in Vivo through Enhancing Populations of T-and B-Cells. in vivo 2013; 27(6) ` : 733-8.
[22]
Orzechowska B, Chaber R, Wiśniewska A, et al. Baicalin from the extract of Scutellaria baicalensis affects the innate immunity and apoptosis in leukocytes of children with acute lymphocytic leukemia. Int Immunopharmacol 2014; 23(2): 558-67.
[http://dx.doi.org/10.1016/j.intimp.2014.10.005] [PMID: 25448499]
[23]
Hu C, Xu M, Qin R, Chen W, Xu X. Wogonin induces apoptosis and endoplasmic reticulum stress in HL-60 leukemia cells through inhibition of the PI3K-AKT signaling pathway. Oncol Rep 2015; 33(6): 3146-54.
[http://dx.doi.org/10.3892/or.2015.3896] [PMID: 25846394]
[24]
Zhang M, Liu L-P, Chen Y, et al. Wogonin induces apoptosis in RPMI 8226, a human myeloma cell line, by downregulating phospho-Akt and overexpressing Bax. Life Sci 2013; 92(1): 55-62.
[http://dx.doi.org/10.1016/j.lfs.2012.10.023] [PMID: 23142241]
[25]
Lin M-G, Liu L-P, Li C-Y, et al. Scutellaria extract decreases the proportion of side population cells in a myeloma cell line by down-regulating the expression of ABCG2 protein. Asian Pac J Cancer Prev 2013; 14(12): 7179-86.
[http://dx.doi.org/10.7314/APJCP.2013.14.12.7179] [PMID: 24460272]
[26]
Wang L, Zhang H, Chen B, et al. Effect of magnetic nanoparticles on apoptosis and cell cycle induced by wogonin in Raji cells. Int J Nanomedicine 2012; 7: 789-98.
[PMID: 22359456]
[27]
Wu X, Liu P, Zhang H, et al. Wogonin as a targeted therapeutic agent for EBV (+) lymphoma cells involved in LMP1/NF-κB/miR-155/PU.1 pathway. BMC Cancer 2017; 17(1): 147.
[http://dx.doi.org/10.1186/s12885-017-3145-4] [PMID: 28222771]
[28]
Xu P-P, Zuo H-Q, Zhou R-F, Chen B, Ouyang J. Wogonin Inhibits Growth of Mantle Cell Lymphoma Cells through Nuclear Factor-κB Signaling Pathway. Chin Med J (Engl) 2018; 131(4): 495-7.
[http://dx.doi.org/10.4103/0366-6999.225064] [PMID: 29451160]
[29]
Wu X, Zhang H, Salmani JMM, Fu R, Chen B. Advances of wogonin, an extract from Scutellaria baicalensis, for the treatment of multiple tumors. OncoTargets Ther 2016; 9: 2935-43.
[PMID: 27274287]
[30]
Xu M, Lu N, Zhang H, et al. Wogonin induced cytotoxicity in human hepatocellular carcinoma cells by activation of unfolded protein response and inactivation of AKT. Hepatol Res 2013; 43(8): 890-905.
[http://dx.doi.org/10.1111/hepr.12036] [PMID: 23294370]
[31]
Wei L, Lu N, Dai Q, et al. Different apoptotic effects of wogonin via induction of H(2)O(2) generation and Ca(2+) overload in malignant hepatoma and normal hepatic cells. J Cell Biochem 2010; 111(6): 1629-41.
[http://dx.doi.org/10.1002/jcb.22898] [PMID: 21053277]
[32]
Liu X, Tian S, Liu M, Jian L, Zhao L. Wogonin inhibits the proliferation and invasion, and induces the apoptosis of HepG2 and Bel7402 HCC cells through NF κB/Bcl-2, EGFR and EGFR downstream ERK/AKT signaling. Int J Mol Med 2016; 38(4): 1250-6.
[http://dx.doi.org/10.3892/ijmm.2016.2700] [PMID: 27499272]
[33]
Wang W, Guo Q, You Q, et al. Involvement of bax/bcl-2 in wogonin-induced apoptosis of human hepatoma cell line SMMC-7721. Anticancer Drugs 2006; 17(7): 797-805.
[http://dx.doi.org/10.1097/01.cad.0000217431.64118.3f] [PMID: 16926629]
[34]
Chen Y-C, Shen S-C, Lee W-R, et al. Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 2002; 76(5-6): 351-9.
[http://dx.doi.org/10.1007/s00204-002-0346-6] [PMID: 12107653]
[35]
Hong M, Cheng H, Song L, et al. Wogonin Suppresses the Activity of Matrix Metalloproteinase-9 and Inhibits Migration and Invasion in Human Hepatocellular Carcinoma. Molecules 2018; 23(2): 384.
[http://dx.doi.org/10.3390/molecules23020384] [PMID: 29439451]
[36]
Jiang W-Y, Seo GS, Kim Y-C, Sohn DH, Lee SH. PF2405, standardized fraction of Scutellaria baicalensis, ameliorates colitis in vitro and in vivo. Arch Pharm Res 2015; 38(6): 1127-37.
[http://dx.doi.org/10.1007/s12272-015-0553-3] [PMID: 25577335]
[37]
Yao J. Zhao, L.; Zhao, Q.; Zhao, Y.; Sun, Y.; Zhang, Y.; Miao, H.; You, Q. D.; Hu, R.; Guo, Q. L. NF-KB and Nrf2 Signaling Pathways Contribute to Wogonin-Mediated Inhibition of Inflammation-Associated Colorectal Carcinogenesis. Cell Death Dis 2014; 5(6)e1283
[http://dx.doi.org/10.1038/cddis.2014.221] [PMID: 24901054]
[38]
Wang H, Zhao L, Zhu L-T, et al. Wogonin reverses hypoxia resistance of human colon cancer HCT116 cells via downregulation of HIF-1α and glycolysis, by inhibiting PI3K/Akt signaling pathway. Mol Carcinog 2014; 53(S1)(Suppl. 1): E107-18.
[http://dx.doi.org/10.1002/mc.22052] [PMID: 23761018]
[39]
He L, Lu N, Dai Q, et al. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells. Toxicology 2013; 312: 36-47.
[http://dx.doi.org/10.1016/j.tox.2013.07.013] [PMID: 23907061]
[40]
Kim S-J, Kim H-J, Kim H-R, et al. Antitumor actions of baicalein and wogonin in HT-29 human colorectal cancer cells. Mol Med Rep 2012; 6(6): 1443-9.
[http://dx.doi.org/10.3892/mmr.2012.1085] [PMID: 22992837]
[41]
Wang C-Z, Calway TD, Wen X-D, et al. Hydrophobic flavonoids from Scutellaria baicalensis induce colorectal cancer cell apoptosis through a mitochondrial-mediated pathway. Int J Oncol 2013; 42(3): 1018-26.
[http://dx.doi.org/10.3892/ijo.2013.1777] [PMID: 23337959]
[42]
Li S-J, Sun S-J, Gao J, Sun F-B. Wogonin induces Beclin-1/PI3K and reactive oxygen species-mediated autophagy in human pancreatic cancer cells. Oncol Lett 2016; 12(6): 5059-67.
[http://dx.doi.org/10.3892/ol.2016.5367] [PMID: 28105213]
[43]
Dong P, Zhang Y, Gu J, et al. Wogonin, an active ingredient of Chinese herb medicine Scutellaria baicalensis, inhibits the mobility and invasion of human gallbladder carcinoma GBC-SD cells by inducing the expression of maspin. J Ethnopharmacol 2011; 137(3): 1373-80.
[http://dx.doi.org/10.1016/j.jep.2011.08.005] [PMID: 21855619]
[44]
Huang KF, Zhang GD, Huang YQ, Diao Y. Wogonin induces apoptosis and down-regulates survivin in human breast cancer MCF-7 cells by modulating PI3K-AKT pathway. Int Immunopharmacol 2012; 12(2): 334-41.
[http://dx.doi.org/10.1016/j.intimp.2011.12.004] [PMID: 22182776]
[45]
Yu JS, Kim AK. Wogonin induces apoptosis by activation of ERK and p38 MAPKs signaling pathways and generation of reactive oxygen species in human breast cancer cells. Mol Cells 2011; 31(4): 327-35.
[http://dx.doi.org/10.1007/s10059-011-0041-7] [PMID: 21448585]
[46]
Chen P, Lu N, Ling Y, et al. Inhibitory effects of wogonin on the invasion of human breast carcinoma cells by downregulating the expression and activity of matrix metalloproteinase-9. Toxicology 2011; 282(3): 122-8.
[http://dx.doi.org/10.1016/j.tox.2011.01.018] [PMID: 21295103]
[47]
Wang Y, Zhang Y, Qian C, et al. GSK3β/β-catenin signaling is correlated with the differentiation of glioma cells induced by wogonin. Toxicol Lett 2013; 222(2): 212-23.
[http://dx.doi.org/10.1016/j.toxlet.2013.07.013] [PMID: 23872260]
[48]
Ge W, Yin Q, Xian H. Wogonin Induced Mitochondrial Dysfunction and Endoplasmic Reticulum Stress in Human Malignant Neuroblastoma Cells Via IRE1α-Dependent Pathway. J Mol Neurosci 2015; 56(3): 652-62.
[http://dx.doi.org/10.1007/s12031-015-0530-9] [PMID: 25740014]
[49]
Yang L, Wang Q, Li D, et al. Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins. Apoptosis 2013; 18(5): 618-26.
[http://dx.doi.org/10.1007/s10495-013-0808-8] [PMID: 23371323]
[50]
Gong W-Y, Wu J-F, Liu B-J, et al. Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro. Int J Oncol 2014; 44(5): 1561-70.
[http://dx.doi.org/10.3892/ijo.2014.2320] [PMID: 24604573]
[51]
Chen XM, Bai Y, Zhong YJ, et al. Wogonin has multiple anti-cancer effects by regulating c-Myc/SKP2/Fbw7α and HDAC1/HDAC2 pathways and inducing apoptosis in human lung adenocarcinoma cell line A549. PLoS One 2013; 8(11)e79201
[http://dx.doi.org/10.1371/journal.pone.0079201] [PMID: 24265759]
[52]
Yang L, Zhang HW, Hu R, et al. Wogonin induces G1 phase arrest through inhibiting Cdk4 and cyclin D1 concomitant with an elevation in p21Cip1 in human cervical carcinoma HeLa cells. Biochem Cell Biol 2009; 87(6): 933-42.
[http://dx.doi.org/10.1139/O09-060] [PMID: 19935879]
[53]
Kim MS, Bak Y, Park YS, et al. Wogonin induces apoptosis by suppressing E6 and E7 expressions and activating intrinsic signaling pathways in HPV-16 cervical cancer cells. Cell Biol Toxicol 2013; 29(4): 259-72.
[http://dx.doi.org/10.1007/s10565-013-9251-4] [PMID: 23955116]
[54]
Chow S-E, Chang Y-L, Chuang S-F, Wang J-S. Wogonin induced apoptosis in human nasopharyngeal carcinoma cells by targeting GSK-3β and ΔNp63. Cancer Chemother Pharmacol 2011; 68(4): 835-45.
[http://dx.doi.org/10.1007/s00280-010-1552-1] [PMID: 21207227]
[55]
Chow S-E, Chen Y-W, Liang C-A, Huang Y-K, Wang J-S. Wogonin induces cross-regulation between autophagy and apoptosis via a variety of Akt pathway in human nasopharyngeal carcinoma cells. J Cell Biochem 2012; 113(11): 3476-85.
[http://dx.doi.org/10.1002/jcb.24224] [PMID: 22689083]
[56]
Lin C-C, Kuo C-L, Lee M-H, et al. Wogonin triggers apoptosis in human osteosarcoma U-2 OS cells through the endoplasmic reticulum stress, mitochondrial dysfunction and caspase-3-dependent signaling pathways. Int J Oncol 2011; 39(1): 217-24.
[PMID: 21573491]
[57]
Zhao K, Wei L, Hui H, et al. Wogonin suppresses melanoma cell B16-F10 invasion and migration by inhibiting Ras-medicated pathways. PLoS One 2014; 9(9)e106458
[http://dx.doi.org/10.1371/journal.pone.0106458] [PMID: 25203554]
[58]
Lu N, Gao Y, Ling Y, et al. Wogonin suppresses tumor growth in vivo and VEGF-induced angiogenesis through inhibiting tyrosine phosphorylation of VEGFR2. Life Sci 2008; 82(17-18): 956-63.
[http://dx.doi.org/10.1016/j.lfs.2008.02.013] [PMID: 18378261]
[59]
Lee D-H, Kim C, Zhang L, Lee YJ. Role of p53, PUMA, and Bax in wogonin-induced apoptosis in human cancer cells. Biochem Pharmacol 2008; 75(10): 2020-33.
[http://dx.doi.org/10.1016/j.bcp.2008.02.023] [PMID: 18377871]
[60]
Zhao L, Sha Y-Y, Zhao Q, et al. Enhanced 5-fluorouracil cytotoxicity in high COX-2 expressing hepatocellular carcinoma cells by wogonin via the PI3K/Akt pathway. Biochem Cell Biol 2013; 91(4): 221-9.
[http://dx.doi.org/10.1139/bcb-2012-0077] [PMID: 23859016]
[61]
Wang T, Gao J, Yu J, Shen L. Synergistic inhibitory effect of wogonin and low-dose paclitaxel on gastric cancer cells and tumor xenografts. Chin J Cancer Res 2013; 25(5): 505-13.
[PMID: 24255573]
[62]
Enomoto R, Koshiba C, Suzuki C, Lee E. Wogonin potentiates the antitumor action of etoposide and ameliorates its adverse effects. Cancer Chemother Pharmacol 2011; 67(5): 1063-72.
[http://dx.doi.org/10.1007/s00280-010-1396-8] [PMID: 20658136]
[63]
Attia SM, Ahmad SF, Harisa GI, Mansour AM, El Sayed SM, Bakheet SA. Wogonin attenuates etoposide-induced oxidative DNA damage and apoptosis via suppression of oxidative DNA stress and modulation of OGG1 expression. Food Chem Toxicol 2013; 59: 724-30.
[http://dx.doi.org/10.1016/j.fct.2013.07.022] [PMID: 23872129]
[64]
Lee E, Enomoto R, Suzuki C, et al. Wogonin, a plant flavone, potentiates etoposide-induced apoptosis in cancer cells. Ann N Y Acad Sci 2007; 1095(1): 521-6.
[http://dx.doi.org/10.1196/annals.1397.056] [PMID: 17404065]
[65]
Rong L-W, Wang R-X, Zheng X-L, et al. Combination of wogonin and sorafenib effectively kills human hepatocellular carcinoma cells through apoptosis potentiation and autophagy inhibition. Oncol Lett 2017; 13(6): 5028-34.
[http://dx.doi.org/10.3892/ol.2017.6059] [PMID: 28599504]
[66]
Hong Z-P, Wang L-G, Wang H-J, Ye W-F, Wang X-Z. Wogonin exacerbates the cytotoxic effect of oxaliplatin by inducing nitrosative stress and autophagy in human gastric cancer cells. Phytomedicine 2018; 39: 168-75.
[http://dx.doi.org/10.1016/j.phymed.2017.12.019] [PMID: 29433678]
[67]
Moenner M, Pluquet O, Bouchecareilh M, Chevet E. Integrated endoplasmic reticulum stress responses in cancer. Cancer Res 2007; 67(22): 10631-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-1705] [PMID: 18006802]
[68]
Tsai C-F, Yeh W-L, Huang SM, Tan T-W, Lu D-Y. Wogonin induces reactive oxygen species production and cell apoptosis in human glioma cancer cells. Int J Mol Sci 2012; 13(8): 9877-92.
[http://dx.doi.org/10.3390/ijms13089877] [PMID: 22949836]
[69]
Lee W-R, Shen S-C, Lin H-Y, Hou W-C, Yang L-L, Chen Y-C. Wogonin and fisetin induce apoptosis in human promyeloleukemic cells, accompanied by a decrease of reactive oxygen species, and activation of caspase 3 and Ca(2+)-dependent endonuclease. Biochem Pharmacol 2002; 63(2): 225-36.
[http://dx.doi.org/10.1016/S0006-2952(01)00876-0] [PMID: 11841797]
[70]
Abotaleb M, Samuel SM, Varghese E, et al. Flavonoids in Cancer and Apoptosis. Cancers (Basel) 2018; 11(1): 28.
[http://dx.doi.org/10.3390/cancers11010028] [PMID: 30597838]
[71]
Leu JI, Dumont P, Hafey M, Murphy ME, George DL. Mitochondrial p53 activates Bak and causes disruption of a Bak-Mcl1 complex. Nat Cell Biol 2004; 6(5): 443-50.
[http://dx.doi.org/10.1038/ncb1123] [PMID: 15077116]
[72]
Clohessy JG, Zhuang J, de Boer J, Gil-Gómez G, Brady HJ. Mcl-1 interacts with truncated Bid and inhibits its induction of cytochrome c release and its role in receptor-mediated apoptosis. J Biol Chem 2006; 281(9): 5750-9.
[http://dx.doi.org/10.1074/jbc.M505688200] [PMID: 16380381]
[73]
Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358(6381): 15-6.
[http://dx.doi.org/10.1038/358015a0] [PMID: 1614522]
[74]
Zhao Y, Zhang L, Wu Y, et al. Selective anti-tumor activity of wogonin targeting the Warburg effect through stablizing p53. Pharmacol Res 2018; 135: 49-59.
[http://dx.doi.org/10.1016/j.phrs.2018.07.011] [PMID: 30031170]
[75]
Lee D-H, Rhee JG, Lee YJ. Reactive oxygen species up-regulate p53 and Puma; a possible mechanism for apoptosis during combined treatment with TRAIL and wogonin. Br J Pharmacol 2009; 157(7): 1189-202.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00245.x] [PMID: 19438509]
[76]
Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001; 7(3): 673-82.
[http://dx.doi.org/10.1016/S1097-2765(01)00213-1] [PMID: 11463391]
[77]
Ming L, Wang P, Bank A, Yu J, Zhang L. PUMA Dissociates Bax and Bcl-X(L) to induce apoptosis in colon cancer cells. J Biol Chem 2006; 281(23): 16034-42.
[http://dx.doi.org/10.1074/jbc.M513587200] [PMID: 16608847]
[78]
Yu CS, Yu FS, Chuang YC, et al. Wogonin inhibits N-acetyltransferase activity and gene expression in human leukemia HL-60 cells. Anticancer Res 2005; 25(1A): 127-32.
[PMID: 15816529]
[79]
Bernardes de Jesus B, Blasco MA. Telomerase at the intersection of cancer and aging. Trends Genet 2013; 29(9): 513-20.
[http://dx.doi.org/10.1016/j.tig.2013.06.007] [PMID: 23876621]
[80]
Cairney CJ, Keith WN. Telomerase redefined: integrated regulation of hTR and hTERT for telomere maintenance and telomerase activity. Biochimie 2008; 90(1): 13-23.
[http://dx.doi.org/10.1016/j.biochi.2007.07.025] [PMID: 17854971]
[81]
Dahse R, Fiedler W, Ernst G. Telomeres and telomerase: biological and clinical importance. Clin Chem 1997; 43(5): 708-14.
[http://dx.doi.org/10.1093/clinchem/43.5.708] [PMID: 9166220]
[82]
Snow BE, Erdmann N, Cruickshank J, et al. Functional conservation of the telomerase protein Est1p in humans. Curr Biol 2003; 13(8): 698-704.
[http://dx.doi.org/10.1016/S0960-9822(03)00210-0] [PMID: 12699629]
[83]
Wu K-J, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21(2): 220-4.
[http://dx.doi.org/10.1038/6010] [PMID: 9988278]
[84]
Huang S-T, Wang C-Y, Yang R-C, Chu C-J, Wu H-T, Pang J-HS. Wogonin, an active compound in Scutellaria baicalensis, induces apoptosis and reduces telomerase activity in the HL-60 leukemia cells. Phytomedicine 2010; 17(1): 47-54.
[http://dx.doi.org/10.1016/j.phymed.2009.06.005] [PMID: 19577445]
[85]
Rufini A, Tucci P, Celardo I, Melino G. Senescence and aging: the critical roles of p53. Oncogene 2013; 32(43): 5129-43.
[http://dx.doi.org/10.1038/onc.2012.640] [PMID: 23416979]
[86]
Tsai JH, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis. Genes Dev 2013; 27(20): 2192-206.
[http://dx.doi.org/10.1101/gad.225334.113] [PMID: 24142872]
[87]
Huynh DL, Sharma N, Kumar Singh A, et al. Anti-tumor activity of wogonin, an extract from Scutellaria baicalensis, through regulating different signaling pathways. Chin J Nat Med 2017; 15(1): 15-40.
[http://dx.doi.org/10.1016/S1875-5364(17)30005-5] [PMID: 28259249]
[88]
Deryugina EI, Quigley JP. Matrix metalloproteinases and tumor metastasis. Cancer Metastasis Rev 2006; 25(1): 9-34.
[http://dx.doi.org/10.1007/s10555-006-7886-9] [PMID: 16680569]
[89]
Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3(1): 11-22.
[http://dx.doi.org/10.1038/nrc969] [PMID: 12509763]
[90]
Zhao Y, Yao J, Wu X-P, et al. Wogonin suppresses human alveolar adenocarcinoma cell A549 migration in inflammatory microenvironment by modulating the IL-6/STAT3 signaling pathway. Mol Carcinog 2015; 54(S1)(Suppl. 1): E81-93.
[http://dx.doi.org/10.1002/mc.22182] [PMID: 24976450]
[91]
Karin M, Greten FRNF-KB. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 2005; 5(10): 749-59.
[http://dx.doi.org/10.1038/nri1703] [PMID: 16175180]
[92]
van Horssen R, Ten Hagen TL, Eggermont AM. TNF-α in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 2006; 11(4): 397-408.
[http://dx.doi.org/10.1634/theoncologist.11-4-397] [PMID: 16614236]
[93]
Guo Y, Xu F, Lu T, Duan Z, Zhang Z. Interleukin-6 signaling pathway in targeted therapy for cancer. Cancer Treat Rev 2012; 38(7): 904-10.
[http://dx.doi.org/10.1016/j.ctrv.2012.04.007] [PMID: 22651903]
[94]
Huang S. Regulation of metastases by signal transducer and activator of transcription 3 signaling pathway: clinical implications. Clin Cancer Res 2007; 13(5): 1362-6.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2313] [PMID: 17332277]
[95]
Neufeld G, Kessler O. Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer Metastasis Rev 2006; 25(3): 373-85.
[http://dx.doi.org/10.1007/s10555-006-9011-5] [PMID: 17006765]
[96]
Hicklin DJ, Ellis LM. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 2005; 23(5): 1011-27.
[http://dx.doi.org/10.1200/JCO.2005.06.081] [PMID: 15585754]
[97]
Olsson A-K, Dimberg A, Kreuger J, Claesson-Welsh L. VEGF receptor signalling - in control of vascular function. Nat Rev Mol Cell Biol 2006; 7(5): 359-71.
[http://dx.doi.org/10.1038/nrm1911] [PMID: 16633338]
[98]
Kimura Y, Sumiyoshi M. Anti-tumor and anti-metastatic actions of wogonin isolated from Scutellaria baicalensis roots through anti-lymphangiogenesis. Phytomedicine 2013; 20(3-4): 328-36.
[http://dx.doi.org/10.1016/j.phymed.2012.10.016] [PMID: 23219337]
[99]
Zhou M, Song X, Huang Y, et al. Wogonin inhibits H2O2-induced angiogenesis via suppressing PI3K/Akt/NF-κB signaling pathway. Vascul Pharmacol 2014; 60(3): 110-9.
[http://dx.doi.org/10.1016/j.vph.2014.01.010] [PMID: 24534483]
[100]
Coussens LM, Werb Z. Inflammation and cancer. Nature 2002; 420(6917): 860-7.
[http://dx.doi.org/10.1038/nature01322] [PMID: 12490959]
[101]
Conti I, Rollins BJ. CCL2 (Monocyte Chemoattractant Protein-1) and CancerSeminars in cancer biology. Elsevier 2004; Vol. 14: pp. 149-54.
[102]
Chang Y-L, Shen J-J, Wung B-S, Cheng J-J, Wang DL. Chinese herbal remedy wogonin inhibits monocyte chemotactic protein-1 gene expression in human endothelial cells. Mol Pharmacol 2001; 60(3): 507-13.
[PMID: 11502881]
[103]
Kuroda T, Kitadai Y, Tanaka S, et al. Monocyte chemoattractant protein-1 transfection induces angiogenesis and tumorigenesis of gastric carcinoma in nude mice via macrophage recruitment. Clin Cancer Res 2005; 11(21): 7629-36.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-0798] [PMID: 16278381]
[104]
Zhao K, Song X, Huang Y, et al. Wogonin inhibits LPS-induced tumor angiogenesis via suppressing PI3K/Akt/NF-κB signaling. Eur J Pharmacol 2014; 737: 57-69.
[http://dx.doi.org/10.1016/j.ejphar.2014.05.011] [PMID: 24858369]
[105]
Kang S, Lee S-P, Kim KE, Kim H-Z, Mémet S, Koh GY. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood 2009; 113(11): 2605-13.
[http://dx.doi.org/10.1182/blood-2008-07-166934] [PMID: 19098273]
[106]
Pei Z, Lin D, Song X, Li H, Yao H. TLR4 signaling promotes the expression of VEGF and TGFbeta1 in human prostate epithelial PC3 cells induced by lipopolysaccharide. Cell Immunol 2008; 254(1): 20-7.
[http://dx.doi.org/10.1016/j.cellimm.2008.06.007] [PMID: 18649875]
[107]
Sun Z, Luo Q, Ye D, Chen W, Chen F. Role of toll-like receptor 4 on the immune escape of human oral squamous cell carcinoma and resistance of cisplatin-induced apoptosis. Mol Cancer 2012; 11(1): 33.
[http://dx.doi.org/10.1186/1476-4598-11-33] [PMID: 22583829]
[108]
Jain RK. Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. Cancer Cell 2014; 26(5): 605-22.
[http://dx.doi.org/10.1016/j.ccell.2014.10.006] [PMID: 25517747]
[109]
Vaupel P. The role of hypoxia-induced factors in tumor progression. Oncologist 2004; 9(Suppl. 5): 10-7.
[http://dx.doi.org/10.1634/theoncologist.9-90005-10] [PMID: 15591418]
[110]
Song X, Yao J, Wang F, et al. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein. Toxicol Appl Pharmacol 2013; 271(2): 144-55.
[http://dx.doi.org/10.1016/j.taap.2013.04.031] [PMID: 23707765]
[111]
Weidemann A, Johnson RS. Biology of HIF-1α. Cell Death Differ 2008; 15(4): 621-7.
[http://dx.doi.org/10.1038/cdd.2008.12] [PMID: 18259201]
[112]
Powis G, Kirkpatrick L. Hypoxia inducible factor-1α as a cancer drug target. Mol Cancer Ther 2004; 3(5): 647-54.
[PMID: 15141023]
[113]
Shapiro GI, Harper JW. Anticancer drug targets: cell cycle and checkpoint control. J Clin Invest 1999; 104(12): 1645-53.
[http://dx.doi.org/10.1172/JCI9054] [PMID: 10606615]
[114]
Zhang H-W, Yang Y, Zhang K, et al. Wogonin induced differentiation and G1 phase arrest of human U-937 leukemia cells via PKCdelta phosphorylation. Eur J Pharmacol 2008; 591(1-3): 7-12.
[http://dx.doi.org/10.1016/j.ejphar.2008.06.024] [PMID: 18577379]
[115]
Miller WH Jr, Waxman S. Differentiation induction as a treatment for hematologic malignancies. Oncogene 2002; 21(21): 3496-506.
[http://dx.doi.org/10.1038/sj.onc.1205328] [PMID: 12032784]
[116]
Nevins JR. The Rb/E2F pathway and cancer. Hum Mol Genet 2001; 10(7): 699-703.
[http://dx.doi.org/10.1093/hmg/10.7.699] [PMID: 11257102]
[117]
Lee D-H, Lee TH, Jung CH, Kim Y-H. Wogonin induces apoptosis by activating the AMPK and p53 signaling pathways in human glioblastoma cells. Cell Signal 2012; 24(11): 2216-25.
[http://dx.doi.org/10.1016/j.cellsig.2012.07.019] [PMID: 22846543]
[118]
Zoncu R, Efeyan A, Sabatini DM. mTOR: from growth signal integration to cancer, diabetes and ageing. Nat Rev Mol Cell Biol 2011; 12(1): 21-35.
[http://dx.doi.org/10.1038/nrm3025] [PMID: 21157483]
[119]
Gingras A-C, Gygi SP, Raught B, et al. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 1999; 13(11): 1422-37.
[http://dx.doi.org/10.1101/gad.13.11.1422] [PMID: 10364159]
[120]
Baumann S, Fas SC, Giaisi M, et al. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 2008; 111(4): 2354-63.
[http://dx.doi.org/10.1182/blood-2007-06-096198] [PMID: 18070986]
[121]
Yang L, Zheng XL, Sun H, et al. Catalase suppression-mediated H(2)O(2) accumulation in cancer cells by wogonin effectively blocks tumor necrosis factor-induced NF-κB activation and sensitizes apoptosis. Cancer Sci 2011; 102(4): 870-6.
[http://dx.doi.org/10.1111/j.1349-7006.2011.01874.x] [PMID: 21244577]
[122]
Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG. Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 2013; 13(10): 714-26.
[http://dx.doi.org/10.1038/nrc3599] [PMID: 24060863]
[123]
Leonard GD, Fojo T, Bates SE. The role of ABC transporters in clinical practice. Oncologist 2003; 8(5): 411-24.
[http://dx.doi.org/10.1634/theoncologist.8-5-411] [PMID: 14530494]
[124]
Cheng J, Cheng L, Chen B, et al. Effect of magnetic nanoparticles of Fe3O4 and wogonin on the reversal of multidrug resistance in K562/A02 cell line. Int J Nanomedicine 2012; 7: 2843-52.
[http://dx.doi.org/10.2147/IJN.S32065] [PMID: 22745547]
[125]
Wang H-W, Lin C-P, Chiu J-H, et al. Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin. Int J Cancer 2007; 120(9): 2019-27.
[http://dx.doi.org/10.1002/ijc.22402] [PMID: 17266043]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy