Review Article

酒精中毒和骨免疫学

卷 28, 期 9, 2021

发表于: 25 April, 2020

页: [1815 - 1828] 页: 14

弟呕挨: 10.2174/1567201816666190514101303

价格: $65

摘要

背景:长期饮酒对骨骼系统有不良影响,可能导致骨质疏松,骨折愈合延迟和股骨头坏死。当前,治疗是有限的,因此,迫切需要确定下划线机制并开发新的治疗方法。众所周知,正常的骨重塑依赖于破骨细胞介导的骨吸收与介导的骨形成之间的平衡。各种因素都可能破坏平衡,包括免疫系统功能障碍。在这篇综述中,我们总结了酒精性骨质减少的相关研究,重点是异常的骨免疫学信号。我们为酒精性骨的防治提供了新的理论依据。 方法:我们检索了1980年1月1日至2020年2月1日之间的PubMed出版物,以识别相关文献和近期文献,对酒精性骨质减少的评估和前景进行了总结。详细的搜索字词是“酒精”,“酒精性骨质疏松”,“酒精性骨质减少”,“免疫”,“骨免疫”,“骨重塑”,“骨质疏松治疗”和“骨质疏松治疗”。 结果:总共135篇论文被包括在评价中。大约60篇论文描述了酒精与骨骼重塑有关的机制。一些论文集中在通过骨免疫机制研究酒精在骨骼上的发病机理。 结论:酒精与骨骼重塑之间存在复杂的信号网络,骨免疫细胞间的通讯可能是酒精性骨骼的潜在机制。研究骨免疫机制对于酒精性骨疾病特有的药物开发至关重要。

关键词: 酒精,骨免疫学,骨骼重塑,骨质减少,氧化应激,炎症因子。

[1]
Poznyak, V.; Fleischmann, A.; Rekve, D.; Rylett, M.; Rehm, J.; Gmel, G. The world health organization’s global monitoring system on alcohol and health. Alcohol Res., 2013, 35(2), 244-249.
[PMID: 24881333]
[2]
Merikangas, K.R.; McClair, V.L. Epidemiology of substance use disorders. Hum. Genet., 2012, 131(6), 779-789.
[http://dx.doi.org/10.1007/s00439-012-1168-0] [PMID: 22543841]
[3]
Foster, S.E.; Vaughan, R.D.; Foster, W.H.; Califano, J.A., Jr Alcohol consumption and expenditures for underage drinking and adult excessive drinking. JAMA, 2003, 289(8), 989-995.
[http://dx.doi.org/10.1001/jama.289.8.989] [PMID: 12597750]
[4]
Schuller, H.M. Regulatory role of g protein-coupled receptors in pancreatic cancer development and progression. Curr. Med. Chem., 2018, 25(22), 2566-2575.
[http://dx.doi.org/10.2174/0929867324666170303121708] [PMID: 28260499]
[5]
Schuckit, M.A. Alcohol-use disorders. Lancet, 2009, 373(9662), 492-501.
[http://dx.doi.org/10.1016/S0140-6736(09)60009-X] [PMID: 19168210]
[6]
Ganry, O.; Baudoin, C.; Fardellone, P. Effect of alcohol intake on bone mineral density in elderly women: The EPIDOS Study. Epidémiologie de l’Ostéoporose. Am. J. Epidemiol., 2000, 151(8), 773-780.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a010277] [PMID: 10965974]
[7]
Hernández, E.R.; Revilla, M.; Rico, H. Total body bone mineral and pelvis bone mineral content as parameters of bone mass in men. A dual-energy X-ray absorptiometry study. Acta Anat. (Basel), 1991, 142(3), 227-230.
[http://dx.doi.org/10.1159/000147193] [PMID: 1796737]
[8]
Tucker, K.L.; Jugdaohsingh, R.; Powell, J.J.; Qiao, N.; Hannan, M.T.; Sripanyakorn, S.; Cupples, L.A.; Kiel, D.P. Effects of beer, wine and liquor intakes on bone mineral density in older men and women. Am. J. Clin. Nutr., 2009, 89(4), 1188-1196.
[http://dx.doi.org/10.3945/ajcn.2008.26765] [PMID: 19244365]
[9]
Arlot, M.E.; Bonjean, M.; Chavassieux, P.M.; Meunier, P.J. Bone histology in adults with aseptic necrosis. Histomorphometric evaluation of iliac biopsies in seventy-seven patients. J. Bone Joint Surg. Am., 1983, 65(9), 1319-1327.
[http://dx.doi.org/10.2106/00004623-198365090-00014] [PMID: 6361038]
[10]
Chakkalakal, D.A. Alcohol-induced bone loss and deficient bone repair. Alcohol. Clin. Exp. Res., 2005, 29(12), 2077-2090.
[http://dx.doi.org/10.1097/01.alc.0000192039.21305.55] [PMID: 16385177]
[11]
Maurel, D.B.; Boisseau, N.; Benhamou, C.L.; Jaffre, C. Alcohol and bone: review of dose effects and mechanisms. Osteoporos. Int., 2012, 23(1), 1-16.
[http://dx.doi.org/10.1007/s00198-011-1787-7] [PMID: 21927919]
[12]
Eisman, J.A.; Bogoch, E.R.; Dell, R.; Harrington, J.T.; McKinney, R.E., Jr; McLellan, A.; Mitchell, P.J.; Silverman, S.; Singleton, R.; Siris, E. ASBMR task force on secondary fracture prevention. Making the first fracture the last fracture: ASBMR task force report on secondary fracture prevention. J. Bone Miner. Res., 2012, 27(10), 2039-2046.
[http://dx.doi.org/10.1002/jbmr.1698] [PMID: 22836222]
[13]
Prevention and management of osteoporosis. World Health Organ. Tech. Rep. Ser., 2003, 921, 1-164. [back cover.].
[PMID: 15293701]
[14]
Lauing, K.L.; Sundaramurthy, S.; Nauer, R.K.; Callaci, J.J. Exogenous activation of Wnt/β-catenin signaling attenuates binge alcohol-induced deficient bone fracture healing. Alcohol Alcohol., 2014, 49(4), 399-408.
[http://dx.doi.org/10.1093/alcalc/agu006] [PMID: 24627571]
[15]
Nyquist, F.; Berglund, M.; Nilsson, B.E.; Obrant, K.J. Nature and healing of tibial shaft fractures in alcohol abusers. Alcohol Alcohol., 1997, 32(1), 91-95.
[http://dx.doi.org/10.1093/oxfordjournals.alcalc.a008240] [PMID: 9131898]
[16]
Kristensson, H.; Lundén, A.; Nilsson, B.E. Fracture incidence and diagnostic roentgen in alcoholics. Acta Orthop. Scand., 1980, 51(2), 205-207.
[http://dx.doi.org/10.3109/17453678008990787] [PMID: 7435175]
[17]
Bikle, D.D.; Genant, H.K.; Cann, C.; Recker, R.R.; Halloran, B.P.; Strewler, G.J. Bone disease in alcohol abuse. Ann. Intern. Med., 1985, 103(1), 42-48.
[http://dx.doi.org/10.7326/0003-4819-103-1-42] [PMID: 2988390]
[18]
Schett, G.; Teitelbaum, S.L. Osteoclasts and arthritis. J. Bone Miner. Res., 2009, 24(7), 1142-1146.
[http://dx.doi.org/10.1359/jbmr.090533] [PMID: 19557892]
[19]
Wang, T.; He, C. TNF-α and IL-6: the link between immune and bone system. Curr. Drug Targets, 2020, 21(3), 213-227.
[http://dx.doi.org/10.2174/1389450120666190821161259] [PMID: 31433756]
[20]
De Martinis, M.; Sirufo, M.M.; Ginaldi, L. Osteoporosis: Current and emerging therapies targeted to immunological checkpoints. Curr. Med. Chem., 2020, 27(37), 6356-6372.
[http://dx.doi.org/10.2174/0929867326666190730113123] [PMID: 31362684]
[21]
Ginaldi, L.; De Martinis, M. Osteoimmunology and Beyond. Curr. Med. Chem., 2016, 23(33), 3754-3774.
[http://dx.doi.org/10.2174/0929867323666160907162546] [PMID: 27604089]
[22]
Ciccarelli, F.; De Martinis, M.; Ginaldi, L. Glucocorticoids in patients with rheumatic diseases: friends or enemies of bone? Curr. Med. Chem., 2015, 22(5), 596-603.
[http://dx.doi.org/10.2174/0929867321666141106125051] [PMID: 25386817]
[23]
Amini, A.A.; Nair, L.S. Lactoferrin: a biologically active molecule for bone regeneration. Curr. Med. Chem., 2011, 18(8), 1220-1229.
[http://dx.doi.org/10.2174/092986711795029744] [PMID: 21291364]
[24]
Wellik, D.M.; Capecchi, M.R. Hox10 and Hox11 genes are required to globally pattern the mammalian skeleton. Science, 2003, 301(5631), 363-367.
[http://dx.doi.org/10.1126/science.1085672] [PMID: 12869760]
[25]
Frost, H.M. Skeletal structural adaptations to mechanical usage (SATMU): 2. Redefining wolff’s law: the remodeling problem. Anat. Rec., 1990, 226(4), 414-422.
[http://dx.doi.org/10.1002/ar.1092260403] [PMID: 2184696]
[26]
Peris, P.; Guañabens, N.; Parés, A.; Pons, F.; del Rio, L.; Monegal, A.; Surís, X.; Caballería, J.; Rodés, J.; Muñoz-Gómez, J. Vertebral fractures and osteopenia in chronic alcoholic patients. Calcif. Tissue Int., 1995, 57(2), 111-114.
[http://dx.doi.org/10.1007/BF00298430] [PMID: 7584870]
[27]
Martiniakova, M.; Sarocka, A.; Babosova, R.; Grosskopf, B.; Kapusta, E.; Goc, Z.; Formicki, G.; Omelka, R. Changes in the microstructure of compact and trabecular bone tissues of mice subchronically exposed to alcohol. J. Biol. Res. (Thessalon.), 2018, 25, 8.
[http://dx.doi.org/10.1186/s40709-018-0079-1] [PMID: 29876325]
[28]
Johnson, T.L.; Gaddini, G.; Branscum, A.J.; Olson, D.A.; Caroline-Westerlind, K.; Turner, R.T.; Iwaniec, U.T. Effects of chronic heavy alcohol consumption and endurance exercise on cancellous and cortical bone microarchitecture in adult male rats. Alcohol. Clin. Exp. Res., 2014, 38(5), 1365-1372.
[http://dx.doi.org/10.1111/acer.12366] [PMID: 24512198]
[29]
Cui, Q.; Wang, Y.; Saleh, K.J.; Wang, G.J.; Balian, G. Alcohol-induced adipogenesis in a cloned bone-marrow stem cell. J. Bone Joint Surg. Am., 2006, 88(Suppl. 3), 148-154.
[http://dx.doi.org/10.2106/jbjs.f.00534] [PMID: 17079381]
[30]
Liu, M.; Wang, Y.S.; Li, Y.B.; Zhao, G.Q. Construction and identification of the recombinant adenovirus vector carrying a small interfering RNA targeting the peroxisome proliferator-activated receptor-γ. Chin. Med. J. (Engl.), 2012, 125(4), 671-675.
[PMID: 22490494]
[31]
Dao, D.Y.; Jonason, J.H.; Zhang, Y.; Hsu, W.; Chen, D.; Hilton, M.J.; O’Keefe, R.J. Cartilage-specific β-catenin signaling regulates chondrocyte maturation, generation of ossification centers and perichondrial bone formation during skeletal development. J. Bone Miner. Res., 2012, 27(8), 1680-1694.
[http://dx.doi.org/10.1002/jbmr.1639] [PMID: 22508079]
[32]
Chen, Y.; Whetstone, H.C.; Lin, A.C.; Nadesan, P.; Wei, Q.; Poon, R.; Alman, B.A. Beta-catenin signaling plays a disparate role in different phases of fracture repair: implications for therapy to improve bone healing. PLoS Med., 2007, 4(7)e249
[http://dx.doi.org/10.1371/journal.pmed.0040249] [PMID: 17676991]
[33]
Chen, X.; Yu, H.; Yu, X. A review of the clinical, radiological and biochemical characteristics and genetic causes of high bone mass disorders. Curr. Drug Targets, 2018, 19(6), 621-635.
[http://dx.doi.org/10.2174/1389450119666180122161503] [PMID: 29359663]
[34]
Chakraborty, C.; Doss, C.G. Crucial protein based drug targets and potential inhibitors for osteoporosis: new hope and possibilities. Curr. Drug Targets, 2013, 14(14), 1707-1713.
[http://dx.doi.org/10.2174/13894501113146660233] [PMID: 24144207]
[35]
Li, J.; Wang, Y.; Li, Y.; Sun, J.; Zhao, G. The effect of combined regulation of the expression of peroxisome proliferator-activated receptor-γ and calcitonin gene-related peptide on alcohol-induced adipogenic differentiation of bone marrow mesenchymal stem cells. Mol. Cell. Biochem., 2014, 392(1-2), 39-48.
[http://dx.doi.org/10.1007/s11010-014-2016-4] [PMID: 24633961]
[36]
Chen, Y.; Chen, L.; Yin, Q.; Gao, H.; Dong, P.; Zhang, X.; Kang, J. Reciprocal interferences of TNF-α and Wnt1/β-catenin signaling axes shift bone marrow-derived stem cells towards osteoblast lineage after ethanol exposure. Cell. Physiol. Biochem., 2013, 32(3), 755-765.
[http://dx.doi.org/10.1159/000354477] [PMID: 24080828]
[37]
Lauing, K.L.; Roper, P.M.; Nauer, R.K.; Callaci, J.J. Acute alcohol exposure impairs fracture healing and deregulates β-catenin signaling in the fracture callus. Alcohol. Clin. Exp. Res., 2012, 36(12), 2095-2103.
[http://dx.doi.org/10.1111/j.1530-0277.2012.01830.x] [PMID: 22691115]
[38]
Shankar, K.; Hidestrand, M.; Liu, X.; Chen, J.R.; Haley, R.; Perrien, D.S.; Skinner, R.A.; Lumpkin, C.K., Jr; Badger, T.M.; Ronis, M.J. Chronic ethanol consumption inhibits postlactational anabolic bone rebuilding in female rats. J. Bone Miner. Res., 2008, 23(3), 338-349.
[http://dx.doi.org/10.1359/jbmr.071023] [PMID: 17967133]
[39]
Chen, J.R.; Lazarenko, O.P.; Shankar, K.; Blackburn, M.L.; Badger, T.M.; Ronis, M.J. A role for ethanol-induced oxidative stress in controlling lineage commitment of mesenchymal stromal cells through inhibition of Wnt/beta-catenin signaling. J. Bone Miner. Res., 2010, 25(5), 1117-1127.
[http://dx.doi.org/10.1002/jbmr.7] [PMID: 20200986]
[40]
Chen, J.R.; Lazarenko, O.P.; Shankar, K.; Blackburn, M.L.; Lumpkin, C.K.; Badger, T.M.; Ronis, M.J. Inhibition of NADPH oxidases prevents chronic ethanol-induced bone loss in female rats. J. Pharmacol. Exp. Ther., 2011, 336(3), 734-742.
[http://dx.doi.org/10.1124/jpet.110.175091] [PMID: 21098090]
[41]
Roper, P.M.; Abbasnia, P.; Vuchkovska, A.; Natoli, R.M.; Callaci, J.J. Alcohol-related deficient fracture healing is associated with activation of FoxO transcription factors in mice. J. Orthop. Res., 2016, 34(12), 2106-2115.
[http://dx.doi.org/10.1002/jor.23235] [PMID: 26998841]
[42]
Hamamura, K.; Yokota, H. Stress to endoplasmic reticulum of mouse osteoblasts induces apoptosis and transcriptional activation for bone remodeling. FEBS Lett., 2007, 581(9), 1769-1774.
[http://dx.doi.org/10.1016/j.febslet.2007.03.063] [PMID: 17418825]
[43]
Yang, X.; Matsuda, K.; Bialek, P.; Jacquot, S.; Masuoka, H.C.; Schinke, T.; Li, L.; Brancorsini, S.; Sassone-Corsi, P.; Townes, T.M.; Hanauer, A.; Karsenty, G. ATF4 is a substrate of RSK2 and an essential regulator of osteoblast biology; implication for Coffin-Lowry Syndrome. Cell, 2004, 117(3), 387-398.
[http://dx.doi.org/10.1016/S0092-8674(04)00344-7] [PMID: 15109498]
[44]
Pereira, R.C.; Stadmeyer, L.E.; Smith, D.L.; Rydziel, S.; Canalis, E. CCAAT/Enhancer-binding protein homologous protein (CHOP) decreases bone formation and causes osteopenia. Bone, 2007, 40(3), 619-626.
[http://dx.doi.org/10.1016/j.bone.2006.09.028] [PMID: 17095306]
[45]
Shirakawa, K.; Maeda, S.; Gotoh, T.; Hayashi, M.; Shinomiya, K.; Ehata, S.; Nishimura, R.; Mori, M.; Onozaki, K.; Hayashi, H.; Uematsu, S.; Akira, S.; Ogata, E.; Miyazono, K.; Imamura, T. CCAAT/enhancer-binding protein homologous protein (CHOP) regulates osteoblast differentiation. Mol. Cell. Biol., 2006, 26(16), 6105-6116.
[http://dx.doi.org/10.1128/MCB.02429-05] [PMID: 16880521]
[46]
Kveiborg, M.; Sabatakos, G.; Chiusaroli, R.; Wu, M.; Philbrick, W.M.; Horne, W.C.; Baron, R. DeltaFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms. Mol. Cell. Biol., 2004, 24(7), 2820-2830.
[http://dx.doi.org/10.1128/MCB.24.7.2820-2830.2004] [PMID: 15024071]
[47]
Oyadomari, S.; Mori, M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ., 2004, 11(4), 381-389.
[http://dx.doi.org/10.1038/sj.cdd.4401373] [PMID: 14685163]
[48]
Marciniak, S.J.; Yun, C.Y.; Oyadomari, S.; Novoa, I.; Zhang, Y.; Jungreis, R.; Nagata, K.; Harding, H.P.; Ron, D. CHOP induces death by promoting protein synthesis and oxidation in the stressed endoplasmic reticulum. Genes Dev., 2004, 18(24), 3066-3077.
[http://dx.doi.org/10.1101/gad.1250704] [PMID: 15601821]
[49]
Chen, Y.; Gao, H.; Yin, Q.; Chen, L.; Dong, P.; Zhang, X.; Kang, J. ER stress activating ATF4/CHOP-TNF-α signaling pathway contributes to alcohol-induced disruption of osteogenic lineage of multipotential mesenchymal stem cell. Cell. Physiol. Biochem., 2013, 32(3), 743-754.
[http://dx.doi.org/10.1159/000354476] [PMID: 24080827]
[50]
Díez, A.; Puig, J.; Serrano, S.; Mariñoso, M.L.; Bosch, J.; Marrugat, J.; Mellibovsky, L.; Nogués, X.; Knobel, H.; Aubía, J. Alcohol-induced bone disease in the absence of severe chronic liver damage. J. Bone Miner. Res., 1994, 9(6), 825-831.
[http://dx.doi.org/10.1002/jbmr.5650090608] [PMID: 8079658]
[51]
Alvisa-Negrín, J.; González-Reimers, E.; Santolaria-Fernández, F.; García-Valdecasas-Campelo, E.; Valls, M.R.; Pelazas-González, R.; Durán-Castellón, M.C.; de Los Angeles Gómez-Rodríguez, M. Osteopenia in alcoholics: effect of alcohol abstinence. Alcohol Alcohol., 2009, 44(5), 468-475.
[http://dx.doi.org/10.1093/alcalc/agp038] [PMID: 19535494]
[52]
Lang, C.H.; Fan, J.; Lipton, B.P.; Potter, B.J.; McDonough, K.H. Modulation of the insulin-like growth factor system by chronic alcohol feeding. Alcohol. Clin. Exp. Res., 1998, 22(4), 823-829.
[http://dx.doi.org/10.1111/j.1530-0277.1998.tb03874.x] [PMID: 9660307]
[53]
Röjdmark, S.; Brismar, K. Decreased IGF-I bioavailability after ethanol abuse in alcoholics: partial restitution after short-term abstinence. J. Endocrinol. Invest., 2001, 24(7), 476-482.
[http://dx.doi.org/10.1007/BF03343879] [PMID: 11508780]
[54]
Lang, C.H.; Frost, R.A.; Svanberg, E.; Vary, T.C. IGF-I/IGFBP-3 ameliorates alterations in protein synthesis, eIF4E availability and myostatin in alcohol-fed rats. Am. J. Physiol. Endocrinol. Metab., 2004, 286(6), E916-E926.
[http://dx.doi.org/10.1152/ajpendo.00554.2003] [PMID: 14749210]
[55]
Lang, C.H.; Liu, X.; Nystrom, G.; Wu, D.; Cooney, R.N.; Frost, R.A. Acute effects of growth hormone in alcohol-fed rats. Alcohol Alcohol., 2000, 35(2), 148-158.
[http://dx.doi.org/10.1093/alcalc/35.2.148] [PMID: 10787390]
[56]
Menagh, P.J.; Turner, R.T.; Jump, D.B.; Wong, C.P.; Lowry, M.B.; Yakar, S.; Rosen, C.J.; Iwaniec, U.T. Growth hormone regulates the balance between bone formation and bone marrow adiposity. J. Bone Miner. Res., 2010, 25(4), 757-768.
[http://dx.doi.org/10.1359/jbmr.091015] [PMID: 19821771]
[57]
Firth, S.M.; Baxter, R.C. Cellular actions of the insulin-like growth factor binding proteins. Endocr. Rev., 2002, 23(6), 824-854.
[http://dx.doi.org/10.1210/er.2001-0033] [PMID: 12466191]
[58]
Liu, Y.; Kou, X.; Chen, C.; Yu, W.; Su, Y.; Kim, Y.; Shi, S.; Liu, Y. Chronic high dose alcohol induces osteopenia via activation of mTOR signaling in bone marrow mesenchymal stem cells. Stem Cells, 2016, 34(8), 2157-2168.
[http://dx.doi.org/10.1002/stem.2392] [PMID: 27145264]
[59]
Menaa, C.; Reddy, S.V.; Kurihara, N.; Maeda, H.; Anderson, D.; Cundy, T.; Cornish, J.; Singer, F.R.; Bruder, J.M.; Roodman, G.D. Enhanced RANK ligand expression and responsivity of bone marrow cells in Paget’s disease of bone. J. Clin. Invest., 2000, 105(12), 1833-1838.
[http://dx.doi.org/10.1172/JCI9133] [PMID: 10862799]
[60]
Syed, F.; Khosla, S. Mechanisms of sex steroid effects on bone. Biochem. Biophys. Res. Commun., 2005, 328(3), 688-696.
[http://dx.doi.org/10.1016/j.bbrc.2004.11.097] [PMID: 15694402]
[61]
Seeman, E.; Delmas, P.D. Bone quality--the material and structural basis of bone strength and fragility. N. Engl. J. Med., 2006, 354(21), 2250-2261.
[http://dx.doi.org/10.1056/NEJMra053077] [PMID: 16723616]
[62]
Morrison, S.J.; Scadden, D.T. The bone marrow niche for haematopoietic stem cells. Nature, 2014, 505(7483), 327-334.
[http://dx.doi.org/10.1038/nature12984] [PMID: 24429631]
[63]
Li, Y.; Toraldo, G.; Li, A.; Yang, X.; Zhang, H.; Qian, W.P.; Weitzmann, M.N. B cells and T cells are critical for the preservation of bone homeostasis and attainment of peak bone mass in vivo. Blood, 2007, 109(9), 3839-3848.
[http://dx.doi.org/10.1182/blood-2006-07-037994] [PMID: 17202317]
[64]
Toraldo, G.; Roggia, C.; Qian, W.P.; Pacifici, R.; Weitzmann, M.N. IL-7 induces bone loss in vivo by induction of receptor activator of nuclear factor kappa B ligand and tumor necrosis factor alpha from T cells. Proc. Natl. Acad. Sci. USA, 2003, 100(1), 125-130.
[http://dx.doi.org/10.1073/pnas.0136772100] [PMID: 12490655]
[65]
John, V.; Hock, J.M.; Short, L.L.; Glasebrook, A.L.; Galvin, R.J. A role for CD8+ T lymphocytes in osteoclast differentiation in vitro. Endocrinology, 1996, 137(6), 2457-2463.
[http://dx.doi.org/10.1210/endo.137.6.8641199] [PMID: 8641199]
[66]
Choi, Y.; Woo, K.M.; Ko, S.H.; Lee, Y.J.; Park, S.J.; Kim, H.M.; Kwon, B.S. Osteoclastogenesis is enhanced by activated B cells but suppressed by activated CD8(+) T cells. Eur. J. Immunol., 2001, 31(7), 2179-2188.
[http://dx.doi.org/10.1002/1521-4141(200107)31:7<2179:AID-IMMU2179>3.0.CO;2-X] [PMID: 11449372]
[67]
Ono, T.; Okamoto, K.; Nakashima, T.; Nitta, T.; Hori, S.; Iwakura, Y.; Takayanagi, H. IL-17-producing γδ T cells enhance bone regeneration. Nat. Commun., 2016, 7, 10928.
[http://dx.doi.org/10.1038/ncomms10928] [PMID: 26965320]
[68]
Terauchi, M.; Li, J.Y.; Bedi, B.; Baek, K.H.; Tawfeek, H.; Galley, S.; Gilbert, L.; Nanes, M.S.; Zayzafoon, M.; Guldberg, R.; Lamar, D.L.; Singer, M.A.; Lane, T.F.; Kronenberg, H.M.; Weitzmann, M.N.; Pacifici, R. T lymphocytes amplify the anabolic activity of parathyroid hormone through Wnt10b signaling. Cell Metab., 2009, 10(3), 229-240.
[http://dx.doi.org/10.1016/j.cmet.2009.07.010] [PMID: 19723499]
[69]
Harrington, L.E.; Mangan, P.R.; Weaver, C.T. Expanding the effector CD4 T-cell repertoire: the Th17 lineage. Curr. Opin. Immunol., 2006, 18(3), 349-356.
[http://dx.doi.org/10.1016/j.coi.2006.03.017] [PMID: 16616472]
[70]
Abu-Amer, Y. IL-4 abrogates osteoclastogenesis through STAT6-dependent inhibition of NF-kappaB. J. Clin. Invest., 2001, 107(11), 1375-1385.
[http://dx.doi.org/10.1172/JCI10530] [PMID: 11390419]
[71]
Colucci, S.; Brunetti, G.; Rizzi, R.; Zonno, A.; Mori, G.; Colaianni, G.; Del Prete, D.; Faccio, R.; Liso, A.; Capalbo, S.; Liso, V.; Zallone, A.; Grano, M. T cells support osteoclastogenesis in an in vitro model derived from human multiple myeloma bone disease: the role of the OPG/TRAIL interaction. Blood, 2004, 104(12), 3722-3730.
[http://dx.doi.org/10.1182/blood-2004-02-0474] [PMID: 15308561]
[72]
Faienza, M.F.; Brunetti, G.; Colucci, S.; Piacente, L.; Ciccarelli, M.; Giordani, L.; Del Vecchio, G.C.; D’Amore, M.; Albanese, L.; Cavallo, L.; Grano, M. Osteoclastogenesis in children with 21-hydroxylase deficiency on long-term glucocorticoid therapy: the role of receptor activator of nuclear factor-kappaB ligand/osteoprotegerin imbalance. J. Clin. Endocrinol. Metab., 2009, 94(7), 2269-2276.
[http://dx.doi.org/10.1210/jc.2008-2446] [PMID: 19401376]
[73]
Volpe, E.; Servant, N.; Zollinger, R.; Bogiatzi, S.I.; Hupé, P.; Barillot, E.; Soumelis, V. A critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat. Immunol., 2008, 9(6), 650-657.
[http://dx.doi.org/10.1038/ni.1613] [PMID: 18454150]
[74]
Polanczyk, M.J.; Carson, B.D.; Subramanian, S.; Afentoulis, M.; Vandenbark, A.A.; Ziegler, S.F.; Offner, H. Cutting edge: estrogen drives expansion of the CD4+CD25+ regulatory T cell compartment. J. Immunol., 2004, 173(4), 2227-2230.
[http://dx.doi.org/10.4049/jimmunol.173.4.2227] [PMID: 15294932]
[75]
Sato, K.; Suematsu, A.; Okamoto, K.; Yamaguchi, A.; Morishita, Y.; Kadono, Y.; Tanaka, S.; Kodama, T.; Akira, S.; Iwakura, Y.; Cua, D.J.; Takayanagi, H. Th17 functions as an osteoclastogenic helper T cell subset that links T cell activation and bone destruction. J. Exp. Med., 2006, 203(12), 2673-2682.
[http://dx.doi.org/10.1084/jem.20061775] [PMID: 17088434]
[76]
Adamopoulos, I.E.; Chao, C.C.; Geissler, R.; Laface, D.; Blumenschein, W.; Iwakura, Y.; McClanahan, T.; Bowman, E.P. Interleukin-17A upregulates receptor activator of NF-kappaB on osteoclast precursors. Arthritis Res. Ther., 2010, 12(1), R29.
[http://dx.doi.org/10.1186/ar2936] [PMID: 20167120]
[77]
Adamopoulos, I.E.; Bowman, E.P. Immune regulation of bone loss by Th17 cells. Arthritis Res. Ther., 2008, 10(5), 225.
[http://dx.doi.org/10.1186/ar2502] [PMID: 18983698]
[78]
Kikuta, J.; Wada, Y.; Kowada, T.; Wang, Z.; Sun-Wada, G.H.; Nishiyama, I.; Mizukami, S.; Maiya, N.; Yasuda, H.; Kumanogoh, A.; Kikuchi, K.; Germain, R.N.; Ishii, M. Dynamic visualization of RANKL and Th17-mediated osteoclast function. J. Clin. Invest., 2013, 123(2), 866-873.
[http://dx.doi.org/10.1172/JCI65054] [PMID: 23321670]
[79]
Zaiss, M.M.; Frey, B.; Hess, A.; Zwerina, J.; Luther, J.; Nimmerjahn, F.; Engelke, K.; Kollias, G.; Hunig, T.; Schett, G.; David, J.P. Regulatory T cells protect from local and systemic bone destruction in arthritis. J. Immunol., 2010, 184(12), 7238-7246.
[http://dx.doi.org/10.4049/jimmunol.0903841] [PMID: 20483756]
[80]
Kelchtermans, H.; Geboes, L.; Mitera, T.; Huskens, D.; Leclercq, G.; Matthys, P. Activated CD4+CD25+ regulatory T cells inhibit osteoclastogenesis and collagen-induced arthritis. Ann. Rheum. Dis., 2009, 68(5), 744-750.
[http://dx.doi.org/10.1136/ard.2007.086066] [PMID: 18480308]
[81]
Pacifici, R. T cells, osteoblasts and osteocytes: interacting lineages key for the bone anabolic and catabolic activities of parathyroid hormone. Ann. N. Y. Acad. Sci., 2016, 1364, 11-24.
[http://dx.doi.org/10.1111/nyas.12969] [PMID: 26662934]
[82]
Kim, Y.G.; Lee, C.K.; Nah, S.S.; Mun, S.H.; Yoo, B.; Moon, H.B. Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem. Biophys. Res. Commun., 2007, 357(4), 1046-1052.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.042] [PMID: 17462597]
[83]
Wing, K.; Yamaguchi, T.; Sakaguchi, S. Cell-autonomous and -non-autonomous roles of CTLA-4 in immune regulation. Trends Immunol., 2011, 32(9), 428-433.
[http://dx.doi.org/10.1016/j.it.2011.06.002] [PMID: 21723783]
[84]
McFarland, W.; Libre, E.P. Abnormal leukocyte response in alcoholism. Ann. Intern. Med., 1963, 59, 865-877.
[http://dx.doi.org/10.7326/0003-4819-59-6-865] [PMID: 14082738]
[85]
Gheorghiu, M.; Bâră, C.; Păsărică, D.; Braşoveanu, L.; Bleotu, C.; Topârceanu, F.; Trandafir, T.; Diaconu, C.C. Ethanol-induced dysfunction of hepatocytes and leukocytes in patients without liver failure. Roum. Arch. Microbiol. Immunol., 2004, 63(1-2), 5-33.
[PMID: 16295318]
[86]
Song, K.; Coleman, R.A.; Zhu, X.; Alber, C.; Ballas, Z.K.; Waldschmidt, T.J.; Cook, R.T. Chronic ethanol consumption by mice results in activated splenic T cells. J. Leukoc. Biol., 2002, 72(6), 1109-1116.
[PMID: 12488491]
[87]
Zhang, H.; Meadows, G.G. Chronic alcohol consumption in mice increases the proportion of peripheral memory T cells by homeostatic proliferation. J. Leukoc. Biol., 2005, 78(5), 1070-1080.
[http://dx.doi.org/10.1189/jlb.0605317] [PMID: 16260584]
[88]
Nagy, L.E. Stabilization of tumor necrosis factor-alpha mRNA in macrophages in response to chronic ethanol exposure. Alcohol, 2004, 33(3), 229-233.
[http://dx.doi.org/10.1016/j.alcohol.2004.09.002] [PMID: 15596091]
[89]
Harrington, L.E.; Hatton, R.D.; Mangan, P.R.; Turner, H.; Murphy, T.L.; Murphy, K.M.; Weaver, C.T. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol., 2005, 6(11), 1123-1132.
[http://dx.doi.org/10.1038/ni1254] [PMID: 16200070]
[90]
Eken, A.; Ortiz, V.; Wands, J.R. Ethanol inhibits antigen presentation by dendritic cells. Clin. Vaccine Immunol., 2011, 18(7), 1157-1166.
[http://dx.doi.org/10.1128/CVI.05029-11] [PMID: 21562114]
[91]
Heinz, R.; Waltenbaugh, C. Ethanol consumption modifies dendritic cell antigen presentation in mice. Alcohol. Clin. Exp. Res., 2007, 31(10), 1759-1771.
[http://dx.doi.org/10.1111/j.1530-0277.2007.00479.x] [PMID: 17850646]
[92]
Happel, K.I.; Odden, A.R.; Zhang, P.; Shellito, J.E.; Bagby, G.J.; Nelson, S. Acute alcohol intoxication suppresses the interleukin 23 response to Klebsiella pneumoniae infection. Alcohol. Clin. Exp. Res., 2006, 30(7), 1200-1207.
[http://dx.doi.org/10.1111/j.1530-0277.2006.00144.x] [PMID: 16792568]
[93]
Lowe, P.P.; Gyongyosi, B.; Satishchandran, A.; Iracheta-Vellve, A.; Cho, Y.; Ambade, A.; Szabo, G. Reduced gut microbiome protects from alcohol-induced neuroinflammation and alters intestinal and brain inflammasome expression. J. Neuroinflammation, 2018, 15(1), 298.
[http://dx.doi.org/10.1186/s12974-018-1328-9] [PMID: 30368255]
[94]
Lau, A.H.; Abe, M.; Thomson, A.W. Ethanol affects the generation, cosignaling molecule expression and function of plasmacytoid and myeloid dendritic cell subsets in vitro and in vivo. J. Leukoc. Biol., 2006, 79(5), 941-953.
[http://dx.doi.org/10.1189/jlb.0905517] [PMID: 16478920]
[95]
Söderström, K.; Stein, E.; Colmenero, P.; Purath, U.; Müller-Ladner, U.; de Matos, C.T.; Tarner, I.H.; Robinson, W.H.; Engleman, E.G. Natural killer cells trigger osteoclastogenesis and bone destruction in arthritis. Proc. Natl. Acad. Sci. USA, 2010, 107(29), 13028-13033.
[http://dx.doi.org/10.1073/pnas.1000546107] [PMID: 20615964]
[96]
Colucci, S.; Brunetti, G.; Mori, G.; Oranger, A.; Centonze, M.; Mori, C.; Cantatore, F.P.; Tamma, R.; Rizzi, R.; Liso, V.; Zallone, A.; Grano, M. Soluble decoy receptor 3 modulates the survival and formation of osteoclasts from multiple myeloma bone disease patients. Leukemia, 2009, 23(11), 2139-2146.
[http://dx.doi.org/10.1038/leu.2009.136] [PMID: 19587706]
[97]
Giuliani, N.; Colla, S.; Morandi, F.; Lazzaretti, M.; Sala, R.; Bonomini, S.; Grano, M.; Colucci, S.; Svaldi, M.; Rizzoli, V. Myeloma cells block RUNX2/CBFA1 activity in human bone marrow osteoblast progenitors and inhibit osteoblast formation and differentiation. Blood, 2005, 106(7), 2472-2483.
[http://dx.doi.org/10.1182/blood-2004-12-4986] [PMID: 15933061]
[98]
Datta, H.K.; Ng, W.F.; Walker, J.A.; Tuck, S.P.; Varanasi, S.S. The cell biology of bone metabolism. J. Clin. Pathol., 2008, 61(5), 577-587.
[http://dx.doi.org/10.1136/jcp.2007.048868] [PMID: 18441154]
[99]
Kozuka, Y.; Ozaki, Y.; Ukai, T.; Kaneko, T.; Hara, Y. B cells play an important role in lipopolysaccharide-induced bone resorption. Calcif. Tissue Int., 2006, 78(3), 125-132.
[http://dx.doi.org/10.1007/s00223-005-0149-x] [PMID: 16467977]
[100]
Choi, Y.; Kim, J.J. B cells activated in the presence of Th1 cytokines inhibit osteoclastogenesis. Exp. Mol. Med., 2003, 35(5), 385-392.
[http://dx.doi.org/10.1038/emm.2003.51] [PMID: 14646592]
[101]
Wang, H.; Zhou, H.; Mahler, S.; Chervenak, R.; Wolcott, M. Alcohol affects the late differentiation of progenitor B cells. Alcohol Alcohol., 2011, 46(1), 26-32.
[http://dx.doi.org/10.1093/alcalc/agq076] [PMID: 21098503]
[102]
Aldo-Benson, M.; Pratt, L.; Hardwick, J. Alcohol can inhibit effect of IL-4 on activated murine B cells. Immunol. Res., 1992, 11(2), 117-124.
[http://dx.doi.org/10.1007/BF02918616] [PMID: 1431420]
[103]
Chang, M.P.; Wang, Q.; Norman, D.C. Diminished proliferation of B blast cell in response to cytokines in ethanol-consuming mice. Immunopharmacol. Immunotoxicol., 2002, 24(1), 69-82.
[http://dx.doi.org/10.1081/IPH-120003404] [PMID: 12022446]
[104]
Mosmann, T.R.; Coffman, R.L. Heterogeneity of cytokine secretion patterns and functions of helper T cells. Adv. Immunol., 1989, 46, 111-147.
[http://dx.doi.org/10.1016/S0065-2776(08)60652-5] [PMID: 2528896]
[105]
Trinchieri, G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol., 2003, 3(2), 133-146.
[http://dx.doi.org/10.1038/nri1001] [PMID: 12563297]
[106]
Manetti, R.; Parronchi, P.; Giudizi, M.G.; Piccinni, M.P.; Maggi, E.; Trinchieri, G.; Romagnani, S. Natural killer cell stimulatory factor (interleukin 12 [IL-12]) induces T helper type 1 (Th1)-specific immune responses and inhibits the development of IL-4-producing Th cells. J. Exp. Med., 1993, 177(4), 1199-1204.
[http://dx.doi.org/10.1084/jem.177.4.1199] [PMID: 8096238]
[107]
Hsieh, C.S.; Macatonia, S.E.; Tripp, C.S.; Wolf, S.F.; O’Garra, A.; Murphy, K.M. Development of TH1 CD4+ T cells through IL-12 produced by Listeria-induced macrophages. Science, 1993, 260(5107), 547-549.
[http://dx.doi.org/10.1126/science.8097338] [PMID: 8097338]
[108]
Ishikawa, F.; Kuwabara, T.; Tanaka, Y.; Okada, Y.; Imai, T.; Momose, Y.; Kakiuchi, T.; Kondo, M. [Mechanism of alcohol consumption-mediated Th2-polarized immune response]. Nihon Arukoru Yakubutsu Igakkai Zasshi, 2011, 46(3), 319-336.
[PMID: 21861330]
[109]
Bitencourt-Ferreira, G.; da Silva, A.D.; de Azevedo, W.F. Jr. Application of machine learning techniques to predict binding affinity for drug targets. a study of cyclin-dependent kinase 2. Curr. Med. Chem., 2020, 28(2), 253-265.
[http://dx.doi.org/10.2174/2213275912666191102162959] [PMID: 31729287]
[110]
Volkart, P.A.; Bitencourt-Ferreira, G.; Souto, A.A.; de Azevedo, W.F. Jr. Cyclin-dependent kinase 2 in cellular senescence and cancer. a structural and functional review. Curr. Drug Targets, 2019, 20(7), 716-726.
[http://dx.doi.org/10.2174/1389450120666181204165344] [PMID: 30516105]
[111]
Levin, N.M.B.; Pintro, V.O.; Bitencourt-Ferreira, G.; de Mattos, B.B.; de Castro Silvério, A.; de Azevedo, W.F. Jr. Development of CDK-targeted scoring functions for prediction of binding affinity. Biophys. Chem., 2018, 235, 1-8.
[http://dx.doi.org/10.1016/j.bpc.2018.01.004] [PMID: 29407904]
[112]
de Ávila, M.B.; Xavier, M.M.; Pintro, V.O.; de Azevedo, W.F. Jr. Supervised machine learning techniques to predict binding affinity. A study for cyclin-dependent kinase 2. Biochem. Biophys. Res. Commun., 2017, 494(1-2), 305-310.
[http://dx.doi.org/10.1016/j.bbrc.2017.10.035] [PMID: 29017921]
[113]
Levin, N.M.B.; Pintro, V.O.; de Avila, M.B.; de Mattos, B.B.; De Azevedo, W.F. Jr. Understanding the structural basis for inhibition of cyclin-dependent kinases. new pieces in the molecular puzzle. Curr. Drug Targets, 2017, 18(9), 1104-1111.
[http://dx.doi.org/10.2174/1389450118666161116130155] [PMID: 27848884]
[114]
Dos Santos Paparidis, N.F.; Canduri, F. The emerging picture of CDK11: genetic, functional and medicinal aspects. Curr. Med. Chem., 2018, 25(8), 880-888.
[http://dx.doi.org/10.2174/0929867324666170815102036] [PMID: 28814241]
[115]
Kuka, M.; Baronio, R.; Valentini, S.; Monaci, E.; Muzzi, A.; Aprea, S.; De Gregorio, E.; D’Oro, U. Src kinases are required for a balanced production of IL-12/IL-23 in human dendritic cells activated by Toll-like receptor agonists. PLoS One, 2010, 5(7)e11491
[http://dx.doi.org/10.1371/journal.pone.0011491] [PMID: 20634889]
[116]
Cook, R.T.; Zhu, X.; Coleman, R.A.; Ballas, Z.K.; Waldschmidt, T.J.; Ray, N.B.; LaBrecque, D.R.; Cook, B.L. T-cell activation after chronic ethanol ingestion in mice. Alcohol, 2004, 33(3), 175-181.
[http://dx.doi.org/10.1016/j.alcohol.2004.06.007] [PMID: 15596085]
[117]
Nicolaidou, V.; Wong, M.M.; Redpath, A.N.; Ersek, A.; Baban, D.F.; Williams, L.M.; Cope, A.P.; Horwood, N.J. Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation. PLoS One, 2012, 7(7)e39871
[http://dx.doi.org/10.1371/journal.pone.0039871] [PMID: 22802946]
[118]
Vi, L.; Baht, G.S.; Whetstone, H.; Ng, A.; Wei, Q.; Poon, R.; Mylvaganam, S.; Grynpas, M.; Alman, B.A. Macrophages promote osteoblastic differentiation in-vivo: implications in fracture repair and bone homeostasis. J. Bone Miner. Res., 2015, 30(6), 1090-1102.
[http://dx.doi.org/10.1002/jbmr.2422] [PMID: 25487241]
[119]
Narazaki, M.; Tanaka, T.; Kishimoto, T. The role and therapeutic targeting of IL-6 in rheumatoid arthritis. Expert Rev. Clin. Immunol., 2017, 13(6), 535-551.
[http://dx.doi.org/10.1080/1744666X.2017.1295850] [PMID: 28494214]
[120]
Adamopoulos, I.E.; Sabokbar, A.; Wordsworth, B.P.; Carr, A.; Ferguson, D.J.; Athanasou, N.A. Synovial fluid macrophages are capable of osteoclast formation and resorption. J. Pathol., 2006, 208(1), 35-43.
[http://dx.doi.org/10.1002/path.1891] [PMID: 16278818]
[121]
Hotokezaka, H.; Sakai, E.; Ohara, N.; Hotokezaka, Y.; Gonzales, C.; Matsuo, K.; Fujimura, Y.; Yoshida, N.; Nakayama, K. Molecular analysis of RANKL-independent cell fusion of osteoclast-like cells induced by TNF-alpha, lipopolysaccharide, or peptidoglycan. J. Cell. Biochem., 2007, 101(1), 122-134.
[http://dx.doi.org/10.1002/jcb.21167] [PMID: 17171644]
[122]
Kim, J.H.; Jin, H.M.; Kim, K.; Song, I.; Youn, B.U.; Matsuo, K.; Kim, N. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol., 2009, 183(3), 1862-1870.
[http://dx.doi.org/10.4049/jimmunol.0803007] [PMID: 19587010]
[123]
Mosser, D.M.; Edwards, J.P. Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol., 2008, 8(12), 958-969.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[124]
Williams, F.M.K.; Cherkas, L.F.; Spector, T.D.; MacGregor, A.J. The effect of moderate alcohol consumption on bone mineral density: a study of female twins. Ann. Rheum. Dis., 2005, 64(2), 309-310.
[http://dx.doi.org/10.1136/ard.2004.022269] [PMID: 15231511]
[125]
Zhang, Y.; Böse, T.; Unger, R.E.; Jansen, J.A.; Kirkpatrick, C.J.; van den Beucken, J.J.J.P. Macrophage type modulates osteogenic differentiation of adipose tissue MSCs. Cell Tissue Res., 2017, 369(2), 273-286.
[http://dx.doi.org/10.1007/s00441-017-2598-8] [PMID: 28361303]
[126]
Curtis, B.J.; Zahs, A.; Kovacs, E.J. Epigenetic targets for reversing immune defects caused by alcohol exposure. Alcohol Res., 2013, 35(1), 97-113.
[PMID: 24313169]
[127]
Saha, B.; Momen-Heravi, F.; Kodys, K.; Szabo, G. MicroRNA cargo of extracellular vesicles from alcohol-exposed monocytes signals naive monocytes to differentiate into M2 macrophages. J. Biol. Chem., 2016, 291(1), 149-159.
[http://dx.doi.org/10.1074/jbc.M115.694133] [PMID: 26527689]
[128]
Kalra, H.; Simpson, R.J.; Ji, H.; Aikawa, E.; Altevogt, P.; Askenase, P.; Bond, V.C.; Borràs, F.E.; Breakefield, X.; Budnik, V.; Buzas, E.; Camussi, G.; Clayton, A.; Cocucci, E.; Falcon-Perez, J.M.; Gabrielsson, S.; Gho, Y.S.; Gupta, D.; Harsha, H.C.; Hendrix, A.; Hill, A.F.; Inal, J.M.; Jenster, G.; Krämer-Albers, E.M.; Lim, S.K.; Llorente, A.; Lötvall, J.; Marcilla, A.; Mincheva-Nilsson, L.; Nazarenko, I.; Nieuwland, R.; Nolte-’t Hoen, E.N.; Pandey, A.; Patel, T.; Piper, M.G.; Pluchino, S.; Prasad, T.S.; Rajendran, L.; Raposo, G.; Record, M.; Reid, G.E.; Sánchez-Madrid, F.; Schiffelers, R.M.; Siljander, P.; Stensballe, A.; Stoorvogel, W.; Taylor, D.; Thery, C.; Valadi, H.; van Balkom, B.W.; Vázquez, J.; Vidal, M.; Wauben, M.H.; Yáñez-Mó, M.; Zoeller, M.; Mathivanan, S. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol., 2012, 10(12)e1001450
[http://dx.doi.org/10.1371/journal.pbio.1001450] [PMID: 23271954]
[129]
Lee, J.; French, B.; Morgan, T.; French, S.W. The liver is populated by a broad spectrum of markers for macrophages. In alcoholic hepatitis the macrophages are M1 and M2. Exp. Mol. Pathol., 2014, 96(1), 118-125.
[http://dx.doi.org/10.1016/j.yexmp.2013.09.004] [PMID: 24145004]
[130]
Wakley, G.K.; Schutte, H.D., Jr; Hannon, K.S.; Turner, R.T. Androgen treatment prevents loss of cancellous bone in the orchidectomized rat. J. Bone Miner. Res., 1991, 6(4), 325-330.
[http://dx.doi.org/10.1002/jbmr.5650060403] [PMID: 1858518]
[131]
Sibonga, J.D.; Iwaniec, U.T.; Shogren, K.L.; Rosen, C.J.; Turner, R.T. Effects of parathyroid hormone (1-34) on tibia in an adult rat model for chronic alcohol abuse. Bone, 2007, 40(4), 1013-1020.
[http://dx.doi.org/10.1016/j.bone.2006.11.002] [PMID: 17204460]
[132]
Gonzalez-Calvín, J.L.; Garcia-Sanchez, A.; Bellot, V.; Muñoz-Torres, M.; Raya-Alvarez, E.; Salvatierra-Rios, D. Mineral metabolism, osteoblastic function and bone mass in chronic alcoholism. Alcohol Alcohol., 1993, 28(5), 571-579.
[PMID: 8274181]
[133]
Turner, R.T. Skeletal response to alcohol. Alcohol. Clin. Exp. Res., 2000, 24(11), 1693-1701.
[http://dx.doi.org/10.1111/j.1530-0277.2000.tb01971.x] [PMID: 11104117]
[134]
Wezeman, F.H.; Emanuele, M.A.; Moskal, S.F.; Steiner, J.; Lapaglia, N. Alendronate administration and skeletal response during chronic alcohol intake in the adolescent male rat. J. Bone Miner. Res., 2000, 15(10), 2033-2041.
[http://dx.doi.org/10.1359/jbmr.2000.15.10.2033] [PMID: 11028458]
[135]
Li, J.Y.; Chassaing, B.; Tyagi, A.M.; Vaccaro, C.; Luo, T.; Adams, J.; Darby, T.M.; Weitzmann, M.N.; Mulle, J.G.; Gewirtz, A.T.; Jones, R.M.; Pacifici, R. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J. Clin. Invest., 2016, 126(6), 2049-2063.
[http://dx.doi.org/10.1172/JCI86062] [PMID: 27111232]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy