Generic placeholder image

Current Molecular Pharmacology

Editor-in-Chief

ISSN (Print): 1874-4672
ISSN (Online): 1874-4702

Review Article

Interleukin-19 as an Immunoregulatory Cytokine

Author(s): Yasuyuki Fujimoto, Nobuyuki Kuramoto, Masanori Yoneyama and Yasu-Taka Azuma*

Volume 14, Issue 2, 2021

Published on: 24 April, 2020

Page: [191 - 199] Pages: 9

DOI: 10.2174/1874467213666200424151528

Price: $65

Abstract

IL-19 is a type of anti-inflammatory cytokine. Since the receptor for IL-19 is common to IL-20 and IL-24, it is important to clarify the role of each of the three cytokines. If three different cytokines bind to the same receptor, these three may have been produced to complement the other two. However, perhaps it is unlikely. Recently, the existence of a novel receptor for IL-19 was suggested. The distinction between the roles of the three cytokines still makes sense. On the other hand, because T cells do not produce IL-19, their role in acquired immunity is limited or indirect. It has been reported that IL-19 causes inflammation in some diseases but does not have an anti-inflammatory effect. In this review, we introduce the current role of IL-19 in each disease. In addition, we will describe the molecular mechanism of IL-19 and its development for the prevention of diseases. IL-19 was previously considered an anti-inflammatory cytokine, but we would like to propose it as an immunoregulatory cytokine.

Keywords: Interleukin 19, anti-inflammatory agents, mediators of inflammation, immunological disease, interleukin-20 receptors, drug targeting.

Graphical Abstract

[1]
Rutz, S.; Wang, X.; Ouyang, W. The IL-20 subfamily of cytokines--from host defence to tissue homeostasis. Nat. Rev. Immunol., 2014, 14(12), 783-795.
[http://dx.doi.org/10.1038/nri3766] [PMID: 25421700]
[2]
Fujimoto, Y.; Azuma, Y.T. [Recent progress in the pathophysiological role of interleukin-19]. Nippon Yakurigaku Zasshi, 2019, 154(2), 66-71.
[http://dx.doi.org/10.1254/fpj.154.66] [PMID: 31406045]
[3]
Gallagher, G.; Dickensheets, H.; Eskdale, J.; Izotova, L.S.; Mirochnitchenko, O.V.; Peat, J.D.; Vazquez, N.; Pestka, S.; Donnelly, R.P.; Kotenko, S.V. Cloning, expression and initial characterization of interleukin-19 (IL-19), a novel homologue of human interleukin-10 (IL-10). Genes Immun., 2000, 1(7), 442-450.
[http://dx.doi.org/10.1038/sj.gene.6363714] [PMID: 11196675]
[4]
Commins, S.; Steinke, J.W.; Borish, L. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allergy Clin. Immunol., 2008, 121(5), 1108-1111.
[http://dx.doi.org/10.1016/j.jaci.2008.02.026] [PMID: 18405958]
[5]
Blumberg, H.; Conklin, D.; Xu, W.F.; Grossmann, A.; Brender, T.; Carollo, S.; Eagan, M.; Foster, D.; Haldeman, B.A.; Hammond, A.; Haugen, H.; Jelinek, L.; Kelly, J.D.; Madden, K.; Maurer, M.F.; Parrish-Novak, J.; Prunkard, D.; Sexson, S.; Sprecher, C.; Waggie, K.; West, J.; Whitmore, T.E.; Yao, L.; Kuechle, M.K.; Dale, B.A.; Chandrasekher, Y.A. Interleukin 20: discovery, receptor identification, and role in epidermal function. Cell, 2001, 104(1), 9-19.
[http://dx.doi.org/10.1016/S0092-8674(01)00187-8] [PMID: 11163236]
[6]
Parrish-Novak, J.; Xu, W.; Brender, T.; Yao, L.; Jones, C.; West, J.; Brandt, C.; Jelinek, L.; Madden, K.; McKernan, P.A.; Foster, D.C.; Jaspers, S.; Chandrasekher, Y.A. Interleukins 19, 20, and 24 signal through two distinct receptor complexes. Differences in receptor-ligand interactions mediate unique biological functions. J. Biol. Chem., 2002, 277(49), 47517-47523.
[http://dx.doi.org/10.1074/jbc.M205114200] [PMID: 12351624]
[7]
Dumoutier, L.; Leemans, C.; Lejeune, D.; Kotenko, S.V.; Renauld, J.C. Cutting edge: STAT activation by IL-19, IL-20 and mda-7 through IL-20 receptor complexes of two types. J. Immunol., 2001, 167(7), 3545-3549.
[http://dx.doi.org/10.4049/jimmunol.167.7.3545] [PMID: 11564763]
[8]
Wolk, K.; Kunz, S.; Asadullah, K.; Sabat, R. Cutting edge: immune cells as sources and targets of the IL-10 family members? J. Immunol., 2002, 168(11), 5397-5402.
[http://dx.doi.org/10.4049/jimmunol.168.11.5397] [PMID: 12023331]
[9]
Steinert, A.; Linas, I.; Kaya, B.; Ibrahim, M.; Schlitzer, A.; Hruz, P.; Radulovic, K.; Terracciano, L.; Macpherson, A.J.; Niess, J.H. The Stimulation of Macrophages with TLR Ligands Supports Increased IL-19 Expression in Inflammatory Bowel Disease Patients and in Colitis Models. J. Immunol., 2017, 199(7), 2570-2584.
[http://dx.doi.org/10.4049/jimmunol.1700350] [PMID: 28864472]
[10]
Myles, I.A.; Fontecilla, N.M.; Valdez, P.A.; Vithayathil, P.J.; Naik, S.; Belkaid, Y.; Ouyang, W.; Datta, S.K. Signaling via the IL-20 receptor inhibits cutaneous production of IL-1β and IL-17A to promote infection with methicillin-resistant Staphylococcus aureus. Nat. Immunol., 2013, 14(8), 804-811.
[http://dx.doi.org/10.1038/ni.2637] [PMID: 23793061]
[11]
Madouri, F.; Barada, O.; Kervoaze, G.; Trottein, F.; Pichavant, M.; Gosset, P. Production of Interleukin-20 cytokines limits bacterial clearance and lung inflammation during infection by Streptococcus pneumoniae. EBioMedicine, 2018, 37, 417-427.
[http://dx.doi.org/10.1016/j.ebiom.2018.10.031] [PMID: 30361066]
[12]
Kunz, S.; Wolk, K.; Witte, E.; Witte, K.; Doecke, W.D.; Volk, H.D.; Sterry, W.; Asadullah, K.; Sabat, R. Interleukin (IL)-19, IL-20 and IL-24 are produced by and act on keratinocytes and are distinct from classical ILs. Exp. Dermatol., 2006, 15(12), 991-1004.
[http://dx.doi.org/10.1111/j.1600-0625.2006.00516.x] [PMID: 17083366]
[13]
Logsdon, N.J.; Deshpande, A.; Harris, B.D.; Rajashankar, K.R.; Walter, M.R. Structural basis for receptor sharing and activation by interleukin-20 receptor-2 (IL-20R2) binding cytokines. Proc. Natl. Acad. Sci. USA, 2012, 109(31), 12704-12709.
[http://dx.doi.org/10.1073/pnas.1117551109] [PMID: 22802649]
[14]
Gallagher, G.; Eskdale, J.; Jordan, W.; Peat, J.; Campbell, J.; Boniotto, M.; Lennon, G.P.; Dickensheets, H.; Donnelly, R.P. Human interleukin-19 and its receptor: a potential role in the induction of Th2 responses. Int. Immunopharmacol., 2004, 4(5), 615-626.
[http://dx.doi.org/10.1016/j.intimp.2004.01.005] [PMID: 15120647]
[15]
Gabunia, K.; Ellison, S.; Kelemen, S.; Kako, F.; Cornwell, W.D.; Rogers, T.J.; Datta, P.K.; Ouimet, M.; Moore, K.J.; Autieri, M.V. IL-19 Halts Progression of Atherosclerotic Plaque, Polarizes, and Increases Cholesterol Uptake and Efflux in Macrophages. Am. J. Pathol., 2016, 186(5), 1361-1374.
[http://dx.doi.org/10.1016/j.ajpath.2015.12.023] [PMID: 26952642]
[16]
Sabat, R. IL-10 family of cytokines. Cytokine Growth Factor Rev., 2010, 21(5), 315-324.
[http://dx.doi.org/10.1016/j.cytogfr.2010.11.001] [PMID: 21112807]
[17]
Azuma, Y.T.; Nakajima, H.; Takeuchi, T. IL-19 as a potential therapeutic in autoimmune and inflammatory diseases. Curr. Pharm. Des., 2011, 17(34), 3776-3780.
[http://dx.doi.org/10.2174/138161211798357845] [PMID: 22103848]
[18]
Hackstein, H.; Kranz, S.; Lippitsch, A.; Wachtendorf, A.; Kershaw, O.; Gruber, A.D.; Michel, G.; Lohmeyer, J.; Bein, G.; Baal, N.; Herold, S. Modulation of respiratory dendritic cells during Klebsiella pneumonia infection. Respir. Res., 2013, 14, 91.
[http://dx.doi.org/10.1186/1465-9921-14-91] [PMID: 24044871]
[19]
Zhong, H.; Wu, Y.; Belardinelli, L.; Zeng, D. A2B adenosine receptors induce IL-19 from bronchial epithelial cells, resulting in TNF-alpha increase. Am. J. Respir. Cell Mol. Biol., 2006, 35(5), 587-592.
[http://dx.doi.org/10.1165/rcmb.2005-0476OC] [PMID: 16778150]
[20]
Huang, F.; Kao, C.Y.; Wachi, S.; Thai, P.; Ryu, J.; Wu, R. Requirement for both JAK-mediated PI3K signaling and ACT1/TRAF6/TAK1-dependent NF-kappaB activation by IL-17A in enhancing cytokine expression in human airway epithelial cells. J. Immunol., 2007, 179(10), 6504-6513.
[http://dx.doi.org/10.4049/jimmunol.179.10.6504] [PMID: 17982039]
[21]
Tian, Y.; Sommerville, L.J.; Cuneo, A.; Kelemen, S.E.; Autieri, M.V. Expression and suppressive effects of interleukin-19 on vascular smooth muscle cell pathophysiology and development of intimal hyperplasia. Am. J. Pathol., 2008, 173(3), 901-909.
[http://dx.doi.org/10.2353/ajpath.2008.080163] [PMID: 18669613]
[22]
Hsing, C.H.; Cheng, H.C.; Hsu, Y.H.; Chan, C.H.; Yeh, C.H.; Li, C.F.; Chang, M.S. Upregulated IL-19 in breast cancer promotes tumor progression and affects clinical outcome. Clin. Cancer Res., 2012, 18(3), 713-725.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-1532] [PMID: 22186257]
[23]
Huang, F.; Wachi, S.; Thai, P.; Loukoianov, A.; Tan, K. H.; Forteza, R. M.; Wu, R. Potentiation of IL-19 expression in airway epithelia by IL-17A and IL-4/IL-13: important implications in asthma. J Allergy Clin Immunol, 2008, 121(6), 1415-1421. e1-3
[24]
Bao, L.; Alexander, J.B.; Shi, V.Y.; Mohan, G.C.; Chan, L.S. Interleukin-4 up-regulation of epidermal interleukin-19 expression in keratinocytes involves the binding of signal transducer and activator of transcription 6 (Stat6) to the imperfect Stat6 sites. Immunology, 2014, 143(4), 601-608.
[http://dx.doi.org/10.1111/imm.12339] [PMID: 24943510]
[25]
Witte, E.; Kokolakis, G.; Witte, K.; Philipp, S.; Doecke, W.D.; Babel, N.; Wittig, B.M.; Warszawska, K.; Kurek, A.; Erdmann-Keding, M.; Kunz, S.; Asadullah, K.; Kadin, M.E.; Volk, H.D.; Sterry, W.; Wolk, K.; Sabat, R. IL-19 is a component of the pathogenetic IL-23/IL-17 cascade in psoriasis. J. Invest. Dermatol., 2014, 134(11), 2757-2767.
[http://dx.doi.org/10.1038/jid.2014.308] [PMID: 25046339]
[26]
Liao, S.C.; Cheng, Y.C.; Wang, Y.C.; Wang, C.W.; Yang, S.M.; Yu, C.K.; Shieh, C.C.; Cheng, K.C.; Lee, M.F.; Chiang, S.R.; Shieh, J.M.; Chang, M.S. IL-19 induced Th2 cytokines and was up-regulated in asthma patients. J. Immunol., 2004, 173(11), 6712-6718.
[http://dx.doi.org/10.4049/jimmunol.173.11.6712] [PMID: 15557163]
[27]
Tohyama, M.; Hanakawa, Y.; Shirakata, Y.; Dai, X.; Yang, L.; Hirakawa, S.; Tokumaru, S.; Okazaki, H.; Sayama, K.; Hashimoto, K. IL-17 and IL-22 mediate IL-20 subfamily cytokine production in cultured keratinocytes via increased IL-22 receptor expression. Eur. J. Immunol., 2009, 39(10), 2779-2788.
[http://dx.doi.org/10.1002/eji.200939473] [PMID: 19731362]
[28]
Azuma, Y.T.; Matsuo, Y.; Nakajima, H.; Yancopoulos, G.D.; Valenzuela, D.M.; Murphy, A.J.; Karow, M.; Takeuchi, T. Interleukin-19 is a negative regulator of innate immunity and critical for colonic protection. J. Pharmacol. Sci., 2011, 115(2), 105-111.
[http://dx.doi.org/10.1254/jphs.10R02CR] [PMID: 21157117]
[29]
Hu, L.; Mauro, T.M.; Dang, E.; Man, G.; Zhang, J.; Lee, D.; Wang, G.; Feingold, K.R.; Elias, P.M.; Man, M.Q. Epidermal Dysfunction Leads to an Age-Associated Increase in Levels of Serum Inflammatory Cytokines. J. Invest. Dermatol., 2017, 137(6), 1277-1285.
[http://dx.doi.org/10.1016/j.jid.2017.01.007] [PMID: 28115059]
[30]
Sidler, D.; Wu, P.; Herro, R.; Claus, M.; Wolf, D.; Kawakami, Y.; Kawakami, T.; Burkly, L.; Croft, M. TWEAK mediates inflammation in experimental atopic dermatitis and psoriasis. Nat. Commun., 2017, 8, 15395.
[http://dx.doi.org/10.1038/ncomms15395] [PMID: 28530223]
[31]
Qian, H.; Wang, M.; Wang, Y.; Ying, W.; Zhang, J.; Huan, Y.; He, Y.; Liu, Y.; Shi, G. Role of Galphaq in pathogenesis of psoriasis, a new mechanism about the immune regulation in psoriasis. Int. Immunopharmacol., 2019, 68, 185-192.
[http://dx.doi.org/10.1016/j.intimp.2018.12.054] [PMID: 30654308]
[32]
Xu, S.; Zhang, X.; Pan, M.; Shuai, Z.; Xu, S.; Pan, F. Treatment of plaque psoriasis with IL-23p19 blockers: A systematic review and meta-analysis. Int. Immunopharmacol., 2019, 75, 105841.
[http://dx.doi.org/10.1016/j.intimp.2019.105841] [PMID: 31465912]
[33]
Huang, X.; Yu, P.; Liu, M.; Deng, Y.; Dong, Y.; Liu, Q.; Zhang, J.; Wu, T. ERK inhibitor JSI287 alleviates imiquimod-induced mice skin lesions by ERK/IL-17 signaling pathway. Int. Immunopharmacol., 2019, 66, 236-241.
[http://dx.doi.org/10.1016/j.intimp.2018.11.031] [PMID: 30481683]
[34]
Otkjaer, K.; Kragballe, K.; Funding, A.T.; Clausen, J.T.; Noerby, P.L.; Steiniche, T.; Iversen, L. The dynamics of gene expression of interleukin-19 and interleukin-20 and their receptors in psoriasis. Br. J. Dermatol., 2005, 153(5), 911-918.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06800.x] [PMID: 16225599]
[35]
Rømer, J.; Hasselager, E.; Nørby, P.L.; Steiniche, T.; Thorn Clausen, J.; Kragballe, K. Epidermal overexpression of interleukin-19 and -20 mRNA in psoriatic skin disappears after short-term treatment with cyclosporine a or calcipotriol. J. Invest. Dermatol., 2003, 121(6), 1306-1311.
[http://dx.doi.org/10.1111/j.1523-1747.2003.12626.x] [PMID: 14675174]
[36]
Noda, S.; Suárez-Fariñas, M.; Ungar, B.; Kim, S.J.; de Guzman Strong, C.; Xu, H.; Peng, X.; Estrada, Y.D.; Nakajima, S.; Honda, T.; Shin, J.U.; Lee, H.; Krueger, J.G.; Lee, K.H.; Kabashima, K.; Guttman-Yassky, E. The Asian atopic dermatitis phenotype combines features of atopic dermatitis and psoriasis with increased TH17 polarization. J. Allergy Clin. Immunol., 2015, 136(5), 1254-1264.
[http://dx.doi.org/10.1016/j.jaci.2015.08.015] [PMID: 26428954]
[37]
Sa, S.M.; Valdez, P.A.; Wu, J.; Jung, K.; Zhong, F.; Hall, L.; Kasman, I.; Winer, J.; Modrusan, Z.; Danilenko, D.M.; Ouyang, W. The effects of IL-20 subfamily cytokines on reconstituted human epidermis suggest potential roles in cutaneous innate defense and pathogenic adaptive immunity in psoriasis. J. Immunol., 2007, 178(4), 2229-2240.
[http://dx.doi.org/10.4049/jimmunol.178.4.2229] [PMID: 17277128]
[38]
Li, H.H.; Lin, Y.C.; Chen, P.J.; Hsiao, C.H.; Lee, J.Y.; Chen, W.C.; Tzung, T.Y.; Wu, J.C.; Chang, M.S. Interleukin-19 upregulates keratinocyte growth factor and is associated with psoriasis. Br. J. Dermatol., 2005, 153(3), 591-595.
[http://dx.doi.org/10.1111/j.1365-2133.2005.06665.x] [PMID: 16120148]
[39]
Chan, J.R.; Blumenschein, W.; Murphy, E.; Diveu, C.; Wiekowski, M.; Abbondanzo, S.; Lucian, L.; Geissler, R.; Brodie, S.; Kimball, A.B.; Gorman, D.M.; Smith, K.; de Waal Malefyt, R.; Kastelein, R.A.; McClanahan, T.K.; Bowman, E.P. IL-23 stimulates epidermal hyperplasia via TNF and IL-20R2-dependent mechanisms with implications for psoriasis pathogenesis. J. Exp. Med., 2006, 203(12), 2577-2587.
[http://dx.doi.org/10.1084/jem.20060244] [PMID: 17074928]
[40]
Wang, F.; Smith, N.; Maier, L.; Xia, W.; Hammerberg, C.; Chubb, H.; Chen, C.; Riblett, M.; Johnston, A.; Gudjonsson, J.E.; Helfrich, Y.; Kang, S.; Fisher, G.J.; Voorhees, J.J. Etanercept suppresses regenerative hyperplasia in psoriasis by acutely downregulating epidermal expression of interleukin (IL)-19, IL-20 and IL-24. Br. J. Dermatol., 2012, 167(1), 92-102.
[http://dx.doi.org/10.1111/j.1365-2133.2012.10961.x] [PMID: 22458549]
[41]
Johnston, A.; Fritz, Y.; Dawes, S.M.; Diaconu, D.; Al-Attar, P.M.; Guzman, A.M.; Chen, C.S.; Fu, W.; Gudjonsson, J.E.; McCormick, T.S.; Ward, N.L. Keratinocyte overexpression of IL-17C promotes psoriasiform skin inflammation. J. Immunol., 2013, 190(5), 2252-2262.
[http://dx.doi.org/10.4049/jimmunol.1201505] [PMID: 23359500]
[42]
Johansen, C.; Mose, M.; Ommen, P.; Bertelsen, T.; Vinter, H.; Hailfinger, S.; Lorscheid, S.; Schulze-Osthoff, K.; Iversen, L. IκBζ is a key driver in the development of psoriasis. Proc. Natl. Acad. Sci. USA, 2015, 112(43), E5825-E5833.
[http://dx.doi.org/10.1073/pnas.1509971112] [PMID: 26460049]
[43]
Jeong, N.H.; Yang, E.J.; Jin, M.; Lee, J.Y.; Choi, Y.A.; Park, P.H.; Lee, S.R.; Kim, S.U.; Shin, T.Y.; Kwon, T.K.; Jang, Y.H.; Song, K.S.; Kim, S.H. Esculetin from Fraxinus rhynchophylla attenuates atopic skin inflammation by inhibiting the expression of inflammatory cytokines. Int. Immunopharmacol., 2018, 59, 209-216.
[http://dx.doi.org/10.1016/j.intimp.2018.04.005] [PMID: 29656211]
[44]
Bao, L.; Shi, V.Y.; Chan, L.S. IL-4 up-regulates epidermal chemotactic, angiogenic, and pro-inflammatory genes and down-regulates antimicrobial genes in vivo and in vitro: relevant in the pathogenesis of atopic dermatitis. Cytokine, 2013, 61(2), 419-425.
[http://dx.doi.org/10.1016/j.cyto.2012.10.031] [PMID: 23207180]
[45]
Oka, T.; Sugaya, M.; Takahashi, N.; Nakajima, R.; Otobe, S.; Kabasawa, M.; Suga, H.; Miyagaki, T.; Asano, Y.; Sato, S. Increased Interleukin-19 Expression in Cutaneous T-cell Lymphoma and Atopic Dermatitis. Acta Derm. Venereol., 2017, 97(10), 1172-1177.
[http://dx.doi.org/10.2340/00015555-2723] [PMID: 28597022]
[46]
Fujimoto, Y.; Fujita, T.; Kuramoto, N.; Kuwamura, M.; Izawa, T.; Nishiyama, K.; Yoshida, N.; Nakajima, H.; Takeuchi, T.; Azuma, Y.T. The Role of Interleukin-19 in Contact Hypersensitivity. Biol. Pharm. Bull., 2018, 41(2), 182-189.
[http://dx.doi.org/10.1248/bpb.b17-00594] [PMID: 29386478]
[47]
Fujimoto, Y.; Aono, K.; Azuma, Y.T. The clarified role of interleukin-19 in the inflammatory bowel disease and hypersensitivity: Insights from animal models and humans. J. Vet. Med. Sci., 2019, 81(8), 1067-1073.
[http://dx.doi.org/10.1292/jvms.19-0149] [PMID: 31189783]
[48]
Wahl, C.; Müller, W.; Leithäuser, F.; Adler, G.; Oswald, F.; Reimann, J.; Schirmbeck, R.; Seier, A.; Weiss, J.M.; Prochnow, B.; Wegenka, U.M. IL-20 receptor 2 signaling down-regulates antigen-specific T cell responses. J. Immunol., 2009, 182(2), 802-810.
[http://dx.doi.org/10.4049/jimmunol.182.2.802] [PMID: 19124723]
[49]
Konrad, R.J.; Higgs, R.E.; Rodgers, G.H.; Ming, W.; Qian, Y.W.; Bivi, N.; Mack, J.K.; Siegel, R.W.; Nickoloff, B.J. Assessment and Clinical Relevance of Serum IL-19 Levels in Psoriasis and Atopic Dermatitis Using a Sensitive and Specific Novel Immunoassay. Sci. Rep., 2019, 9(1), 5211.
[http://dx.doi.org/10.1038/s41598-019-41609-z] [PMID: 30914699]
[50]
Hsu, Y.H.; Li, H.H.; Hsieh, M.Y.; Liu, M.F.; Huang, K.Y.; Chin, L.S.; Chen, P.C.; Cheng, H.H.; Chang, M.S. Function of interleukin-20 as a proinflammatory molecule in rheumatoid and experimental arthritis. Arthritis Rheum., 2006, 54(9), 2722-2733.
[http://dx.doi.org/10.1002/art.22039] [PMID: 16947773]
[51]
Sakurai, N.; Kuroiwa, T.; Ikeuchi, H.; Hiramatsu, N.; Maeshima, A.; Kaneko, Y.; Hiromura, K.; Nojima, Y. Expression of IL-19 and its receptors in RA: potential role for synovial hyperplasia formation. Rheumatology (Oxford), 2008, 47(6), 815-820.
[http://dx.doi.org/10.1093/rheumatology/ken061] [PMID: 18397956]
[52]
Scrivo, R.; Conigliaro, P.; Riccieri, V.; Di Franco, M.; Alessandri, C.; Spadaro, A.; Perricone, R.; Valesini, G. Distribution of interleukin-10 family cytokines in serum and synovial fluid of patients with inflammatory arthritis reveals different contribution to systemic and joint inflammation. Clin. Exp. Immunol., 2015, 179(2), 300-308.
[http://dx.doi.org/10.1111/cei.12449] [PMID: 25178435]
[53]
Alanärä, T.; Karstila, K.; Moilanen, T.; Silvennoinen, O.; Isomäki, P. Expression of IL-10 family cytokines in rheumatoid arthritis: elevated levels of IL-19 in the joints. Scand. J. Rheumatol., 2010, 39(2), 118-126.
[http://dx.doi.org/10.3109/03009740903170823] [PMID: 20001767]
[54]
Kragstrup, T.W.; Andersen, T.; Heftdal, L.D.; Hvid, M.; Gerwien, J.; Sivakumar, P.; Taylor, P.C.; Senolt, L.; Deleuran, B. The IL-20 Cytokine Family in Rheumatoid Arthritis and Spondyloarthritis. Front. Immunol., 2018, 9, 2226.
[http://dx.doi.org/10.3389/fimmu.2018.02226] [PMID: 30319661]
[55]
Kragstrup, T.W.; Andersen, T.; Holm, C.; Schiøttz-Christensen, B.; Jurik, A.G.; Hvid, M.; Deleuran, B. Toll-like receptor 2 and 4 induced interleukin-19 dampens immune reactions and associates inversely with spondyloarthritis disease activity. Clin. Exp. Immunol., 2015, 180(2), 233-242.
[http://dx.doi.org/10.1111/cei.12577] [PMID: 25639337]
[56]
Kragstrup, T.W.; Otkjaer, K.; Holm, C.; Jørgensen, A.; Hokland, M.; Iversen, L.; Deleuran, B. The expression of IL-20 and IL-24 and their shared receptors are increased in rheumatoid arthritis and spondyloarthropathy. Cytokine, 2008, 41(1), 16-23.
[http://dx.doi.org/10.1016/j.cyto.2007.10.004] [PMID: 18061474]
[57]
Park, S.Y.; Lee, Y.S.; Lee, S.Y.; Lee, S.W.; Hong, K.W.; Kim, C.D. Multitarget-based cotreatment with cilostazol and celecoxib synergistically suppresses collagen-induced arthritis in mice by enhancing interleukin-10 expression. Int. Immunopharmacol., 2019, 73, 461-470.
[http://dx.doi.org/10.1016/j.intimp.2019.05.058] [PMID: 31170675]
[58]
Li, X.; Xie, P.; Hou, Y.; Chen, S.; He, P.; Xiao, Z.; Zhan, J.; Luo, D.; Gu, M.; Lin, D. Tangeretin Inhibits Oxidative Stress and Inflammation via Upregulating Nrf-2 Signaling Pathway in Collagen-Induced Arthritic Rats. Pharmacology, 2019, 104(3-4), 187-195.
[http://dx.doi.org/10.1159/000501163] [PMID: 31344704]
[59]
Kragstrup, T.W.; Greisen, S.R.; Nielsen, M.A.; Rhodes, C.; Stengaard-Pedersen, K.; Hetland, M.L.; Hørslev-Petersen, K.; Junker, P.; Østergaard, M.; Hvid, M.; Vorup-Jensen, T.; Robinson, W.H.; Sokolove, J.; Deleuran, B. The interleukin-20 receptor axis in early rheumatoid arthritis: novel links between disease-associated autoantibodies and radiographic progression. Arthritis Res. Ther., 2016, 18, 61.
[http://dx.doi.org/10.1186/s13075-016-0964-7] [PMID: 26968800]
[60]
Liao, Y.C.; Liang, W.G.; Chen, F.W.; Hsu, J.H.; Yang, J.J.; Chang, M.S. IL-19 induces production of IL-6 and TNF-alpha and results in cell apoptosis through TNF-alpha. J. Immunol., 2002, 169(8), 4288-4297.
[http://dx.doi.org/10.4049/jimmunol.169.8.4288] [PMID: 12370360]
[61]
Hsu, Y.H.; Hsieh, P.P.; Chang, M.S. Interleukin-19 blockade attenuates collagen-induced arthritis in rats. Rheumatology (Oxford), 2012, 51(3), 434-442.
[http://dx.doi.org/10.1093/rheumatology/ker127] [PMID: 21719423]
[62]
Liu, X.; Zhou, H.; Huang, X.; Cui, J.; Long, T.; Xu, Y.; Liu, H.; Yu, R.; Zhao, R.; Luo, G.; Huang, A.; Liang, J.G.; Liang, P. A Broad Blockade of Signaling from the IL-20 Family of Cytokines Potently Attenuates Collagen-Induced Arthritis. J. Immunol., 2016, 197(8), 3029-3037.
[http://dx.doi.org/10.4049/jimmunol.1600399] [PMID: 27619991]
[63]
Hong, X.Y.; Lin, J.; Gu, W.W. Risk factors and therapies in vascular diseases: An umbrella review of updated systematic reviews and meta-analyses. J. Cell. Physiol., 2019, 234(6), 8221-8232.
[http://dx.doi.org/10.1002/jcp.27633] [PMID: 30317627]
[64]
Rezaie, J.; Rahbarghazi, R.; Pezeshki, M.; Mazhar, M.; Yekani, F.; Khaksar, M.; Shokrollahi, E.; Amini, H.; Hashemzadeh, S.; Sokullu, S.E.; Tokac, M. Cardioprotective role of extracellular vesicles: A highlight on exosome beneficial effects in cardiovascular diseases. J. Cell. Physiol., 2019, 234(12), 21732-21745.
[http://dx.doi.org/10.1002/jcp.28894] [PMID: 31140622]
[65]
Ait-Oufella, H.; Taleb, S.; Mallat, Z.; Tedgui, A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 2011, 31(5), 969-979.
[http://dx.doi.org/10.1161/ATVBAHA.110.207415] [PMID: 21508343]
[66]
Mummidi, S.; Das, N.A.; Carpenter, A.J.; Yoshida, T.; Yariswamy, M.; Mostany, R.; Izadpanah, R.; Higashi, Y.; Sukhanov, S.; Noda, M.; Siebenlist, U.; Rector, R.S.; Chandrasekar, B. RECK suppresses interleukin-17/TRAF3IP2-mediated MMP-13 activation and human aortic smooth muscle cell migration and proliferation. J. Cell. Physiol., 2019, 234(12), 22242-22259.
[http://dx.doi.org/10.1002/jcp.28792] [PMID: 31074012]
[67]
Autieri, M.V. IL-19 and Other IL-20 Family Member Cytokines in Vascular Inflammatory Diseases. Front. Immunol., 2018, 9, 700.
[http://dx.doi.org/10.3389/fimmu.2018.00700] [PMID: 29681905]
[68]
England, R.N.; Autieri, M.V. Anti-inflammatory effects of interleukin-19 in vascular disease. Int. J. Inflamm., 2012, 2012, 253583.
[http://dx.doi.org/10.1155/2012/253583] [PMID: 22844641]
[69]
Hsing, C.H.; Hsieh, M.Y.; Chen, W.Y.; Cheung So, E.; Cheng, B.C.; Chang, M.S. Induction of interleukin-19 and interleukin-22 after cardiac surgery with cardiopulmonary bypass. Ann. Thorac. Surg., 2006, 81(6), 2196-2201.
[http://dx.doi.org/10.1016/j.athoracsur.2006.01.092] [PMID: 16731153]
[70]
Cuneo, A.A.; Herrick, D.; Autieri, M.V. Il-19 reduces VSMC activation by regulation of mRNA regulatory factor HuR and reduction of mRNA stability. J. Mol. Cell. Cardiol., 2010, 49(4), 647-654.
[http://dx.doi.org/10.1016/j.yjmcc.2010.04.016] [PMID: 20451530]
[71]
Ellison, S.; Gabunia, K.; Richards, J.M.; Kelemen, S.E.; England, R.N.; Rudic, D.; Azuma, Y.T.; Munroy, M.A.; Eguchi, S.; Autieri, M.V. IL-19 reduces ligation-mediated neointimal hyperplasia by reducing vascular smooth muscle cell activation. Am. J. Pathol., 2014, 184(7), 2134-2143.
[http://dx.doi.org/10.1016/j.ajpath.2014.04.001] [PMID: 24814101]
[72]
Ray, M.; Gabunia, K.; Vrakas, C.N.; Herman, A.B.; Kako, F.; Kelemen, S.E.; Grisanti, L.A.; Autieri, M.V. Genetic Deletion of IL-19 (Interleukin-19) Exacerbates Atherogenesis in Il19-/-×Ldlr-/- Double Knockout Mice by Dysregulation of mRNA Stability Protein HuR (Human Antigen R). Arterioscler. Thromb. Vasc. Biol., 2018, 38(6), 1297-1308.
[http://dx.doi.org/10.1161/ATVBAHA.118.310929] [PMID: 29674474]
[73]
Bruns, D.R.; Ghincea, A.R.; Ghincea, C.V.; Azuma, Y.T.; Watson, P.A.; Autieri, M.V.; Walker, L.A. Interleukin-19 is cardioprotective in dominant negative cyclic adenosine monophosphate response-element binding protein-mediated heart failure in a sex-specific manner. World J. Cardiol., 2017, 9(8), 673-684.
[http://dx.doi.org/10.4330/wjc.v9.i8.673] [PMID: 28932356]
[74]
England, R.N.; Preston, K.J.; Scalia, R.; Autieri, M.V. Interleukin-19 decreases leukocyte-endothelial cell interactions by reduction in endothelial cell adhesion molecule mRNA stability. Am. J. Physiol. Cell Physiol., 2013, 305(3), C255-C265.
[http://dx.doi.org/10.1152/ajpcell.00069.2013] [PMID: 23596173]
[75]
Herman, A.B.; Vrakas, C.N.; Ray, M.; Kelemen, S.E.; Sweredoski, M.J.; Moradian, A.; Haines, D.S.; Autieri, M.V. FXR1 Is an IL-19-Responsive RNA-Binding Protein that Destabilizes Pro-inflammatory Transcripts in Vascular Smooth Muscle Cells. Cell Rep., 2018, 24(5), 1176-1189.
[http://dx.doi.org/10.1016/j.celrep.2018.07.002] [PMID: 30067974]
[76]
Gabunia, K.; Ellison, S.P.; Singh, H.; Datta, P.; Kelemen, S.E.; Rizzo, V.; Autieri, M.V. Interleukin-19 (IL-19) induces heme oxygenase-1 (HO-1) expression and decreases reactive oxygen species in human vascular smooth muscle cells. J. Biol. Chem., 2012, 287(4), 2477-2484.
[http://dx.doi.org/10.1074/jbc.M111.312470] [PMID: 22158875]
[77]
An, W.; Yu, Y.; Zhang, Y.; Zhang, Z.; Yu, Y.; Zhao, X. Exogenous IL-19 attenuates acute ischaemic injury and improves survival in male mice with myocardial infarction. Br. J. Pharmacol., 2019, 176(5), 699-710.
[http://dx.doi.org/10.1111/bph.14549] [PMID: 30460984]
[78]
Porter, R.J.; Andrews, C.; Brice, D.P.; Durum, S.K.; McLean, M.H. Can We Target Endogenous Anti-inflammatory Responses as a Therapeutic Strategy for Inflammatory Bowel Disease? Inflamm. Bowel Dis., 2018, 24(10), 2123-2134.
[http://dx.doi.org/10.1093/ibd/izy230] [PMID: 30020451]
[79]
Egberg, M.D.; Gulati, A.S.; Gellad, Z.F.; Melmed, G.Y.; Kappelman, M.D. Improving Quality in the Care of Patients with Inflammatory Bowel Diseases. Inflamm. Bowel Dis., 2018, 24(8), 1660-1669.
[http://dx.doi.org/10.1093/ibd/izy030] [PMID: 29718299]
[80]
Moein, S.; Vaghari-Tabari, M.; Qujeq, D.; Majidinia, M.; Nabavi, S.M.; Yousefi, B. MiRNAs and inflammatory bowel disease: An interesting new story. J. Cell. Physiol., 2019, 234(4), 3277-3293.
[http://dx.doi.org/10.1002/jcp.27173] [PMID: 30417350]
[81]
Fonseca-Camarillo, G.; Furuzawa-Carballeda, J.; Granados, J.; Yamamoto-Furusho, J.K. Expression of interleukin (IL)-19 and IL-24 in inflammatory bowel disease patients: a cross-sectional study. Clin. Exp. Immunol., 2014, 177(1), 64-75.
[http://dx.doi.org/10.1111/cei.12285] [PMID: 24527982]
[82]
Yamamoto-Furusho, J.K.; Álvarez-León, E.; Fragoso, J.M.; Gozalishvilli, A.; Vallejo, M.; Vargas-Alarcón, G. Protective role of interleukin-19 gene polymorphisms in patients with ulcerative colitis. Hum. Immunol., 2011, 72(11), 1029-1032.
[http://dx.doi.org/10.1016/j.humimm.2011.08.013] [PMID: 21925224]
[83]
Cantó, E.; Garcia Planella, E.; Zamora-Atenza, C.; Nieto, J.C.; Gordillo, J.; Ortiz, M.A.; Metón, I.; Serrano, E.; Vegas, E.; García-Bosch, O.; Juárez, C.; Vidal, S. Interleukin-19 impairment in active Crohn’s disease patients. PLoS One, 2014, 9(4), e93910.
[http://dx.doi.org/10.1371/journal.pone.0093910] [PMID: 24718601]
[84]
Zheng, Y.; Valdez, P.A.; Danilenko, D.M.; Hu, Y.; Sa, S.M.; Gong, Q.; Abbas, A.R.; Modrusan, Z.; Ghilardi, N.; de Sauvage, F.J.; Ouyang, W. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med., 2008, 14(3), 282-289.
[http://dx.doi.org/10.1038/nm1720] [PMID: 18264109]
[85]
Niess, J.H.; Hruz, P.; Kaymak, T. The Interleukin-20 Cytokines in Intestinal Diseases. Front. Immunol., 2018, 18(9), 1373.
[http://dx.doi.org/10.3389/fimmu.2018.01373] [PMID: 29967613]
[86]
Azuma, Y.T.; Matsuo, Y.; Kuwamura, M.; Yancopoulos, G.D.; Valenzuela, D.M.; Murphy, A.J.; Nakajima, H.; Karow, M.; Takeuchi, T. Interleukin-19 protects mice from innate-mediated colonic inflammation. Inflamm. Bowel Dis., 2010, 16(6), 1017-1028.
[http://dx.doi.org/10.1002/ibd.21151] [PMID: 19834971]
[87]
Matsuo, Y.; Azuma, Y.T.; Kuwamura, M.; Kuramoto, N.; Nishiyama, K.; Yoshida, N.; Ikeda, Y.; Fujimoto, Y.; Nakajima, H.; Takeuchi, T. Interleukin 19 reduces inflammation in chemically induced experimental colitis. Int. Immunopharmacol., 2015, 29(2), 468-475.
[http://dx.doi.org/10.1016/j.intimp.2015.10.011] [PMID: 26476684]
[88]
Fujimoto, Y.; Azuma, Y.T.; Matsuo, Y.; Kuwamura, M.; Kuramoto, N.; Miki, M.; Azuma, N.; Teramoto, M.; Nishiyama, K.; Izawa, T.; Nakajima, H.; Takeuchi, T. Interleukin-19 contributes as a protective factor in experimental Th2-mediated colitis. Naunyn Schmiedebergs Arch. Pharmacol., 2017, 390(3), 261-268.
[http://dx.doi.org/10.1007/s00210-016-1329-0] [PMID: 27942772]
[89]
Wegenka, U.M.; Dikopoulos, N.; Reimann, J.; Adler, G.; Wahl, C. The murine liver is a potential target organ for IL-19, IL-20 and IL-24: Type I Interferons and LPS regulate the expression of IL-20R2. J. Hepatol., 2007, 46(2), 257-265.
[http://dx.doi.org/10.1016/j.jhep.2006.08.009] [PMID: 17069926]
[90]
Hsu, Y.H.; Li, H.H.; Sung, J.M.; Chen, W.T.; Hou, Y.C.; Chang, M.S. Interleukin-19 mediates tissue damage in murine ischemic acute kidney injury. PLoS One, 2013, 8(2), e56028.
[http://dx.doi.org/10.1371/journal.pone.0056028] [PMID: 23468852]
[91]
Mehta, R.; Birerdinc, A.; Neupane, A.; Shamsaddini, A.; Afendy, A.; Elariny, H.; Chandhoke, V.; Baranova, A.; Younossi, Z.M. Expression of inflammation-related genes is altered in gastric tissue of patients with advanced stages of NAFLD. Mediators Inflamm., 2013, 2013, 684237.
[http://dx.doi.org/10.1155/2013/684237] [PMID: 23661906]
[92]
Chiu, Y.S.; Wei, C.C.; Lin, Y.J.; Hsu, Y.H.; Chang, M.S. IL-20 and IL-20R1 antibodies protect against liver fibrosis. Hepatology, 2014, 60(3), 1003-1014.
[http://dx.doi.org/10.1002/hep.27189] [PMID: 24763901]
[93]
Kong, X.; Feng, D.; Wang, H.; Hong, F.; Bertola, A.; Wang, F.S.; Gao, B. Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 2012, 56(3), 1150-1159.
[http://dx.doi.org/10.1002/hep.25744] [PMID: 22473749]
[94]
Huang, S.; Zhou, D.; Li, Y.X.; Ming, Z.Y.; Li, K.Z.; Wu, G.B.; Chen, C.; Zhao, Y.N. In vivo and in vitro effects of microRNA-221 on hepatocellular carcinoma development and progression through the JAK-STAT3 signaling pathway by targeting SOCS3. J. Cell. Physiol., 2019, 234(4), 3500-3514.
[http://dx.doi.org/10.1002/jcp.26863] [PMID: 30370582]
[95]
Xie, W.; Fang, L.; Gan, S.; Xuan, H. Interleukin-19 alleviates brain injury by anti-inflammatory effects in a mice model of focal cerebral ischemia. Brain Res., 2016, 1650, 172-177.
[http://dx.doi.org/10.1016/j.brainres.2016.09.006] [PMID: 27608956]
[96]
Guo, J.; Wang, H.; Li, L.; Yuan, Y.; Shi, X.; Hou, S. Treatment with IL-19 improves locomotor functional recovery after contusion trauma to the spinal cord. Br. J. Pharmacol., 2018, 175(13), 2611-2621.
[http://dx.doi.org/10.1111/bph.14193] [PMID: 29500933]
[97]
Horiuchi, H.; Parajuli, B.; Wang, Y.; Azuma, Y.T.; Mizuno, T.; Takeuchi, H.; Suzumura, A. Interleukin-19 acts as a negative autocrine regulator of activated microglia. PLoS One, 2015, 10(3), e0118640.
[http://dx.doi.org/10.1371/journal.pone.0118640] [PMID: 25794104]
[98]
Cooley, I.D.; Chauhan, V.S.; Donneyz, M.A.; Marriott, I. Astrocytes produce IL-19 in response to bacterial challenge and are sensitive to the immunosuppressive effects of this IL-10 family member. Glia, 2014, 62(5), 818-828.
[http://dx.doi.org/10.1002/glia.22644] [PMID: 24677051]
[99]
Burmeister, A.R.; Johnson, M.B.; Yaemmongkol, J.J.; Marriott, I. Murine astrocytes produce IL-24 and are susceptible to the immunosuppressive effects of this cytokine. J. Neuroinflammation, 2019, 16(1), 55.
[http://dx.doi.org/10.1186/s12974-019-1444-1] [PMID: 30825881]
[100]
Burmeister, A.R.; Johnson, M.B.; Marriott, I. Murine astrocytes are responsive to the pro-inflammatory effects of IL-20. Neurosci. Lett., 2019, 708, 134334.
[http://dx.doi.org/10.1016/j.neulet.2019.134334] [PMID: 31238130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy