[1]
Catalysis in the Refining of Fischer-Tropsch Syncrude. de Klerk, A., Furimsky, E. Ed. RSC Publishing Cambridge, 2010. Van Steen, E., Claeys, M. Fischer-Tropsch Catalysts for the Biomass‐to‐Liquid (BTL). Process. Chem. Eng. Technol., 2008, 31, 655-667.
[2]
Lapidus, A.L.; Krylova, A.Yu.; Mikhailova, Ya.V.; Sineva, L.V.; Erofeev, A.B. Effect of the nature of the support of a cobalt catalyst
on the synthesis of hydrocarbons from CO, H2, and C2H4,
[3]
Rossetti, I.; Gambaro, C.; Calemma, V. Hydrocracking of long chain linear paraffins. Chem. Eng. J., 2009, 154, 295-315. Gamba, S., Pellegrini, L.A., Calemma, V., Gambaro, C. Liquid fuels from Fischer-Tropsch wax hydrocracking: Isomer distribution. Catal. Today, 2016, 156, 58-67. Jiang, J., Yang, C., Lu, Z., Ding, J., Lia, T., Lu, Y., Cao, F. Characterization and application of a Pt/ZSM-5/SSMF catalyst for hydrocracking of paraffin wax. Catal. Commun., 2015, 60, 1-6. Calemma, V., Gambaro, C., Parker Jr., W.O., Carbone, R., Giardino R., Scorletti, P. Middle distillates from hydrocracking of FT waxes: Composition, characteristics and emission properties. Catal. Today, 2010, 149, 40-49.
[5]
Weitkamp, J.; Ernst, S. Factors Influencing the Selectivity of Hydrocracking
in Zeolites. Guidelines for Mastering the Properties of
Molecular Sieves, Plenum Press: New York 1990, 4, pp. 343-
354 Weitkamp, J. Catalytic Hydrocracking Mechanisms and Versatility
of the Process. ChemCatChem; Plenum Press: New York,
2012, 4, pp. 292-,Kinger, G.; Vinek, H. N-nonane hydroconversion
on Ni and Pt containing HMFI, HMOR and HBEA. Appl. Catal;
Plenum Press: New York, 2001, 4, pp. 139-.
[6]
Busca, G., Ed.; Heterogeneous Catalytic Materials; Elsevier: Amsterdam, 2014.
[7]
Steynberg, A.P.; Dry, M., Eds.; Fischer-Tropsch Technology; Elsevier: Amsterdam, 2004, Vol. 152, .
[10]
Shape selective catalysis in industrial applicationsChen, N.Y.;
Garwood, W.E.; Dwyer, F.G.; Guisnet, M.; Gilson, J.P., Eds. Zeolites
for cleaner technologies, 2nd ed; Imperial College Press:
London: Dekker: New York, 2002.
[16]
Kang, J.; Cheng, K.; Zhang, L.; Zhang, Q.; Ding, J.; Hua, W.; Lou, Y.; Zhai, Q.; Wang, Y. Mesoporous Zeolite‐Supported Ruthenium Nanoparticles as Highly Selective Fischer-Tropsch Catalysts for the Production of C5-C11 Isoparaffins. Angew. Chem., Int. Ed., 2011, 50, 5200-5206. Sartipi, S., Parashar, K., Makkee, M., Gascon, J., Kapteijn, F. Breaking the Fischer-Tropsch synthesis selectivity: direct conversion of syngas to gasoline over hierarchical Co/H-ZSM-5 catalysts. Catal. Sci. Technol., 2013, 3, 572-278. Sartipi, S., Makkee, M., Kapteijn, F., Gascon, J. Catalysis engineering of bifunctional solids for the one-step synthesis of liquid fuels from the syngas: a review. Catal. Sci. Technol., 2014, 4, 893-905.
[18]
Martinez, A.; Prieto, G. The Application of Zeolites and Periodic
Mesoporous Silicas in the Catalytic Conversion of Synthesis
Gas In: Top. Catal; Wiley-VCH: Weinheim, 2009, 52, pp. 75-
84..Cejka, J.; Corma, A.; Zones, S. Zeolites and Catalysis; Wiley-
VCH: Weinheim, 2010, 52, pp.
[19]
Zeolite Chemistry and Catalysis. Rabo, J. A., Ed.; Amer; Chemical
Society: Washington; , 1976.
[20]
Li, Y.; Wang, T.; Wu, C.; Li, H.; Qin, X.; Tsubaki, N. Gasoline-range hydrocarbon synthesis over Co/SiO2/HZSM-5 catalyst with CO2-containing syngas. Fuel Process. Technol., 2010, 91, 388-395. Bouchy, C., Hastoy, G., Guillon, E., Martens, J.A. Fischer-Tropsch Waxes Upgrading via Hydrocracking and Selective Hydroisomerization. Oil Gas Sci. Technol., 2009, 64, 91-96. Botes, F.G., Böhringer, W. The addition of HZSM-5 to the Fischer-Tropsch process for improved gasoline production. Appl. Catal., 2004, A267, 217-223.
[31]
Yang, G.; He, J.; Yoneyama, Y.; Tan, Y.; Han, Y.; Tsubaki, N. Preparation, characterization and reaction performance of H-ZSM-5/cobalt/silica capsule catalysts with different sizes for direct synthesis of isoparaffins. Appl. Catal., 2007, A329, 99-106. Yang, G., He, J., Zhang, Y., Yoneyama, Y., Tan, Y., Han, Y., Vitidsant, Th., Tsubaki, N. Design and Modification of Zeolite Capsule Catalyst, A Confined Reaction Field, and its Application in One-Step Isoparaffin Synthesis from Syngas. Energy Fuels, 2008, 22, 1463-1468. Jin, Yu., Yang, R., Mori, Y., Sun, J., Taguchi, A., Yoneyama, Y., Abe, T., Tsubaki, N. Preparation and performance of Co based capsule catalyst with the zeolite shell sputtered by Pd for direct isoparaffin synthesis from syngas. Appl. Catal., 2013, A456, 75-81.
[32]
Kang, S.H.; Ryu, J.H.; Kim, J.H.; Prasad, P.S.S.; Bae, J.W.; Cheon, J.Y.; Jun, K.W. ZSM-5 Supported Cobalt Catalyst for the Direct Production of Gasoline Range Hydrocarbons by Fischer-Tropsch Synthesis. Catal. Lett., 2011, 141, 1464-1469. den Breejen, J.P., Radstake, P.B., Bezemer, G.L., Bitter, J.H., Froseth, V., Holmen, A., de Jong, K.P. On the Origin of the Cobalt Particle Size Effects in Fischer-Tropsch Catalysis. J. Am. Chem. Soc., 2009, 131, 7197-7204.
[33]
Espinosa, G.; Dominguez, J.M.; Morales-Pacheco, P.; Tobon, A.; Aguilar, M.; Benitez, J. Catalytic behavior of Co/(Nanoβ-Zeolite) bifunctional catalysts for Fischer-Tropsch reactions. Catal. Today, 2011, 166, 47-52. Pereira, A.L.C., Gonzalez-Carballo, J.M., Perez-Alonso, F.J., Rojas, S., Fierro, J.L.G., do Carmo Rangel, M. Effect of the Mesostructuration of the Beta Zeolite Support on the Properties of Cobalt Catalysts for Fischer-Tropsch Synthesis. Top. Catal., 2011, 54, 179-185.
[38]
Mordkovich, V.Z.; Mitberg, E.B.; Ermolaev, V.S.; Sineva, L.V.; Solomonik, I.G.; Asalieva, E.Yu.; Ermolaev, I.S. Advanced Catalytic
Science and Technology Proceedings of The Seventh Tokyo
Conference (TOCAT7), Kyoto, Japan2014 1-6June;, p. 40..
[39]
Subiranas, A.; Schaub, G. Combining Fischer-Tropsch Synthesis (FTS) and Hydrocarbon Reactions in one Reactor. Int. J. Chem. React. Eng., 2009, 7, A31-A36.
[41]
Khatkova, E.Yu.; Sineva, L.V.; Mordkovich, V.Z. Zeolite Conference Proceedings of The 17th International ConferenceMoscow, Russia2013.7-12June;, p. 144.
[42]
Breck, D.W., Ed.; Zeolite molecular sieves: structure, chemistry and use; Wiley: New York, 1974.
[44]
Loewenstein, W. The distribution of aluminum in the tetrahedra of silicates and aluminates. Am. Mineral., 1954, 39, 92-100.
[46]
Kubasov, A.A. Zeolites — boiling stones. Sorosovsky Edu. J., 1998, 7, 70-74. [in Russian]
[48]
Breck, D.W., Ed.; Zeolite Molecular Sieves; R.E. Krieger Pub. Co.: Florida, 1984.
[49]
Jacobs, W.P.J.H.; Jobic, H.; van Wolput, J.H.M.C.; van Santen, R.A. Fourier transform infrared and inelastic neutron scattering study of HY zeolites. Zeolites, 1992, 12, 315-322. Paze, C., Bordiga, S., Lamberti, C., Salvalaggio, M., Zecchina, A., Bellussi, G. Acidic Properties of H−β Zeolite As Probed by Bases with Proton Affinity in the 118−204 kcal mol-1 Range: A FTIR Investigation. J. Phys. Chem., 1997, B101, 4740-4749.
[51]
Huang, J.; Jiang, Y.; Ramana, V.; Marthala, R.; Hunger, M. Characterization and acidic properties of aluminum-exchanged zeolites X and Y. J. Phys. Chem., 2008, C112, 3811-3817.
[55]
Korobitsyna, L.L. Synthesis, acid and catalytic properties of high-silica zeolites of the ZSM type in hydrocarbon production processes., PhD Thesis., Tomsk Polytechnic University: Tomsk, Russia,
1998. (in Russian).
[56]
Senchenya, I.N. The nature of Lewis acid sites in oxide and zeolite
catalysts and their role in heterogeneous acid catalysis, PhD Thesis.,
N.D. Zelinsky Institute of Organic Chemistry of Russian
Academy of Sciences Moscow, Russia. 1996.
[58]
Fan, Y.; Bao, X.; Lin, X.; Shi, G.; Liu, H. Acidity adjustment of HZSM-5 zeolites by dealumination and realumination with steaming and citric acid treatments. J. Phys. Chem., 2006, B110, 15411-15415. Niwa, M., Katada, N. New Method for the Temperature‐Programmed Desorption (TPD) of Ammonia Experiment for Characterization of Zeolite Acidity. A Review. Chem. Rec., 2013, 13, 432-443.
[60]
Klyachko, A.L.; Mishin, I.V. Regulation of catalytic, acidic and structural properties of zeolites by changing the composition of the carcass. Neftekhimia, 1990, 30, 339-343 (in Russian). Camiloti, A.M., Jahn, S.L., Velasco, N.D., Moura, L.F., Cardoso, D. Acidity of Beta zeolite determined by TPD of ammonia and ethylbenzene disproportionation. Appl. Catal., 1999, A182, 107-112.
[64]
Rahimi, N.; Karimzadeh, R. Catalytic cracking of hydrocarbons over modified ZSM-5 zeolites to produce light olefins: A review. Appl. Catal., 2011, A398, 1-15.
[71]
Narbeshuber, T.F.; Brait, A.; Seshan, K.; Lercher, J.A. The influence of extraframework aluminum on H-FAU catalyzed cracking of light alkanes. Appl. Catal., 1996, A146, 119-124. Brait, A., Koopmans, A., Weinstabe, H., Ecker, A., Seshan, K., Lercher, J.A. Hexadecane Conversion in the Evaluation of Commercial Fluid Catalytic Cracking Catalysts. Ind. Eng. Chem. Res., 1998, 37, 873-878.
[72]
McVicker, G.B.; Kramer, G.M.; Ziemiak, J.J. Conversion of isobutane over solid acids — A sensitive mechanistic probe reaction. J. Catal., 1983, 83, 286-291. Mikhailov, M.N., Chuvylkin, N.D., Mishin, I.V., Kustov, L.M. On the possibility of the detachment of hydrogen as a result of electron capture by a Bronsted center on zeolites. Russ. J. Phys. Chem., 2009, A83, 752-758.
[76]
Kazansky, V.B. Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons. Catal. Today., 1999, 51, 419-426. Kissin, Y.V. Primary Products in Hydrocarbon Cracking over Solid Acidic Catalysts under Very Mild Conditions: Relation to Cracking Mechanism. J. Catal., 1998, 180, 101-107.
[79]
Sievers, C.; Onda, A.; Olindo, R.; Lercher, J.A. Adsorption and Polarization of Branched Alkanes on H−LaX. J. Phys. Chem., 2007, C111, 5454-5461.
[80]
Eder, F.; Lercher, J.A. Alkane sorption in molecular sieves: The contribution of ordering, intermolecular interactions, and sorption on Brønsted acid sites. Zeolites, 1997, 18, 75-82. Pieterse, J.A.Z., Veefkind-Reyes, S., Seshan, K., Lercher, J.A.J. Sorption and Ordering of Dibranched Alkanes on Medium-Pore Zeolites Ferrierite and TON. Phys. Chem., 2000, B104, 5715-5721. Denayer, J.F., Souverijns, W., Jacobs, P.A., Martens, J.A., Baron, G.V. High-Temperature Low-Pressure Adsorption of Branched C5−C8 Alkanes on Zeolite Beta, ZSM-5, ZSM-22, Zeolite Y, and Mordenite. J. Phys. Chem., 1998, B102, 4588-4595.
[85]
Trombetta, M.; Busca, G.; Lenarda, M.; Storaro, L.; Pavan, M. An investigation of the surface acidity of mesoporous Al-containing MCM-41 and of the external surface of ferrierite through pivalonitrile adsorption. Appl. Catal., 1999, A182, 225-233. Gabrienko, A.A., Danilova, I.G., Arzumanov, S.S., Toktarev, A.V., Freude, D., Stepanov, A.G. Strong acidity of silanol groups of zeolite beta: Evidence from the studies by IR spectroscopy of adsorbed CO and 1H MAS NMR. Microp. Mesop. Mater, 2010, 131, 210-216.
[92]
Derouane, E.G.; Andre, J-M.; Lucas, A.A. Surface curvature effects in physisorption and catalysis by microporous solids and molecular sieves. J. Catal., 1988, 110, 58-64. Titiloye, J.O., Parker, S.C., Stone, F.S., Catlow, C.R.A. Simulation studies of the structure and energetics of sorbed molecules in high-silica zeolites. 1. Hydrocarbons. J. Phys. Chem., 1991, 95, 4038-4043.
[97]
Kuznetsov, A.M. Adsorption of water on metal surfaces. Sorosovsky Edu. J., 2000, 6, 45-49.
[101]
Stepanov, N.F.; Kubasov, A.A.; Tikhii, Ya.V. Simple molecules on a zeolite acceptor center: A quantum-chemical approach. Russ. J. Phys. Chem., 2007, A81, 1365-1370. Domracheva, T.M., Novakovskaya, Yu.V., Kubasov, A.A. Stepanov, N.F. An ab initio model of simplest water-zeolite adsorption complexes: mobile proton formation. Russ. J. Phys. Chem, 1999, A73, 1115-1121.
[117]
Wang, B. Zeolite deactivation during hydrocarbon reactions: characterisation of coke precursors and acidity, product distribution., PhD Thesis, University College London: Chemical Engineering,
London. 2007.
[121]
Kiselev, A.V.; Lopatkin, A.A.; Shulga, A.A. Molecular statistical calculation of gas adsorption by silicalite. Zeolites, 1985, 5, 261-266. Ching, C.B., Ruthven, D.M. Sorption and diffusion of some amino acids in KX zeolite crystals. Chem. Eng. J., 1989, 40, B1-B7.
[130]
Cailliez, F.; Stirnemann, G.; Boutin, A.; Demachy, I.; Fuchs, A.H. Does water condense in hydrophobic cavities? A molecular simulation study of hydration in heterogeneous nanopores. J. Phys. Chem., 2008, C112, 10435-10442.
[148]
Asalieva, E.Yu.; Sineva, L.V.; Zhukova, E.A.; Mordkovich, V.Z.; Bulychev, B.M. Phase composition, physicochemical and catalytic properties of cobalt-aluminum-zeolite systems. Russ. Chem. Bulletin. Intern. Edition, 2015, 64, 2371-2376.