Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

The Obligatory Role of the Acetylcholine-Induced Endothelium-Dependent Contraction in Hypertension: Can Arachidonic Acid Resolve this Inflammation?

Author(s): Jonnelle M. Edwards, Cameron G. McCarthy and Camilla F. Wenceslau*

Volume 26, Issue 30, 2020

Page: [3723 - 3732] Pages: 10

DOI: 10.2174/1381612826666200417150121

Price: $65

Abstract

The endothelium produces many substances that can regulate vascular tone. Acetylcholine is a widely used pharmacological tool to assess endothelial function. In general, acetylcholine binds to G-protein coupled muscarinic receptors that mediate a transient elevation in intracellular, free calcium. This intracellular rise in calcium is responsible for triggering several cellular responses, including the synthesis of nitric oxide, endothelium- derived hyperpolarizing factor, and eicosanoids derived from arachidonic acid. Endothelial arachidonic acid metabolism is also an important signaling pathway for mediating inflammation. Therefore, in conditions with sustained and excessive inflammation such as hypertension, arachidonic acid serves as a substrate for the synthesis of several vasoconstrictive metabolites, predominantly via the cyclooxygenase and lipoxygenase enzymes. Cyclooxygenase and lipoxygenase products can then activate G-protein coupled receptors expressed on vascular smooth muscle cells to causes contractile responses. As a result, acetylcholine-induced contraction due to arachidonic acid is a commonly observed feature of endothelial dysfunction and vascular inflammation in hypertension. In this review, we will critically analyze the literature supporting this concept, as well as address the potential underlying mechanisms, including the possibility that arachidonic acid signaling is diverted away from the synthesis of pro-resolving metabolites in conditions such as hypertension.

Keywords: Endothelium, arachidonic acid metabolites, vascular function, acetylcholine, hypertension, G-protein.

[1]
Serhan CN. Novel pro-resolving lipid mediators in inflammation are leads for resolution physiology. Nature 2014; 510(7503): 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[2]
Barton M. The discovery of endothelium-dependent contraction: the legacy of Paul M. Vanhoutte. Pharmacol Res 2011; 63(6): 455-62.
[http://dx.doi.org/10.1016/j.phrs.2011.02.013] [PMID: 21385610]
[3]
Radu BM, Osculati AMM, Suku E, et al. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci Rep 2017; 7(1): 5083.
[http://dx.doi.org/10.1038/s41598-017-05384-z] [PMID: 28698560]
[4]
Lückhoff A, Busse R. Calcium influx into endothelial cells and formation of endothelium-derived relaxing factor is controlled by the membrane potential. Pflugers Arch 1990; 416(3): 305-11.
[http://dx.doi.org/10.1007/BF00392067] [PMID: 2381766]
[5]
Randriamampita C, Tsien RY. Emptying of intracellular Ca2+ stores releases a novel small messenger that stimulates Ca2+ influx. Nature 1993; 364(6440): 809-14.
[http://dx.doi.org/10.1038/364809a0] [PMID: 8355806]
[6]
Tran QK, Ohashi K, Watanabe H. Calcium signalling in endothelial cells. Cardiovasc Res 2000; 48(1): 13-22.
[http://dx.doi.org/10.1016/s0008-6363(00)00172-3]
[7]
Lückhoff A, Pohl U, Mülsch A, Busse R. Differential role of extra and intracellular calcium in the release of EDRF and prostacyclin from cultured endothelial cells. Br J Pharmacol 1988; 95(1): 189-96.
[http://dx.doi.org/10.1111/j.1476-5381.1988.tb16564.x]
[8]
Trepakova ES, Csutora P, Hunton DL, Marchase RB, Cohen RA, Bolotina VM. Calcium influx factor directly activates store operated cation channels in vascular smooth muscle cells. J Biol Chem 2000; 275(34): 26158-63.
[http://dx.doi.org/10.1074/jbc.M004666200] [PMID: 10851243]
[9]
Smani T, Zakharov SI, Csutora P, Leno E, Trepakova ES, Bolotina VM. A novel mechanism for the store-operated calcium influx pathway. Nat Cell Biol 2004; 6(2): 113-20.
[http://dx.doi.org/10.1038/ncb1089] [PMID: 14730314]
[10]
Sandoo A, van Zanten JJ, Metsios GS, Carroll D, Kitas GD. The endothelium and its role in regulating vascular tone. Open Cardiovasc Med J 2010; 4: 302-12.
[http://dx.doi.org/10.2174/1874192401004010302] [PMID: 21339899]
[11]
Félétou M. The Endothelium: Part 1: Multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. San Rafael (CA): Morgan & Claypool Life Sciences 2011. Chapter 4, Endothelium-Dependent Regulation of Vascular Tone Available from:. https://www.ncbi.nlm.nih.gov/books/NBK57147/
[12]
De Mey JG, Vanhoutte PM. Heterogeneous behavior of the canine arterial and venous wall. Importance of the endothelium. Circ Res 1982; 51(4): 439-47.
[http://dx.doi.org/10.1161/01.RES.51.4.439] [PMID: 7127680]
[13]
Katusic ZS, Shepherd JT, Vanhoutte PM. Endothelium-dependent contraction to stretch in canine basilar arteries. Am J Physiol 1987; 252(3 Pt 2): H671-3.
[PMID: 3103472]
[14]
Lüscher TF, Vanhoutte PM. Endothelium-dependent contractions to acetylcholine in the aorta of the spontaneously hypertensive rat. Hypertension 1986; 8(4): 344-8.
[http://dx.doi.org/10.1161/01.HYP.8.4.344] [PMID: 2870025]
[15]
Vanhoutte PM, Feletou M, Taddei S. Endothelium-dependent contractions in hypertension. Br J Pharmacol 2005; 144(4): 449-58.
[http://dx.doi.org/10.1038/sj.bjp.0706042] [PMID: 15655530]
[16]
Zhou Y, Varadharaj S, Zhao X, Parinandi N, Flavahan NA, Zweier JL. Acetylcholine causes endothelium-dependent contraction of mouse arteries. Am J Physiol Heart Circ Physiol 2005; 289(3): H1027-32.
[http://dx.doi.org/10.1152/ajpheart.00226.2005]
[17]
Svetkey LP, McKeown SP, Wilson AF. Heritability of salt sensitivity in black Americans. Hypertension 1996; 28(5): 854-8.
[http://dx.doi.org/10.1161/01.HYP.28.5.854] [PMID: 8901834]
[18]
Rapp JP. Dahl salt-susceptible and salt-resistant rats. A review. Hypertension 1982; 4(6): 753-63.
[http://dx.doi.org/10.1161/01.HYP.4.6.753] [PMID: 6754600]
[19]
Wong SL, Leung FP, Lau CW, et al. Cyclooxygenase-2-derived prostaglandin F2alpha mediates endothelium-dependent contractions in the aortae of hamsters with increased impact during aging. Circ Res 2009; 104(2): 228-35.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.179770] [PMID: 19096033]
[20]
Rapoport RM, Williams SP. Role of prostaglandins in acetylcholine-induced contraction of aorta from spontaneously hypertensive and Wistar-Kyoto rats. Hypertension 1996; 28(1): 64-75.
[http://dx.doi.org/10.1161/01.HYP.28.1.64] [PMID: 8675266]
[21]
Zhou MS, Nishida Y, Chen QH, Kosaka H. Endothelium-derived contracting factor in carotid artery of hypertensive Dahl rats. Hypertension 1999; 34(1): 39-43.
[http://dx.doi.org/10.1161/01.HYP.34.1.39] [PMID: 10406821]
[22]
Zhou MS, Kosaka H, Tian RX, et al. L-Arginine improves endothelial function in renal artery of hypertensive Dahl rats. J Hypertens 2001; 19(3): 421-9.
[http://dx.doi.org/10.1097/00004872-200103000-00010] [PMID: 11288812]
[23]
Tesfamariam B, Brown ML, Deykin D, Cohen RA. Elevated glucose promotes generation of endothelium-derived vasoconstrictor prostanoids in rabbit aorta. J Clin Invest 1990; 85(3): 929-32.
[http://dx.doi.org/10.1172/JCI114521] [PMID: 2312734]
[24]
Dantas AP, Scivoletto R, Fortes ZB, Nigro D, Carvalho MH. Influence of female sex hormones on endothelium-derived vasoconstrictor prostanoid generation in microvessels of spontaneously hypertensive rats. Hypertension 1999; 34(4 Pt 2): 914-9.
[http://dx.doi.org/10.1161/01.HYP.34.4.914] [PMID: 10523384]
[25]
Tang EH, Vanhoutte PM. Prostanoids and reactive oxygen species: team players in endothelium-dependent contractions. Pharmacol Ther 2009; 122(2): 140-9.
[http://dx.doi.org/10.1016/j.pharmthera.2009.02.006] [PMID: 19285526]
[26]
Campbell WB, Fleming I. Epoxyeicosatrienoic acids and endothelium- dependent responses. Pflugers Arch 2010; 459(6): 881-95.
[http://dx.doi.org/10.1007/s00424-010-0804-6] [PMID: 20224870]
[27]
Lassègue B, Griendling KK. Reactive oxygen species in hypertension; An update. Am J Hypertens 2004; 17(9): 852-60.
[http://dx.doi.org/10.1016/j.amjhyper.2004.02.004] [PMID: 15363831]
[28]
Wong MS, Vanhoutte PM. COX-mediated endothelium-dependent contractions: from the past to recent discoveries. Acta Pharmacol Sin 2010; 31(9): 1095-102.
[http://dx.doi.org/10.1038/aps.2010.127] [PMID: 20711228]
[29]
Vanhoutte PM. Nitric oxide: from good to bad. Ann Vasc Dis 2018; 11(1): 41-51.
[http://dx.doi.org/10.3400/avd.ra.17-00134] [PMID: 29682106]
[30]
Jin L, Ying Z, Webb RC. Activation of Rho/Rho kinase signaling pathway by reactive oxygen species in rat aorta. Am J Physiol Heart Circ Physiol 2004; 287(4): H1495-500.
[http://dx.doi.org/10.1152/ajpheart.01006.2003] [PMID: 15371261]
[31]
Katusic ZS, Vanhoutte PM. Superoxide anion is an endothelium derived contracting factor. Am J Physiol 1989; 257(1 Pt 2): H33-7.
[PMID: 2546450]
[32]
Katusic ZS, Shepherd JT, Vanhoutte PM. Endothelium-dependent contractions to calcium ionophore A23187, arachidonic acid, and acetylcholine in canine basilar arteries. Stroke 1988; 19(4): 476-9.
[http://dx.doi.org/10.1161/01.STR.19.4.476] [PMID: 3129826]
[33]
Cosentino F, Sill JC, Katusić ZS. Role of superoxide anions in the mediation of endothelium-dependent contractions. Hypertension 1994; 23(2): 229-35.
[http://dx.doi.org/10.1161/01.HYP.23.2.229] [PMID: 8307634]
[34]
Wenceslau CF, Davel AP, Xavier FE, Rossoni LV. Long-term ouabain treatment impairs vascular function in resistance arteries. J Vasc Res 2011; 48(4): 316-26.
[http://dx.doi.org/10.1159/000322576] [PMID: 21273786]
[35]
Yang D, Félétou M, Boulanger CM, et al. Oxygen-derived free radicals mediate endothelium-dependent contractions to acetylcholine in aortas from spontaneously hypertensive rats. Br J Pharmacol 2002; 136(1): 104-10.
[http://dx.doi.org/10.1038/sj.bjp.0704669] [PMID: 11976274]
[36]
Félétou M, Huang Y, Vanhoutte PM. Endothelium-mediated control of vascular tone: COX-1 and COX-2 products. Br J Pharmacol 2011; 164(3): 894-912.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01276.x] [PMID: 21323907]
[37]
Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat 2011; 96(1-4): 27-36.
[http://dx.doi.org/10.1016/j.prostaglandins.2011.08.004] [PMID: 21864702]
[38]
Davidge ST. Prostaglandin H synthase and vascular function. Circ Res 2001; 89(8): 650-60.
[http://dx.doi.org/10.1161/hh2001.098351] [PMID: 11597987]
[39]
Smith WL, Song I. The enzymology of prostaglandin endoperoxide H synthases-1 and -2. Prostaglandins Other Lipid Mediat 2002; 68-69: 115-28.
[http://dx.doi.org/10.1016/S0090-6980(02)00025-4] [PMID: 12432913]
[40]
Doroudi R, Gan LM, Selin Sjögren L, Jern S. Effects of shear stress on eicosanoid gene expression and metabolite production in vascular endothelium as studied in a novel biomechanical perfusion model. Biochem Biophys Res Commun 2000; 269(1): 257-64.
[http://dx.doi.org/10.1006/bbrc.2000.2279] [PMID: 10694510]
[41]
Russell-Puleri S, Dela Paz NG, Adams D, et al. Fluid shear stress induces upregulation of COX-2 and PGI2 release in endothelial cells via a pathway involving PECAM-1, PI3K, FAK, and p38. Am J Physiol Heart Circ Physiol 2017; 312(3): H485-500.
[http://dx.doi.org/10.1152/ajpheart.00035.2016] [PMID: 28011582]
[42]
Chandrasekharan NV, Dai H, Roos KL, et al. COX-3, a cyclooxygenase- 1 variant inhibited by acetaminophen and other analgesic/ antipyretic drugs: cloning, structure, and expression. Proc Natl Acad Sci USA 2002; 99(21): 13926-31.
[http://dx.doi.org/10.1073/pnas.162468699] [PMID: 12242329]
[43]
Narumiya S, Sugimoto Y, Ushikubi F. Prostanoid receptors: structures, properties, and functions. Physiol Rev 1999; 79(4): 1193-226.
[http://dx.doi.org/10.1152/physrev.1999.79.4.1193] [PMID: 10508233]
[44]
Alfranca A, Iñiguez MA, Fresno M, Redondo JM. Prostanoid signal transduction and gene expression in the endothelium: role in cardiovascular diseases. Cardiovasc Res 2006; 70(3): 446-56.
[http://dx.doi.org/10.1016/j.cardiores.2005.12.020] [PMID: 16458868]
[45]
Simonet S, Descombes JJ, Vallez MO, Dubuffet T, Lavielle G, Verbeuren TJSS. 18886, a new thromboxane (TP)-receptor antagonist is the active isomer of S 18204 in all species, except in the guinea-pig. Adv Exp Med Biol 1997; 433: 173-6.
[http://dx.doi.org/10.1007/978-1-4899-1810-9_35] [PMID: 9561128]
[46]
Tang EH, Vanhoutte PM. Gene expression changes of prostanoid synthases in endothelial cells and prostanoid receptors in vascular smooth muscle cells caused by aging and hypertension. Physiol Genomics 2008; 32(3): 409-18.
[http://dx.doi.org/10.1152/physiolgenomics.00136.2007] [PMID: 18056786]
[47]
Koga T, Takata Y, Kobayashi K, Takishita S, Yamashita Y, Fujishima M. Age and hypertension promote endothelium-dependent contractions to acetylcholine in the aorta of the rat. Hypertension 1989; 14(5): 542-8.
[48]
Gluais P, Lonchampt M, Morrow JD, Vanhoutte PM, Feletou M. Acetylcholine-induced endothelium-dependent contractions in the SHR aorta: the Janus face of prostacyclin. Br J Pharmacol 2005; 146(6): 834-45.
[49]
Kato T, Iwama Y, Okumura K, Hashimoto H, Ito T, Satake T. Prostaglandin H2 may be the endothelium-derived contracting factor released by acetylcholine in the aorta of the rat. Hypertension 1990; 15(5): 475-81.
[http://dx.doi.org/10.1161/01.HYP.15.5.475] [PMID: 2332238]
[50]
Ge T, Hughes H, Junquero DC, Wu KK, Vanhoutte PM, Boulanger CM. Endothelium-dependent contractions are associated with both augmented expression of prostaglandin H synthase-1 and hypersensitivity to prostaglandin H2 in the SHR aorta. Circ Res 1995; 76(6): 1003-10.
[http://dx.doi.org/10.1161/01.RES.76.6.1003] [PMID: 7758154]
[51]
Gluais P, Paysant J, Badier-Commander C, Verbeuren T, Vanhoutte PM, Félétou M. In SHR aorta, calcium ionophore A-23187 releases prostacyclin and thromboxane A2 as endothelium-derived contracting factors. Am J Physiol Heart Circ Physiol 2006; 291(5): H2255-64.
[http://dx.doi.org/10.1152/ajpheart.01115.2005] [PMID: 16798820]
[52]
Gluais P, Vanhoutte PM, Félétou M. Mechanisms underlying ATP induced endothelium-dependent contractions in the SHR aorta. Eur J Pharmacol 2007; 556(1-3): 107-14.
[http://dx.doi.org/10.1016/j.ejphar.2006.10.050] [PMID: 17126320]
[53]
Iwama Y, Kato T, Muramatsu M, et al. Correlation with blood pressure of the acetylcholine-induced endothelium-derived contracting factor in the rat aorta. Hypertension 1992; 19(4): 326-32.
[http://dx.doi.org/10.1161/01.HYP.19.4.326] [PMID: 1555864]
[54]
Xavier FE, Aras-López R, Arroyo-Villa I, et al. Aldosterone induces endothelial dysfunction in resistance arteries from normotensive and hypertensive rats by increasing thromboxane A2 and prostacyclin. Br J Pharmacol 2008; 154(6): 1225-35.
[http://dx.doi.org/10.1038/bjp.2008.200] [PMID: 18500359]
[55]
Mashima R, Okuyama T. The role of lipoxygenases in pathophysiology; new insights and future perspectives. Redox Biol 2015; 6: 297-310.
[http://dx.doi.org/10.1016/j.redox.2015.08.006] [PMID: 26298204]
[56]
Izzo AA, Mitchell JA. Eicosanoid turnover (version 2019.5) in the IUPHAR/BPS Guide to Pharmacology Database. GtoPdb CITE 2019; 2019(5)
[57]
Stanke-Labesque F, Devillier P, Bedouch P, Cracowski JL, Chavanon O, Bessard G. Angiotensin II-induced contractions in human internal mammary artery: effects of cyclooxygenase and lipoxygenase inhibition. Cardiovasc Res 2000; 47(2): 376-83.
[http://dx.doi.org/10.1016/S0008-6363(00)00112-7] [PMID: 10946074]
[58]
Stern N, Golub M, Nozawa K, et al. Selective inhibition of angiotensin II-mediated vasoconstriction by lipoxygenase blockade. Am J Physiol 1989; 257(2 Pt 2): H434-43.
[PMID: 2504056]
[59]
DelliPizzi A. Guan H, Tong X, Takizawa H, Nasjletti A. Lipoxygenase-dependent mechanisms in hypertension. Clin Exp Hypertens 2000; 22(2): 181-92.
[http://dx.doi.org/10.1081/CEH-100100071] [PMID: 10744358]
[60]
Lefebvre B, Caron F, Bessard G, Stanke-Labesque F. Effect of 5- lipoxygenase blockade on blood pressure and acetylcholine-evoked endothelium-dependent contraction in aorta from spontaneously hypertensive rats. J Hypertens 2006; 24(1): 85-93.
[http://dx.doi.org/10.1097/01.hjh.0000198027.76729.b8] [PMID: 16331105]
[61]
Kowal-Bielecka O, Kowal K, Distler O, Gay S. Mechanisms of Disease: leukotrienes and lipoxins in scleroderma lung disease-- insights and potential therapeutic implications. Nat Clin Pract Rheumatol 2007; 3(1): 43-51.
[http://dx.doi.org/10.1038/ncprheum0375] [PMID: 17203008]
[62]
Serhan CN, Hamberg M, Samuelsson B. Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes. Proc Natl Acad Sci USA 1984; 81(17): 5335-9.
[http://dx.doi.org/10.1073/pnas.81.17.5335] [PMID: 6089195]
[63]
Kantarci A, Van Dyke TE. Lipoxins in chronic inflammation. Crit Rev Oral Biol Med 2003; 14(1): 4-12.
[http://dx.doi.org/10.1177/154411130301400102] [PMID: 12764016]
[64]
Wenceslau CF, McCarthy CG, Szasz T, Webb RC. Lipoxin A4 mediates aortic contraction via RHOA/RHO kinase, endothelial dysfunction and reactive oxygen species. J Vasc Res 2014; 51(6): 407-17.
[http://dx.doi.org/10.1159/000371490] [PMID: 25612650]
[65]
Wenceslau CF, McCarthy CG, Szasz T, Calmasini FB, Mamenko M, Webb RC. Formyl peptide receptor-1 activation exerts a critical role for the dynamic plasticity of arteries via actin polymerization. Pharmacol Res 2019; 141: 276-90.
[http://dx.doi.org/10.1016/j.phrs.2019.01.015] [PMID: 30639374]
[66]
Node K, Huo Y, Ruan X, et al. Anti-inflammatory properties of cytochrome P450 epoxygenase-derived eicosanoids. Science 1999; 285(5431): 1276-9.
[http://dx.doi.org/10.1126/science.285.5431.1276] [PMID: 10455056]
[67]
Imig JD. Epoxyeicosatrienoic acids and 20-hydroxyeicosatetraenoic acid on endothelial and vascular function. Adv Pharmacol 2016; 77: 105-41.
[http://dx.doi.org/10.1016/bs.apha.2016.04.003] [PMID: 27451096]
[68]
Fleming I. Cytochrome p450 and vascular homeostasis. Circ Res 2001; 89(9): 753-62.
[http://dx.doi.org/10.1161/hh2101.099268] [PMID: 11679404]
[69]
Sacerdoti D, Escalante B, Abraham NG, McGiff JC, Levere RD, Schwartzman ML. Treatment with tin prevents the development of hypertension in spontaneously hypertensive rats. Science 1989; 243(4889): 388-90.
[http://dx.doi.org/10.1126/science.2492116] [PMID: 2492116]
[70]
Fan F, Muroya Y, Roman RJ. Cytochrome P450 eicosanoids in hypertension and renal disease. Curr Opin Nephrol Hypertens 2015; 24(1): 37-46.
[http://dx.doi.org/10.1097/MNH.0000000000000088] [PMID: 25427230]
[71]
Wu CC, Gupta T, Garcia V, Ding Y, Schwartzman ML. 20-HETE and blood pressure regulation: clinical implications. Cardiol Rev 2014; 22(1): 1-12.
[http://dx.doi.org/10.1097/CRD.0b013e3182961659] [PMID: 23584425]
[72]
Fan F, Roman RJ. Effect of cytochrome P450 metabolites of arachidonic acid in nephrology. J Am Soc Nephrol 2017; 28(10): 2845-55.
[http://dx.doi.org/10.1681/ASN.2017030252] [PMID: 28701518]
[73]
Chen G, Cheung DW. Modulation of endothelium-dependent hyperpolarization and relaxation to acetylcholine in rat mesenteric artery by cytochrome P450 enzyme activity. Circ Res 1996; 79(4): 827-33.
[http://dx.doi.org/10.1161/01.RES.79.4.827] [PMID: 8831507]
[74]
Freire MO, Van Dyke TE. Natural resolution of inflammation. Periodontol 2000 2013; 63(1): 149-64.
[http://dx.doi.org/10.1111/prd.12034] [PMID: 23931059]
[75]
Serhan CN, Chiang N. Lipid-derived mediators in endogenous anti inflammation and resolution: lipoxins and aspirin-triggered 15-epilipoxins. ScientificWorldJournal 2002; 2: 169-204.
[http://dx.doi.org/10.1100/tsw.2002.81] [PMID: 12806051]
[76]
Serhan CN, Chiang N, Dalli J, Levy BD. Lipid mediators in the resolution of inflammation. Cold Spring Harb Perspect Biol 2014; 7(2): a016311.
[http://dx.doi.org/10.1101/cshperspect.a016311] [PMID: 25359497]
[77]
Chiang N, Serhan CN, Dahlén SE, et al. The lipoxin receptor ALX: potent ligand-specific and stereoselective actions in vivo. Pharmacol Rev 2006; 58(3): 463-87.
[http://dx.doi.org/10.1124/pr.58.3.4] [PMID: 16968948]
[78]
von der Weid PY, Hollenberg MD, Fiorucci S, Wallace JL. Aspirin triggered, cyclooxygenase-2-dependent lipoxin synthesis modulates vascular tone. Circulation 2004; 110(10): 1320-5.
[http://dx.doi.org/10.1161/01.CIR.0000140985.89766.CB] [PMID: 15326064]
[79]
Feuerstein G, Siren AL. Mesenteric vascular responses to i.v. administration of lipoxin A4 and lipoxin B4 in the conscious rat. FEBS Lett 1988; 232(1): 51-5.
[http://dx.doi.org/10.1016/0014-5793(88)80384-3] [PMID: 3366247]
[80]
Nascimento-Silva V, Arruda MA, Barja-Fidalgo C, Fierro IM. Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial cells: a novel antioxidative mechanism. Thromb Haemost 2007; 97(1): 88-98.
[http://dx.doi.org/10.1160/TH06-06-0315] [PMID: 17200775]
[81]
Wu Y, Zhai H, Wang Y, et al. Aspirin-triggered lipoxin A4 attenuates lipopolysaccharide-induced intracellular ROS in BV2 microglia cells by inhibiting the function of NADPH oxidase. Neurochem Res 2012; 37(8): 1690-6.
[http://dx.doi.org/10.1007/s11064-012-0776-3] [PMID: 22552474]
[82]
Perucci LO, Santos PC, Ribeiro LS, et al. Lipoxin A4 is increased in the plasma of preeclamptic women. Am J Hypertens 2016; 29(10): 1179-85.
[http://dx.doi.org/10.1093/ajh/hpw053] [PMID: 27179254]
[83]
Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K. Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 2000; 192(8): 1197-204.
[http://dx.doi.org/10.1084/jem.192.8.1197] [PMID: 11034610]
[84]
Serhan CN, Levy BD. Resolvins in inflammation: emergence of the pro-resolving superfamily of mediators. J Clin Invest 2018; 128(7): 2657-69.
[http://dx.doi.org/10.1172/JCI97943] [PMID: 29757195]
[85]
Kohli P, Levy BD. Resolvins and protectins: mediating solutions to inflammation. Br J Pharmacol 2009; 158(4): 960-71.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00290.x] [PMID: 19594757]
[86]
Arita M, Yoshida M, Hong S, et al. Resolvin E1, an endogenous lipid mediator derived from omega-3 eicosapentaenoic acid, protects against 2,4,6-trinitrobenzene sulfonic acid-induced colitis. Proc Natl Acad Sci USA 2005; 102(21): 7671-6.
[http://dx.doi.org/10.1073/pnas.0409271102] [PMID: 15890784]
[87]
Gronert K, Kantarci A, Levy BD, et al. A molecular defect in intracellular lipid signaling in human neutrophils in localized aggressive periodontal tissue damage. J Immunol 2004; 172(3): 1856-61.
[http://dx.doi.org/10.4049/jimmunol.172.3.1856] [PMID: 14734770]
[88]
Schwab JM, Chiang N, Arita M, Serhan CN. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 2007; 447(7146): 869-74.
[http://dx.doi.org/10.1038/nature05877] [PMID: 17568749]
[89]
Arita M, Bianchini F, Aliberti J, et al. Stereochemical assignment, antiinflammatory properties, and receptor for the omega-3 lipid mediator resolvin E1. J Exp Med 2005; 201(5): 713-22.
[http://dx.doi.org/10.1084/jem.20042031] [PMID: 15753205]
[90]
Haworth O, Cernadas M, Yang R, Serhan CN, Levy BD. Resolvin E1 regulates interleukin 23, interferon-gamma and lipoxin A4 to promote the resolution of allergic airway inflammation. Nat Immunol 2008; 9(8): 873-9.
[http://dx.doi.org/10.1038/ni.1627] [PMID: 18568027]
[91]
Dona M, Fredman G, Schwab JM, et al. Resolvin E1, an EPA-derived mediator in whole blood, selectively counterregulates leukocytes and platelets. Blood 2008; 112(3): 848-55.
[http://dx.doi.org/10.1182/blood-2007-11-122598] [PMID: 18480426]
[92]
Rathod KS, Kapil V, Velmurugan S, et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest 2017; 127(1): 169-82.
[http://dx.doi.org/10.1172/JCI89429] [PMID: 27893465]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy