Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Neuropeptide Y Induces Cardiomyocyte Hypertrophy via Attenuating miR-29a-3p in Neonatal Rat Cardiomyocytes

Author(s): Yuxin Xie, Jun Hu, Xincai Zhang, Chunxiao Li, Yuanyi Zuo, Shining Xie, Zhixiang Zhang and Shaohua Zhu*

Volume 27, Issue 9, 2020

Page: [878 - 887] Pages: 10

DOI: 10.2174/0929866527666200416144459

Price: $65

Abstract

Background: Neuropeptide Y (NPY) has been well known to induce Cardiomyocyte Hypertrophy (CH), which is possibly caused by disruption of cardiac cell energy balance. As mitochondria is losely related to energy metabolism, in this study, we investigated the changes in mitochondrial Dynamics-related protein (Drp1) expression under the action of NPY. miRNA-29a, a endogenous noncoding small molecule RNA which is involved in many cardiac diseases, by using a bioinformatics tool, we found a potential binding site of miRNA-29a on the Drp1 mRNA, and suggesting that miRNA-29a might play a regulatory role.

Objective: To investigate the role of miR-29a-3p in the process of NPY-induced CH, and further explore it’s predicted relationship with Drp1.

Methods: The expression levels of miR-29a-3p and Atrial Natriuretic Peptide (ANP) were performed by the method of fluorescence quantitative PCR, in addition, expression of Drp1 in treated and control groups were performed by western blot analysis.]

Results: We found NPY leads to the CH and up-regulation of ANP expression levels. We also found significant up-regulation of Drp1 expression and down-regulation of miR-29a-3p expression in NPY-treated cells. The decrease in miR-29a-3p expression may lead the increase expression level of Drp1. We found that the expression of ANP increased after NPY treatment. When Drp1 protein was silenced, the high expression of ANP was inhibited.

Conclusion: In this study, we found up-regulation of Drp1 in cells treated with NPY. Drp1 mRNA is a predicted target for miR-29a-3p, and the expression of Drp1 was attenuated by miR-29a-3p. Therefore, NPY leads to down-regulation of miR-29a-3p expression, up-regulation of Drp1 expression, and NPY leads to CH. Correspondingly, miR-29a-3p can counteract the effects of NPY. This may be a new way, which could be used in diagnosis and treatment plan for CH.

Keywords: NPY, dynamics-related protein, mitochondrial fission, miR-29a-3p, cardiac hypertrophy, Drp1.

Graphical Abstract

[1]
van der Bruggen, C.E.E.; Tedford, R.J.; Handoko, M.L.; van der Velden, J.; de Man, F.S. RV pressure overload: From hypertrophy to failure. Cardiovasc. Res., 2017, 113(12), 1423-1432.
[http://dx.doi.org/10.1093/cvr/cvx145] [PMID: 28957530]
[2]
Raman, V.K.; Lee, Y.A.; Lindpaintner, K. The cardiac renin-angiotensin-aldosterone system and hypertensive cardiac hypertrophy. Am. J. Cardiol., 1995, 76(13), 18D-23D.
[http://dx.doi.org/10.1016/S0002-9149(99)80487-1] [PMID: 7495212]
[3]
Allen, A.R.; Kelso, E.J.; Bell, D.; Zhao, Y.; Dickson, P.; McDermott, B.J. Modulation of contractile function through neuropeptide Y receptors during development of cardiomyocyte hypertrophy. J. Pharmacol. Exp. Ther., 2006, 319(3), 1286-1296.
[http://dx.doi.org/10.1124/jpet.106.110445] [PMID: 16973886]
[4]
Li, X.Y.; Chen, M.S.; Huang, S.H.; Dong, Q.; Li, Y.H.; Zhang, S.; Liu, Z.X. Role of Ca2+/calmodulin-dependent calcineurin signaling pathway in neuropeptide Y-induced cardiac hypertrophy in rats. Nan Fang Yi Ke Da Xue Xue Bao, 2008, 28(12), 2139-2141.
[PMID: 19114340]
[5]
Kourtesis, I.; Kasparov, S.; Verkade, P.; Teschemacher, A.G. Ultrastructural correlates of enhanced norepinephrine and neuropeptide Y cotransmission in the spontaneously hypertensive rat brain. ASN Neuro, 2015, 7(5), 1759091415610115.
[http://dx.doi.org/10.1177/1759091415610115] [PMID: 26514659]
[6]
Mattila, M.; Söderström, M.; Ailanen, L.; Savontaus, E.; Savontaus, M. The effects of neuropeptide Y overexpression on the mouse model of doxorubicin-induced cardiotoxicity. Cardiovasc. Toxicol., 2020, 20(3), 328-338.
[http://dx.doi.org/10.1007/s12012-019-09557-2] [PMID: 31811615]
[7]
Kalla, M.; Hao, G.; Tapoulal, N.; Tomek, J.; Liu, K.; Woodward, L.; Dall’Armellina, E.; Banning, A.P.; Choudhury, R.P.; Neubauer, S.; Kharbanda, R.K.; Channon, K.M.; Ajijola, O.A.; Shivkumar, K.; Paterson, D.J.; Herring, N.; Herring, N. The cardiac sympathetic co-transmitter neuropeptide Y is pro-arrhythmic following ST-elevation myocardial infarction despite beta-blockade. Eur. Heart J., 2020, 41(23), 2168-2179.
[http://dx.doi.org/10.1093/eurheartj/ehz852] [PMID: 31834357]
[8]
Luo, G.; Xu, X.; Guo, W.; Luo, C.; Wang, H.; Meng, X.; Zhu, S.; Wei, Y. Neuropeptide Y damages the integrity of mitochondrial structure and disrupts energy metabolism in cultured neonatal rat cardiomyocytes. Peptides, 2015, 71, 162-169.
[http://dx.doi.org/10.1016/j.peptides.2015.07.001] [PMID: 26188175]
[9]
Singh Nee Priyadarshini, P.; Lal, B. Seasonal variations in cellular expression of neuropeptide Y (NPY) in testis of the catfish, Clarias batrachus and its potential role in regulation of steroidogenesis. Peptides, 2018, 103, 19-25.
[http://dx.doi.org/10.1016/j.peptides.2018.03.008] [PMID: 29548972]
[10]
Silveira-Villarroel, H.; Bompolaki, M.; Mackay, J.P.; Miranda Tapia, A.P.; Michaelson, S.D.; Leitermann, R.J.; Marr, R.A.; Urban, J.H.; Colmers, W.F. NPY induces stress resilience via downregulation of Ih in principal neurons of rat basolateral amygdala. J. Neurosci., 2018, 38(19), 4505-4520.
[http://dx.doi.org/10.1523/JNEUROSCI.3528-17.2018] [PMID: 29650696]
[11]
Vall-Sagarra, A.; Litau, S.; Decristoforo, C.; Wängler, B.; Schirrmacher, R.; Fricker, G.; Wängler, C. Design, synthesis, in vitro, and initial in vivo evaluation of heterobivalent peptidic ligands targeting both NPY(Y1)- and GRP-receptors-an improvement for breast cancer imaging? Pharmaceuticals (Basel), 2018, 11(3), E65.
[http://dx.doi.org/10.3390/ph11030065] [PMID: 29973529]
[12]
Fukasaka, Y.; Nambu, H.; Tanioka, H.; Obata, A.; Tonomura, M.; Okuno, T.; Yukioka, H. An insurmountable NPY Y5 receptor antagonist exhibits superior anti-obesity effects in high-fat diet-induced obese mice. Neuropeptides, 2018, 70, 55-63.
[http://dx.doi.org/10.1016/j.npep.2018.05.006] [PMID: 29801968]
[13]
Callanan, E.Y.; Lee, E.W.; Tilan, J.U.; Winaver, J.; Haramati, A.; Mulroney, S.E.; Zukowska, Z. Renal and cardiac neuropeptide Y and NPY receptors in a rat model of congestive heart failure. Am. J. Physiol. Renal Physiol., 2007, 293(6), F1811-F1817.
[http://dx.doi.org/10.1152/ajprenal.00191.2007] [PMID: 17804485]
[14]
Jacques, D.; Sader, S.; Perreault, C.; Abdel-Samad, D.; Provost, C. Roles of nuclear NPY and NPY receptors in the regulation of the endocardial endothelium and heart function. Can. J. Physiol. Pharmacol., 2006, 84(7), 695-705.
[http://dx.doi.org/10.1139/y05-162] [PMID: 16998533]
[15]
Kaipio, K.; Pesonen, U. The intracellular mobility of NPY and a putative mitochondrial form of NPY in neuronal cells. Neurosci. Lett., 2009, 450(2), 181-185.
[http://dx.doi.org/10.1016/j.neulet.2008.11.018] [PMID: 19022345]
[16]
Ma, K.; Zhang, Z.; Chang, R.; Cheng, H.; Mu, C.; Zhao, T.; Chen, L.; Zhang, C.; Luo, Q.; Lin, J.; Zhu, Y.; Chen, Q. Dynamic PGAM5 multimers dephosphorylate BCL-xL or FUNDC1 to regulate mitochondrial and cellular fate. Cell Death Differ., 2020, 27(3), 1036-1051.
[PMID: 31367011]
[17]
Klug, G.; Zwick, R.H.; Mayr, A.; Schocke, M.F.; Steinboeck, P.; Jaschke, W.; Pachinger, O.; Metzler, B. Correlation of cardiovascular risk scores with myocardial high-energy phosphate metabolism. Int. J. Cardiol., 2011, 150(2), 208-210.
[http://dx.doi.org/10.1016/j.ijcard.2011.05.006] [PMID: 21652089]
[18]
Luptak, I.; Sverdlov, A.L.; Panagia, M.; Qin, F.; Pimentel, D.R.; Croteau, D.; Siwik, D.A.; Ingwall, J.S.; Bachschmid, M.M.; Balschi, J.A.; Colucci, W.S. Decreased ATP production and myocardial contractile reserve in metabolic heart disease. J. Mol. Cell. Cardiol., 2018, 116, 106-114.
[http://dx.doi.org/10.1016/j.yjmcc.2018.01.017] [PMID: 29409987]
[19]
Turer, A.T. Using metabolomics to assess myocardial metabolism and energetics in heart failure. J. Mol. Cell. Cardiol., 2013, 55, 12-18.
[http://dx.doi.org/10.1016/j.yjmcc.2012.08.025] [PMID: 22982115]
[20]
Zhang, J.; Zhang, Y.; Wu, W.; Wang, F.; Liu, X.; Shui, G.; Nie, C. Guanylate-binding protein 2 regulates Drp1-mediated mitochondrial fission to suppress breast cancer cell invasion. Cell Death Dis., 2017, 8(10), e3151.
[http://dx.doi.org/10.1038/cddis.2017.559] [PMID: 29072687]
[21]
Palmer, C.S.; Elgass, K.D.; Parton, R.G.; Osellame, L.D.; Stojanovski, D.; Ryan, M.T. Adaptor proteins MiD49 and MiD51 can act independently of Mff and Fis1 in Drp1 recruitment and are specific for mitochondrial fission. J. Biol. Chem., 2013, 288(38), 27584-27593.
[http://dx.doi.org/10.1074/jbc.M113.479873] [PMID: 23921378]
[22]
Otera, H.; Wang, C.; Cleland, M.M.; Setoguchi, K.; Yokota, S.; Youle, R.J.; Mihara, K. Mff is an essential factor for mitochondrial recruitment of Drp1 during mitochondrial fission in mammalian cells. J. Cell Biol., 2010, 191(6), 1141-1158.
[http://dx.doi.org/10.1083/jcb.201007152] [PMID: 21149567]
[23]
Hu, J.; Zhang, Y.; Jiang, X.; Zhang, H.; Gao, Z.; Li, Y.; Fu, R.; Li, L.; Li, J.; Cui, H.; Gao, N. ROS-mediated activation and mitochondrial translocation of CaMKII contributes to Drp1-dependent mitochondrial fission and apoptosis in triple-negative breast cancer cells by isorhamnetin and chloroquine. J. Exp. Clin. Cancer Res., 2019, 38(1), 225.
[http://dx.doi.org/10.1186/s13046-019-1201-4] [PMID: 31138329]
[24]
Tsushima, K.; Bugger, H.; Wende, A.R.; Soto, J.; Jenson, G.A.; Tor, A.R.; McGlauflin, R.; Kenny, H.C.; Zhang, Y.; Souvenir, R.; Hu, X.X.; Sloan, C.L.; Pereira, R.O.; Lira, V.A.; Spitzer, K.W.; Sharp, T.L.; Shoghi, K.I.; Sparagna, G.C.; Rog-Zielinska, E.A.; Kohl, P.; Khalimonchuk, O.; Schaffer, J.E.; Abel, E.D. Mitochondrial Reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ. Res., 2018, 122(1), 58-73.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311307] [PMID: 29092894]
[25]
Cribbs, J.T.; Strack, S. Reversible phosphorylation of Drp1 by cyclic AMP-dependent protein kinase and calcineurin regulates mitochondrial fission and cell death. EMBO Rep., 2007, 8(10), 939-944.
[http://dx.doi.org/10.1038/sj.embor.7401062] [PMID: 17721437]
[26]
Park, J.E.; Kim, Y.J.; Lee, S.G.; Kim, J.Y.; Chung, J.Y.; Jeong, S.Y.; Koh, H.; Yun, J.; Park, H.T.; Yoo, Y.H.; Kim, J.M. Drp1 phosphorylation is indispensable for steroidogenesis in Leydig cells. Endocrinology, 2019, 160(4), 729-743.
[http://dx.doi.org/10.1210/en.2019-00029] [PMID: 30689811]
[27]
Liu, Z.; Li, H.; Su, J.; Xu, S.; Zhu, F.; Ai, J.; Hu, Z.; Zhou, M.; Tian, J.; Su, Z.; Yang, P.; Nie, J. Numb depletion promotes Drp1-mediated mitochondrial fission and exacerbates mitochondrial fragmentation and dysfunction in acute kidney injury. Antioxid. Redox Signal., 2019, 30(15), 1797-1816.
[http://dx.doi.org/10.1089/ars.2017.7432] [PMID: 29890853]
[28]
Yang, Y.; Tian, Y.; Hu, S.; Bi, S.; Li, S.; Hu, Y.; Kou, J.; Qi, J.; Yu, B. Extract of Sheng-Mai-San ameliorates myocardial ischemia-induced heart failure by modulating Ca(2+)-calcineurin-mediated Drp1 signaling pathways. Int. J. Mol. Sci., 2017, 18(9)
[http://dx.doi.org/10.3390/ijms18091825]
[29]
Huang, C.Y.; Lai, C.H.; Kuo, C.H.; Chiang, S.F.; Pai, P.Y.; Lin, J.Y.; Chang, C.F.; Viswanadha, V.P.; Kuo, W.W.; Huang, C.Y. Inhibition of ERK-Drp1 signaling and mitochondria fragmentation alleviates IGF-IIR-induced mitochondria dysfunction during heart failure. J. Mol. Cell. Cardiol., 2018, 122, 58-68.
[http://dx.doi.org/10.1016/j.yjmcc.2018.08.006] [PMID: 30098987]
[30]
Xu, X.; Luo, C.; Zhang, Z.; Hu, J.; Gao, X.; Zuo, Y.; Wang, Y.; Zhu, S. Mdivi-1 attenuates sodium azide-induced apoptosis in H9c2 cardiac muscle cells. Mol. Med. Rep., 2017, 16(5), 5972-5978.
[http://dx.doi.org/10.3892/mmr.2017.7359] [PMID: 28849092]
[31]
Sun, Y.L.; Li, S.H.; Yang, L.; Wang, Y. miR-376b-3p attenuates mitochondrial fission and cardiac hypertrophy by targeting mitochondrial fission factor. Clin. Exp. Pharmacol. Physiol., 2018, 45(8), 779-787.
[http://dx.doi.org/10.1111/1440-1681.12938] [PMID: 29570827]
[32]
Ma, L.; Han, C.; Peng, T.; Li, N.; Zhang, B.; Zhen, X.; Yang, X. Ang-(1-7) inhibited mitochondrial fission in high-glucose-induced podocytes by upregulation of miR-30a and downregulation of Drp1 and p53. J. Chin. Med. Assoc., 2016, 79(11), 597-604.
[http://dx.doi.org/10.1016/j.jcma.2016.08.006] [PMID: 27789249]
[33]
Zhang, J.J.; Liu, W.Q.; Peng, J.J.; Ma, Q.L.; Peng, J.; Luo, X.J. miR-21-5p/203a-3p promote ox-LDL-induced endothelial cell senescence through down-regulation of mitochondrial fission protein Drp1. Mech. Ageing Dev., 2017, 164, 8-19.
[http://dx.doi.org/10.1016/j.mad.2017.03.009] [PMID: 28347692]
[34]
Jan, M.I.; Khan, R.A.; Malik, A.; Ali, T.; Bilal, M.; Bo, L.; Sajid, A.; Urehman, N.; Waseem, N.; Nawab, J.; Ali, M.; Majeed, A.; Ahmad, H.; Aslam, S.; Hamera, S.; Sultan, A.; Aneesa, M.; Javed, Q.; Murtaza, I. Data of expression status of miR- 29a and its putative target mitochondrial apoptosis regulatory gene DRP1 upon miR-15a and miR-214 inhibition. Data Brief, 2017, 16, 1000-1004.
[http://dx.doi.org/10.1016/j.dib.2017.12.040] [PMID: 29322081]
[35]
Abonnenc, M.; Nabeebaccus, A.A.; Mayr, U.; Barallobre-Barreiro, J.; Dong, X.; Cuello, F.; Sur, S.; Drozdov, I.; Langley, S.R.; Lu, R.; Stathopoulou, K.; Didangelos, A.; Yin, X.; Zimmermann, W.H.; Shah, A.M.; Zampetaki, A.; Mayr, M. Extracellular matrix secretion by cardiac fibroblasts: Role of microRNA-29b and microRNA-30c. Circ. Res., 2013, 113(10), 1138-1147.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.302400] [PMID: 24006456]
[36]
Li, F.; Zhang, K.; Xu, T.; Du, W.; Yu, B.; Liu, Y.; Nie, H. Exosomal microRNA-29a mediates cardiac dysfunction and mitochondrial inactivity in obesity-related cardiomyopathy. Endocrine, 2019, 63(3), 480-488.
[PMID: 30264370]
[37]
Zhang, S.; Yin, Z.; Dai, F.F.; Wang, H.; Zhou, M.J.; Yang, M.H.; Zhang, S.F.; Fu, Z.F.; Mei, Y.W.; Zang, M.X.; Xue, L. miR-29a attenuates cardiac hypertrophy through inhibition of PPARδ expression. J. Cell. Physiol., 2019, 234(8), 13252-13262.
[http://dx.doi.org/10.1002/jcp.27997] [PMID: 30580435]
[38]
Li, B.; Wang, W.; Li, Z.; Chen, Z.; Zhi, X.; Xu, J.; Li, Q.; Wang, L.; Huang, X.; Wang, L.; Wei, S.; Sun, G.; Zhang, X.; He, Z.; Zhang, L.; Zhang, D.; Xu, H.; El-Rifai, W.; Xu, Z. MicroRNA-148a-3p enhances cisplatin cytotoxicity in gastric cancer through mitochondrial fission induction and cyto-protective autophagy suppression. Cancer Lett., 2017, 410, 212-227.
[http://dx.doi.org/10.1016/j.canlet.2017.09.035] [PMID: 28965855]
[39]
Xiao, Y. Construction of a circRNA-miRNA-mRNA network to explore the pathogenesis and treatment of pancreatic ductal adenocarcinoma. J. Cell. Biochem., 2020, 121(1), 394-406.
[PMID: 31232492]
[40]
Kim, C.; Ahn, S.; Lee, E.K. RNA binding protein HuD and microRNA-203a cooperatively regulate insulinoma-associated 1 mRNA. Biochem. Biophys. Res. Commun., 2020, 521(4), 971-976.
[PMID: 31722792]
[41]
Song, Y.; Zhang, C.; Zhang, J.; Jiao, Z.; Dong, N.; Wang, G.; Wang, Z.; Wang, L. Localized injection of miRNA-21-enriched extracellular vesicles effectively restores cardiac function after myocardial infarction. Theranostics, 2019, 9(8), 2346-2360.
[http://dx.doi.org/10.7150/thno.29945] [PMID: 31149048]
[42]
Shin, S.; Choi, J.W.; Moon, H.; Lee, C.Y.; Park, J.H.; Lee, J.; Seo, H.H.; Han, G.; Lim, S.; Lee, S.; Kim, S.W.; Hwang, K.C. Simultaneous suppression of multiple programmed cell death pathways by miRNA-105 in cardiac ischemic injury. Mol. Ther. Nucleic Acids, 2019, 14, 438-449.
[http://dx.doi.org/10.1016/j.omtn.2018.12.015] [PMID: 30743213]
[43]
Sassi, Y.; Avramopoulos, P.; Ramanujam, D.; Grüter, L.; Werfel, S.; Giosele, S.; Brunner, A.D.; Esfandyari, D.; Papadopoulou, A.S.; De Strooper, B.; Hübner, N.; Kumarswamy, R.; Thum, T.; Yin, X.; Mayr, M.; Laggerbauer, B.; Engelhardt, S. Cardiac myocyte miR-29 promotes pathological remodeling of the heart by activating Wnt signaling. Nat. Commun., 2017, 8(1), 1614.
[http://dx.doi.org/10.1038/s41467-017-01737-4] [PMID: 29158499]
[44]
Hu, J.; Xu, X.; Zuo, Y.; Gao, X.; Wang, Y.; Xiong, C.; Zhou, H.; Zhu, S. NPY impairs cell viability and mitochondrial membrane potential through Ca2+ and p38 signaling pathways in neonatal rat cardiomyocytes. J. Cardiovasc. Pharmacol., 2017, 70(1), 52-59.
[http://dx.doi.org/10.1097/FJC.0000000000000493] [PMID: 28437279]
[45]
Matyal, R.; Chu, L.; Mahmood, F.; Robich, M.P.; Wang, A.; Hess, P.E.; Shahul, S.; Pinto, D.S.; Khabbaz, K.; Sellke, F.W. Neuropeptide Y improves myocardial perfusion and function in a swine model of hypercholesterolemia and chronic myocardial ischemia. J. Mol. Cell. Cardiol., 2012, 53(6), 891-898.
[http://dx.doi.org/10.1016/j.yjmcc.2012.08.027] [PMID: 22982235]
[46]
Yang, S.; Li, H.; Chen, L. MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1. J. Cell. Biochem., 2019, 120(3), 3813-3821.
[PMID: 30259997]
[47]
Dworatzek, E.; Mahmoodzadeh, S.; Schubert, C.; Westphal, C.; Leber, J.; Kusch, A.; Kararigas, G.; Fliegner, D.; Moulin, M.; Ventura-Clapier, R.; Gustafsson, J.A.; Davidson, M.M.; Dragun, D.; Regitz-Zagrosek, V. Sex differences in exercise-induced physiological myocardial hypertrophy are modulated by oestrogen receptor beta. Cardiovasc. Res., 2014, 102(3), 418-428.
[http://dx.doi.org/10.1093/cvr/cvu065] [PMID: 24654233]
[48]
Younes, S.A.; Talla, A.; Pereira Ribeiro, S.; Saidakova, E.V.; Korolevskaya, L.B.; Shmagel, K.V.; Shive, C.L.; Freeman, M.L.; Panigrahi, S.; Zweig, S.; Balderas, R.; Margolis, L.; Douek, D.C.; Anthony, D.D.; Pandiyan, P.; Cameron, M.; Sieg, S.F.; Calabrese, L.H.; Rodriguez, B.; Lederman, M.M. Cycling CD4+ T cells in HIV-infected immune nonresponders have mitochondrial dysfunction. J. Clin. Invest., 2018, 128(11), 5083-5094.
[http://dx.doi.org/10.1172/JCI120245] [PMID: 30320604]
[49]
Butler, M.G.; Hossain, W.A.; Tessman, R.; Krishnamurthy, P.C. Preliminary observations of mitochondrial dysfunction in Prader-Willi syndrome. Am. J. Med. Genet. A., 2018, 176(12), 2587-2594.
[http://dx.doi.org/10.1002/ajmg.a.40526] [PMID: 30289596]
[50]
Cheung, J.Y.; Gordon, J.; Wang, J.; Song, J.; Zhang, X.Q.; Prado, F.J.; Shanmughapriya, S.; Rajan, S.; Tomar, D.; Tahrir, F.G.; Gupta, M.K.; Knezevic, T.; Merabova, N.; Kontos, C.D.; McClung, J.M.; Klotman, P.E.; Madesh, M.; Khalili, K.; Feldman, A.M. Mitochondrial dysfunction in human immunodeficiency virus-1 transgenic mouse cardiac myocytes. J. Cell. Physiol., 2019, 234(4), 4432-4444.
[PMID: 30256393]
[51]
Kumar, V. A, A.K.; Sanawar, R.; Jaleel, A.; Santhosh Kumar, T.R.; Kartha, C.C. Chronic pressure overload results in deficiency of mitochondrial membrane transporter ABCB7 which contributes to iron overload, mitochondrial dysfunction, metabolic shift and worsens cardiac function. Sci. Rep., 2019, 9(1), 13170.
[http://dx.doi.org/10.1038/s41598-019-49666-0] [PMID: 31511561]
[52]
Haileselassie, B.; Mukherjee, R.; Joshi, A.U.; Napier, B.A.; Massis, L.M.; Ostberg, N.P.; Queliconi, B.B.; Monack, D.; Bernstein, D.; Mochly-Rosen, D. Drp1/Fis1 interaction mediates mitochondrial dysfunction in septic cardiomyopathy. J. Mol. Cell. Cardiol., 2019, 130, 160-169.
[http://dx.doi.org/10.1016/j.yjmcc.2019.04.006] [PMID: 30981733]
[53]
Lee, J.E.; Westrate, L.M.; Wu, H.; Page, C.; Voeltz, G.K. Multiple dynamin family members collaborate to drive mitochondrial division. Nature, 2016, 540(7631), 139-143.
[http://dx.doi.org/10.1038/nature20555] [PMID: 27798601]
[54]
Kamerkar, S.C.; Kraus, F.; Sharpe, A.J.; Pucadyil, T.J.; Ryan, M.T. Dynamin-related protein 1 has membrane constricting and severing abilities sufficient for mitochondrial and peroxisomal fission. Nat. Commun., 2018, 9(1), 5239.
[http://dx.doi.org/10.1038/s41467-018-07543-w] [PMID: 30531964]
[55]
Chen, A.; Li, W.; Chen, X.; Shen, Y.; Dai, W.; Dong, Q.; Li, X.; Ou, C.; Chen, M. Trimetazidine attenuates pressure overload-induced early cardiac energy dysfunction via regulation of neuropeptide Y system in a rat model of abdominal aortic constriction. BMC Cardiovasc. Disord., 2016, 16(1), 225.
[http://dx.doi.org/10.1186/s12872-016-0399-8] [PMID: 27855650]
[56]
Meng, G.; Liu, J.; Liu, S.; Song, Q.; Liu, L.; Xie, L.; Han, Y.; Ji, Y. Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br. J. Pharmacol., 2018, 175(8), 1126-1145.
[http://dx.doi.org/10.1111/bph.13861] [PMID: 28503736]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy