Research Article

高流动性Box-1组与急性原发性闭角型眼球房水中与炎症相关的细胞因子的关系

卷 21, 期 3, 2021

发表于: 13 April, 2020

页: [237 - 245] 页: 9

弟呕挨: 10.2174/1566524020666200413113107

价格: $65

摘要

目的:本研究的目的是测量急性原发性闭角型青光眼(APAG)和年龄相关性白内障眼患者房水中高迁移率族box-1(HMGB1)和炎症相关细胞因子的水平。 方法:从59名中国受试者的59只眼(APAG,32只眼; ARC,27只眼)中获得房水样本。多重磁珠免疫测定技术用于测量HMGB1,IL-8,IL-6,G-CSF,MCP-3,VEGF,sVEGFR-1,sVEFGR-2,TNF-α,PDGF和IL-10的水平在水溶液中。还收集了患者的人口统计数据和术前眼压(IOP)进行详细分析。 结果:APAG组的HMGB1,IL-8,IL-6,G-CSF,VEGF,sVEGFR-1和TNF-α的浓度均显着高于ARC组。 HMGB1水溶液的水平与IOP,IL-8,IL-6,G-CSF和sVEGFR-1的水平显着相关,但与年龄,TNF-α或VEGF的水平无关。 结论:APAG中HMGB1的水含量升高,并且与炎症相关细胞因子的水含量相关,这表明HMGB1,APAC的升高水平与某些炎症调节剂之间存在关联,当然,应进行进一步的研究以证明因果关系。

关键词: Box-1高流动性小组,急性原发性闭角,炎症,细胞因子,房水。

[1]
Pokhrel PK, Loftus SA. Ocular emergencies. Am Fam Physician 2007; 76(6): 829-36.
[PMID: 17910297]
[2]
Welge-Lüssen U, May CA, Neubauer AS, Priglinger S. Role of tissue growth factors in aqueous humor homeostasis. Curr Opin Ophthalmol 2001; 12(2): 94-9.
[http://dx.doi.org/10.1097/00055735-200104000-00003] [PMID: 11224714]
[3]
Curnow SJ, Falciani F, Durrani OM, et al. Multiplex bead immunoassay analysis of aqueous humor reveals distinct cytokine profiles in uveitis. Invest Ophthalmol Vis Sci 2005; 46(11): 4251-9.
[http://dx.doi.org/10.1167/iovs.05-0444] [PMID: 16249505]
[4]
Kaneda S, Miyazaki D, Sasaki S, et al. Multivariate analyses of inflammatory cytokines in eyes with branch retinal vein occlusion: relationships to bevacizumab treatment. Invest Ophthalmol Vis Sci 2011; 52(6): 2982-8.
[http://dx.doi.org/10.1167/iovs.10-6299] [PMID: 21273540]
[5]
Jonas JB, Tao Y, Neumaier M, Findeisen P. Cytokine concentration in aqueous humour of eyes with exudative age-related macular degeneration. Acta Ophthalmol 2012; 90(5): e381-8.
[http://dx.doi.org/10.1111/j.1755-3768.2012.02414.x] [PMID: 22490043]
[6]
Sawada H, Fukuchi T, Tanaka T, Abe H. Tumor necrosis factor-alpha concentrations in the aqueous humor of patients with glaucoma. Invest Ophthalmol Vis Sci 2010; 51(2): 903-6.
[http://dx.doi.org/10.1167/iovs.09-4247] [PMID: 19737888]
[7]
Picht G, Welge-Luessen U, Grehn F, Lütjen-Drecoll E. Transforming growth factor beta 2 levels in the aqueous humor in different types of glaucoma and the relation to filtering bleb development. Graefes Arch Clin Exp Ophthalmol 2001; 239(3): 199-207.
[http://dx.doi.org/10.1007/s004170000252] [PMID: 11405069]
[8]
Huang W, Chen S, Gao X, et al. Inflammation-related cytokines of aqueous humor in acute primary angle-closure eyes. Invest Ophthalmol Vis Sci 2014; 55(2): 1088-94.
[http://dx.doi.org/10.1167/iovs.13-13591] [PMID: 24474267]
[9]
Kuchtey J, Rezaei KA, Jaru-Ampornpan P, Sternberg P Jr, Kuchtey RW. Multiplex cytokine analysis reveals elevated concentration of interleukin-8 in glaucomatous aqueous humor. Invest Ophthalmol Vis Sci 2010; 51(12): 6441-7.
[http://dx.doi.org/10.1167/iovs.10-5216] [PMID: 20592224]
[10]
Takai Y, Tanito M, Ohira A. Multiplex cytokine analysis of aqueous humor in eyes with primary open-angle glaucoma, exfoliation glaucoma, and cataract. Invest Ophthalmol Vis Sci 2012; 53(1): 241-7.
[http://dx.doi.org/10.1167/iovs.11-8434] [PMID: 22159018]
[11]
Hu DN, Ritch R, Liebmann J, Liu Y, Cheng B, Hu MS. Vascular endothelial growth factor is increased in aqueous humor of glaucomatous eyes. J Glaucoma 2002; 11(5): 406-10.
[http://dx.doi.org/10.1097/00061198-200210000-00006] [PMID: 12362079]
[12]
Gao X, Huang W, Zhang X, et al. Chemokine (C-C motif) ligand 2 and chemokine (C-C motif) ligand 7 in angle-closure glaucoma. Acta Ophthalmol 2016; 94(3): e220-4.
[http://dx.doi.org/10.1111/aos.12696] [PMID: 25726969]
[13]
Liu YM, Chen SD, Li XY, et al. Aqueous proinflammatory cytokines in acute primary angle-closure eyes. Int J Ophthalmol 2017; 10(5): 733-7.
[PMID: 28546929]
[14]
Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220: 35-46.
[http://dx.doi.org/10.1111/j.1600-065X.2007.00574.x] [PMID: 17979838]
[15]
Harris HE, Andersson U, Pisetsky DS. HMGB1: a multifunctional alarmin driving autoimmune and inflammatory disease. Nat Rev Rheumatol 2012; 8(4): 195-202.
[http://dx.doi.org/10.1038/nrrheum.2011.222] [PMID: 22293756]
[16]
Janko C, Filipović M, Munoz LE, et al. Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 2014; 20(7): 1075-85.
[http://dx.doi.org/10.1089/ars.2013.5179] [PMID: 23373897]
[17]
Zhu X, Messer JS, Wang Y, et al. Cytosolic HMGB1 controls the cellular autophagy/apoptosis checkpoint during inflammation. J Clin Invest 2015; 125(3): 1098-110.
[http://dx.doi.org/10.1172/JCI76344] [PMID: 25642769]
[18]
Yang H, Antoine DJ, Andersson U, Tracey KJ. The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 2013; 93(6): 865-73.
[http://dx.doi.org/10.1189/jlb.1212662] [PMID: 23446148]
[19]
Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection. Annu Rev Immunol 2011; 29: 139-62.
[http://dx.doi.org/10.1146/annurev-immunol-030409-101323] [PMID: 21219181]
[20]
Tirone M, Tran NL, Ceriotti C, et al. High mobility group box 1 orchestrates tissue regeneration via CXCR4. J Exp Med 2018; 215(1): 303-18.
[http://dx.doi.org/10.1084/jem.20160217] [PMID: 29203538]
[21]
Li LC, Gao J, Li J. Emerging role of HMGB1 in fibrotic diseases. J Cell Mol Med 2014; 18(12): 2331-9.
[http://dx.doi.org/10.1111/jcmm.12419] [PMID: 25284457]
[22]
Bianchi ME. HMGB1 loves company. J Leukoc Biol 2009; 86(3): 573-6.
[http://dx.doi.org/10.1189/jlb.1008585] [PMID: 19414536]
[23]
Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness. Functional inactivation of RAGE in L6 myoblasts results in tumor formation in vivo. J Biol Chem 2006; 281(12): 8242-53.
[http://dx.doi.org/10.1074/jbc.M509436200] [PMID: 16407300]
[24]
Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE. Nat Immunol 2007; 8(5): 487-96.
[http://dx.doi.org/10.1038/ni1457] [PMID: 17417641]
[25]
Chang JH, McCluskey P, Wakefield D. Expression of toll-like receptor 4 and its associated lipopolysaccharide receptor complex by resident antigen-presenting cells in the human uvea. Invest Ophthalmol Vis Sci 2004; 45(6): 1871-8.
[http://dx.doi.org/10.1167/iovs.03-1113] [PMID: 15161852]
[26]
Fujimoto T, Sonoda KH, Hijioka K, et al. Choroidal neovascularization enhanced by Chlamydia pneumoniae via Toll-like receptor 2 in the retinal pigment epithelium. Invest Ophthalmol Vis Sci 2010; 51(9): 4694-702.
[http://dx.doi.org/10.1167/iovs.09-4464] [PMID: 20393111]
[27]
Ko MK, Saraswathy S, Parikh JG, Rao NA. The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophthalmol Vis Sci 2011; 52(8): 5824-35.
[http://dx.doi.org/10.1167/iovs.10-6357] [PMID: 21666244]
[28]
Jiang G, Sun D, Kaplan HJ, Shao H. Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells. PLoS One 2012; 7(7)e40510
[http://dx.doi.org/10.1371/journal.pone.0040510] [PMID: 22808176]
[29]
Ang LP, Aung T, Chew PT. Acute primary angle closure in an Asian population: long-term outcome of the fellow eye after prophylactic laser peripheral iridotomy. Ophthalmology 2000; 107(11): 2092-6.
[http://dx.doi.org/10.1016/S0161-6420(00)00360-2] [PMID: 11054339]
[30]
Campbell IL, Abraham CR, Masliah E, et al. Neurologic disease induced in transgenic mice by cerebral overexpression of interleukin 6. Proc Natl Acad Sci USA 1993; 90(21): 10061-5.
[http://dx.doi.org/10.1073/pnas.90.21.10061] [PMID: 7694279]
[31]
Maruo N, Morita I, Shirao M, Murota S. IL-6 increases endothelial permeability in vitro. Endocrinology 1992; 131(2): 710-4.
[PMID: 1639018]
[32]
Li J, Ang M, Cheung CM, et al. Aqueous cytokine changes associated with Posner-Schlossman syndrome with and without human cytomegalovirus. PLoS One 2012; 7(9)e44453
[http://dx.doi.org/10.1371/journal.pone.0044453] [PMID: 23028541]
[33]
Yuan J, Guo Q, Qureshi AR, et al. Circulating vascular endothelial growth factor (VEGF) and its soluble receptor 1 (sVEGFR-1) are associated with inflammation and mortality in incident dialysis patients. Nephrol Dial Transplant 2013; 28(9): 2356-63.
[http://dx.doi.org/10.1093/ndt/gft256] [PMID: 23828162]
[34]
Shaik-Dasthagirisaheb YB, Varvara G, Murmura G, et al. Vascular endothelial growth factor (VEGF), mast cells and inflammation. Int J Immunopathol Pharmacol 2013; 26(2): 327-35.
[http://dx.doi.org/10.1177/039463201302600206] [PMID: 23755748]
[35]
Pellegrini L, Foglio E, Pontemezzo E, Germani A, Russo MA, Limana F. HMGB1 and repair: Focus on the heart. Pharmacol Ther 2019; 196: 160-82.
[http://dx.doi.org/10.1016/j.pharmthera.2018.12.005] [PMID: 30529040]
[36]
Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice. Science 1999; 285(5425): 248-51.
[http://dx.doi.org/10.1126/science.285.5425.248] [PMID: 10398600]
[37]
Hamada T, Torikai M, Kuwazuru A, et al. Extracellular high mobility group box chromosomal protein 1 is a coupling factor for hypoxia and inflammation in arthritis. Arthritis Rheum 2008; 58(9): 2675-85.
[http://dx.doi.org/10.1002/art.23729] [PMID: 18759291]
[38]
Sappington PL, Yang R, Yang H, Tracey KJ, Delude RL, Fink MP. HMGB1 B box increases the permeability of Caco-2 enterocytic monolayers and impairs intestinal barrier function in mice. Gastroenterology 2002; 123(3): 790-802.
[http://dx.doi.org/10.1053/gast.2002.35391] [PMID: 12198705]
[39]
O’Connor KA, Hansen MK, Rachal Pugh C, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine: Central nervous system effects. Cytokine 2003; 24(6): 254-65.
[http://dx.doi.org/10.1016/j.cyto.2003.08.001] [PMID: 14609567]
[40]
Hamada N, Maeyama T, Kawaguchi T, et al. The role of high mobility group box1 in pulmonary fibrosis. Am J Respir Cell Mol Biol 2008; 39(4): 440-7.
[http://dx.doi.org/10.1165/rcmb.2007-0330OC] [PMID: 18441281]
[41]
Ferhani N, Letuve S, Kozhich A, et al. Expression of high-mobility group box 1 and of receptor for advanced glycation end products in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 2010; 181(9): 917-27.
[http://dx.doi.org/10.1164/rccm.200903-0340OC] [PMID: 20133931]
[42]
Tsung A, Tohme S, Billiar TR. High-mobility group box-1 in sterile inflammation. J Intern Med 2014; 276(5): 425-43.
[http://dx.doi.org/10.1111/joim.12276] [PMID: 24935761]
[43]
Dumitriu IE, Baruah P, Valentinis B, et al. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J Immunol 2005; 174(12): 7506-15.
[http://dx.doi.org/10.4049/jimmunol.174.12.7506] [PMID: 15944249]
[44]
Rao NA, Kimoto T, Zamir E, et al. Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci 2003; 44(1): 22-31.
[http://dx.doi.org/10.1167/iovs.02-0199] [PMID: 12506051]
[45]
Jiang G, Ke Y, Sun D, Han G, Kaplan HJ, Shao H. Reactivation of uveitogenic T cells by retinal astrocytes derived from experimental autoimmune uveitis-prone B10RIII mice. Invest Ophthalmol Vis Sci 2008; 49(1): 282-9.
[http://dx.doi.org/10.1167/iovs.07-0371] [PMID: 18172104]
[46]
Chi W, Chen H, Li F, Zhu Y, Yin W, Zhuo Y. HMGB1 promotes the activation of NLRP3 and caspase-8 inflammasomes via NF-κB pathway in acute glaucoma. J Neuroinflammation 2015; 12: 137.
[http://dx.doi.org/10.1186/s12974-015-0360-2] [PMID: 26224068]
[47]
Liang Y, Hou C, Kong J, et al. HMGB1 binding to receptor for advanced glycation end products enhances inflammatory responses of human bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol Cell Biochem 2015; 405(1-2): 63-71.
[http://dx.doi.org/10.1007/s11010-015-2396-0] [PMID: 25862459]
[48]
Park SY, Lee SW, Kim HY, Lee WS, Hong KW, Kim CD. HMGB1 induces angiogenesis in rheumatoid arthritis via HIF-1α activation. Eur J Immunol 2015; 45(4): 1216-27.
[http://dx.doi.org/10.1002/eji.201444908] [PMID: 25545169]
[49]
Malvitte L, Montange T, Vejux A, et al. Measurement of inflammatory cytokines by multicytokine assay in tears of patients with glaucoma topically treated with chronic drugs. Br J Ophthalmol 2007; 91(1): 29-32.
[http://dx.doi.org/10.1136/bjo.2006.101485] [PMID: 16943231]
[50]
Manni G, Centofanti M, Oddone F, Parravano M, Bucci MG. Interleukin-1beta tear concentration in glaucomatous and ocular hypertensive patients treated with preservative-free nonselective beta-blockers. Am J Ophthalmol 2005; 139(1): 72-7.
[http://dx.doi.org/10.1016/j.ajo.2004.08.028] [PMID: 15652830]
[51]
Baudouin C, Hamard P, Liang H, Creuzot-Garcher C, Bensoussan L, Brignole F. Conjunctival epithelial cell expression of interleukins and inflammatory markers in glaucoma patients treated over the long term. Ophthalmology 2004; 111(12): 2186-92.
[http://dx.doi.org/10.1016/j.ophtha.2004.06.023] [PMID: 15582072]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy