Review Article

半纤维素水凝胶的生物医学应用

卷 27, 期 28, 2020

页: [4647 - 4659] 页: 13

弟呕挨: 10.2174/0929867327666200408115817

价格: $65

摘要

背景:水凝胶具有三维网状结构,能够吸收大量的水/液,并保持其原有结构。半纤维素是植物中仅次于纤维素的第二丰富的多糖,是一种多相多糖,由多种糖类组成。半纤维素独特的物理和化学性质使其成为一种很有前途的水凝胶材料。 方法:首先综述了半纤维素水凝胶的智能性、生物降解性和生物相容性三个研究热点。综述了半纤维素水凝胶的制备及其在药物传递系统和组织工程(关节软骨、细胞固定化和伤口敷料)中的应用进展。 结果:半纤维素水凝胶具有许多独特的性能,如抗氧化性、生物降解性和生物相容性。互穿网络可以赋予水凝胶适当的力学性能。这些特性使半纤维素水凝胶在生物医学应用中很有前途,如药物传递系统和组织工程(关节软骨、细胞固定化和伤口敷料)。 结论:水凝胶在生物医学和组织工程领域有着广泛的应用,如组织填充剂、药物释放剂、酶包封剂、蛋白质电泳、隐形眼镜、人工血浆、人工皮肤、组织工程支架材料等。本文综述了近年来半纤维素水凝胶的制备及其在生物医学领域的应用进展。

关键词: 智能水凝胶,生物相容性,生物降解性,药物传递系统,组织工程,半纤维素水凝胶。

[1]
Kim, S.H.; Won, C.Y.; Chu, C.C. Synthesis and characterization of dextran-maleic acid based hydrogel. J. Biomed. Mater. Res., 1999, 46(2), 160-170.
[http://dx.doi.org/10.1002/(SICI)1097-4636(199908)46:2<160::AID-JBM4>3.0.CO;2-P] [PMID: 10379993]
[2]
Song, X.Y. Progress in preparation of interpenetrating polymer network hydrogels and their application in adsorption; Dissertation, South China University of Technology, 2015.
[3]
Wichterle, O.; Lím, D. Hydrophilic gels for biological use. Nature, 1960, 185(4706), 117-118.
[http://dx.doi.org/10.1038/185117a0]
[4]
Kouser, R.; Vashist, A.; Zafaryab, M.; Rizvi, M.A.; Ahmad, S. Biocompatible and mechanically robust nanocomposite hydrogels for potential applications in tissue engineering. Mater. Sci. Eng. C, 2018, 84(1), 168-179.
[http://dx.doi.org/10.1016/j.msec.2017.11.018] [PMID: 29519426]
[5]
Edlund, U.; Albertsson, A.C. A microspheric system: hemicellulose-based hydrogels. J. Bioact. Compat. Polym., 2008, 23(2), 171-186.
[http://dx.doi.org/10.1177/0883911507088400]
[6]
Stamatialis, D.F.; Papenburg, B.J.; Gironés, M.; Saiful, S.; Bettahalli, S.N.M.; Schmitmeier, S.; Wessling, M. Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. J. Membr. Sci., 2008, 308(1), 1-34.
[http://dx.doi.org/10.1016/j.memsci.2007.09.059]
[7]
Paulino, A.T.; Pereira, A.G.B.; Fajardo, A.R.; Erickson, K.; Kipper, M.J.; Muniz, E.C.; Belfiore, L.A.; Tambourgi, E.B. Natural polymer-based magnetic hydrogels: Potential vectors for remote-controlled drug release. Carbohydr. Polym., 2012, 90(3), 1216-1225.
[http://dx.doi.org/10.1016/j.carbpol.2012.06.051] [PMID: 22939334]
[8]
Barouti, G.; Liow, S.S.; Dou, Q.; Ye, H.; Orione, C.; Guillaume, S.M.; Loh, X.J. New linear and star-shaped thermogelling poly([R]-3-hydroxybutyrate) copolymers. Chemistry, 2016, 22(30), 10501-10512.
[http://dx.doi.org/10.1002/chem.201601404] [PMID: 27345491]
[9]
Dou, Q.Q.; Liow, S.S.; Ye, E.; Lakshminarayanan, R.; Loh, X.J. Biodegradable thermogelling polymers: working towards clinical applications. Adv. Healthc. Mater., 2014, 3(7), 977-988.
[http://dx.doi.org/10.1002/adhm.201300627] [PMID: 24488805]
[10]
Wang, J.; Sun, H.; Li, J.; Dong, D.; Zhang, Y.; Yao, F. Ionic starch-based hydrogels for the prevention of nonspecific protein adsorption. Carbohydr. Polym., 2015, 117, 384-391.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.077] [PMID: 25498650]
[11]
Söderqvist Lindblad, M.; Albertsson, A.C.; Ranucci, E.; Laus, M.; Giani, E. Biodegradable polymers from renewable sources: rheological characterization of hemicellulose-based hydrogels. Biomacromolecules, 2005, 6(2), 684-690.
[http://dx.doi.org/10.1021/bm049515z] [PMID: 15762630]
[12]
Dax, D.; Chávez, M.S.; Xu, C.; Willför, S.; Mendonça, R.T.; Sánchez, J. Cationic hemicellulose-based hydrogels for arsenic and chromium removal from aqueous solutions. Carbohydr. Polym., 2014, 111(20), 797-805.
[http://dx.doi.org/10.1016/j.carbpol.2014.05.045] [PMID: 25037418]
[13]
Dubrovskii, S.A. Polyelectrolytes hydrogels chromatographic materials. Adv. Polym. Sci., 1992, 104, 1-175.
[14]
Chaiyasat, A.; Jearanai, S.; Christopher, L.P.; Alam, M.N. Novel superabsorbent materials from bacterial cellulose. Polym. Int., 2018, 68(1), 102-109.
[http://dx.doi.org/10.1002/pi.5701]
[15]
Ossipov, D.A.; Piskounova, S.; Varghese, O.P.; Hilborn, J. Functionalization of hyaluronic acid with chemoselective groups via a disulfide-based protection strategy for in situ formation of mechanically stable hydrogels. Biomacromolecules, 2010, 11(9), 2247-2254.
[http://dx.doi.org/10.1021/bm1007986] [PMID: 20704177]
[16]
Park, Y.D.; Tirelli, N.; Hubbell, J.A. Photopolymerized hyaluronic acid-based hydrogels and interpenetrating networks. Biomaterials, 2003, 24(6), 893-900.
[http://dx.doi.org/10.1016/S0142-9612(02)00420-9] [PMID: 12504509]
[17]
Lee, K.Y.; Mooney, D.J. Alginate: properties and biomedical applications. Prog. Polym. Sci., 2012, 37(1), 106-126.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.06.003] [PMID: 22125349]
[18]
Alibolandi, M.; Mohammadi, M.; Taghdisi, S.M.; Abnous, K.; Ramezani, M. Synthesis and preparation of biodegradable hybrid dextran hydrogel incorporated with biodegradable curcumin nanomicelles for full thickness wound healing. Int. J. Pharm., 2017, 532(1), 466-477.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.042] [PMID: 28927842]
[19]
Lin, C.; Zhao, P.; Li, F.; Guo, F.; Li, Z.; Wen, X. Thermo sensitive in situ-forming dextran-pluronic hydrogels through michael addition. Mater. Sci. Eng. C, 2010, 30(8), 1236-1244.
[http://dx.doi.org/10.1016/j.msec.2010.07.004]
[20]
Markstedt, K.; Xu, W.; Liu, J.; Xu, C.; Gatenholm, P. Synthesis of tunable hydrogels based on O-acetyl-galactoglucomannans from spruce. Carbohydr. Polym., 2017, 157, 1349-1357.
[http://dx.doi.org/10.1016/j.carbpol.2016.11.009] [PMID: 27987842]
[21]
Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A.C. In situ synthesis of magnetic field-responsive hemicellulose hydrogels for drug delivery. Biomacromolecules, 2015, 16(8), 2522-2528.
[http://dx.doi.org/10.1021/acs.biomac.5b00801] [PMID: 26196600]
[22]
Liu, H.; Hu, H.; Jahan, M.S.; Ni, Y. Furfural formation from the pre-hydrolysis liquor of a hardwood kraft-based dissolving pulp production process. Bioresour. Technol., 2013, 131, 315-320.
[http://dx.doi.org/10.1016/j.biortech.2012.12.158] [PMID: 23360707]
[23]
Peng, X.W.; Ren, J.L.; Sun, R-C. Homogeneous esterification of xylan-rich hemicelluloses with maleic anhydride in ionic liquid. Biomacromolecules, 2010, 11(12), 3519-3524.
[http://dx.doi.org/10.1021/bm1010118] [PMID: 21053970]
[24]
Eronen, P.; Österberg, M.; Heikkinen, S.; Tenkanen, M.; Laine, J. Interactions of structurally different hemicelluloses with nanofibrillar cellulose. Carbohydr. Polym., 2011, 86(3), 1281-1290.
[http://dx.doi.org/10.1016/j.carbpol.2011.06.031]
[25]
Millon, L.E.; Oates, C.J.; Wan, W. Compression properties of polyvinyl alcohol--bacterial cellulose nanocomposite. J. Biomed. Mater. Res. B Appl. Biomater., 2009, 90(2), 922-929.
[http://dx.doi.org/10.1002/jbm.b.31364] [PMID: 19360889]
[26]
Sun, X.F.; Wang, H.H.; Jing, Z.X.; Mohanathas, R. Hemicellulose-based pH-sensitive and biodegradable hydrogel for controlled drug delivery. Carbohydr. Polym., 2013, 92(2), 1357-1366.
[http://dx.doi.org/10.1016/j.carbpol.2012.10.032] [PMID: 23399165]
[27]
Naahidi, S.; Jafari, M.; Logan, M.; Wang, Y.; Yuan, Y.; Bae, H.; Dixon, B.; Chen, P. Biocompatibility of hydrogel based scaffolds for tissue engineering applications. Biotechnol. Adv., 2017, 35(5), 530-544.
[http://dx.doi.org/10.1016/j.biotechadv.2017.05.006] [PMID: 28558979]
[28]
Gong, J.P. Why are double network hydrogels so tough. Soft Matter, 2010, 6(12), 2559-2850.
[http://dx.doi.org/10.1039/b924290b]
[29]
Haque, M.A.; Kurokawa, T.; Gong, J-P. Super tough double network hydrogels and their application as biomaterials. Polymers (Basel), 2012, 53(9), 1805-1822.
[http://dx.doi.org/10.1016/j.polymer.2012.03.013]
[30]
Nakajima, T.; Sato, H.; Zhao, Y.; Kawahara, S.; Kurokawa, T.; Sugahara, K. A universal molecular stent method to toughen any hydrogels based on double network concept. Adv. Funct. Mater., 2012, 22(21), 4426-4432.
[http://dx.doi.org/10.1002/adfm.201200809]
[31]
Nakajima, T.; Fukuda, Y.; Kurokawa, T.; Sakai, T.; Chung, U.I.; Gong, J-P. Synthesis and fracture process analysis of double network hydrogels with a well-defined first network. ACS Macro Lett., 2013, 2(6), 518-521.
[http://dx.doi.org/10.1021/mz4002047]
[32]
Muroi, H.; Hidema, R.; Gong, J-P.; Furukawa, H. Development of optical 3D gel printer for fabricating free-form soft & wet industrial materials and evaluation of printed double network gels. J.Sol.Mech. Mat. Eng., 2013, 7(2), 163-168.
[http://dx.doi.org/10.1299/jmmp.7.163]
[33]
Chaudhary, P.; Ramos, M.V.; Vasconcelos, Mda.S.; Kumar, V.L. Protective effect of high molecular weight protein sub-fraction of Calotropis Procera latex in monoarthritic rats. Pharmacogn. Mag., 2016, 12(Suppl. 2), S147-S151.
[http://dx.doi.org/10.4103/0973-1296.182151] [PMID: 27279699]
[34]
Nakajima, T.; Takedomi, N.; Kurokawa, T.; Furukawa, H.; Gong, J-P. A facile method for synthesizing free-shaped and tough double network hydrogels using physically crosslinked poly (vinyl alcohol) as an internal mold. Polym. Chem., 2010, 1(5), 693-697.
[http://dx.doi.org/10.1039/c0py00031k]
[35]
Bastide, J.; Leibler, L. Large-scale heterogeneities in randomly cross-linked networks. Macromolecules, 1988, 21(8), 2647-2649.
[http://dx.doi.org/10.1021/ma00186a058]
[36]
Maleki, L.; Edlund, U.; Albertsson, A.C. Thiolated hemicellulose as a versatile platform for one-pot click-type hydrogel synthesis. Biomacromolecules, 2015, 16(2), 667-674.
[http://dx.doi.org/10.1021/bm5018468] [PMID: 25574855]
[37]
Ge, M.C. Preparation and study of multiple responsive hemicellulose-based hydrogels; Dissertation, South China University of Technology, 2016.
[38]
Yang, L.L.; Liang, G.Z. Hot-spot research and application of hydrogel in biomedicine field. Materials Review, 2007, 21(2), 112-115.
[39]
Yang, J.Y.; Zhou, X.S.; Fang, J. Synthesis and characterization of temperature sensitive hemicellulose-based hydrogels. Carbohydr. Polym., 2011, 86(3), 1113-1117.
[http://dx.doi.org/10.1016/j.carbpol.2011.05.043]
[40]
Xue, Y.; Mou, Z.; Xiao, H. Nanocellulose as a sustainable biomass material: structure, properties, present status and future prospects in biomedical applications. Nanoscale, 2017, 9(39), 14758-14781.
[http://dx.doi.org/10.1039/C7NR04994C] [PMID: 28967940]
[41]
Peng, F.; Guan, Y.; Zhang, B.; Bian, J.; Ren, J.L.; Yao, C.L.; Sun, R.C. Synthesis and properties of hemicelluloses-based semi-IPN hydrogels. Int. J. Biol. Macromol., 2014, 65(5), 564-572.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.003] [PMID: 24530334]
[42]
García, J.; Ruiz-Durántez, E.; Valderruten, N.E. Interpenetrating polymer networks hydrogels of chitosan and poly (2-hydroxyethyl methacrylate) for controlled release of quetiapine. React. Funct. Polym., 2017, 8(117), 52-59.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2017.06.002]
[43]
Przekora, A. The summary of the most important cell biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications. Mater. Sci. Eng. C, 2019, 97, 1036-1051.
[http://dx.doi.org/10.1016/j.msec.2019.01.061] [PMID: 30678895]
[44]
Keane, T.J.; Badylak, S.F.; Stephen, F. Biomaterials for tissue engineering applications. Semin. Pediatr. Surg., 2014, 23(3), 112-118.
[http://dx.doi.org/10.1053/j.sempedsurg.2014.06.010] [PMID: 24994524]
[45]
Bose, S.; Ke, D.; Sahasrabudhe, H.; Bandyopadhyay, A. Additive manufacturing of biomaterials. Prog. Mater. Sci., 2018, 93, 45-111.
[http://dx.doi.org/10.1016/j.pmatsci.2017.08.003] [PMID: 31406390]
[46]
Williams, D.F. On the mechanisms of biocompatibility. Biomaterials, 2008, 29(20), 2941-2953.
[http://dx.doi.org/10.1016/j.biomaterials.2008.04.023] [PMID: 18440630]
[47]
Donaruma, L.G. Definitions in biomaterials. J. Pol. Sci., 1987, 26(9), 414-414.
[48]
Langer, R.; Kohane, D.S. Biocompatibility and drug delivery systems. Chem. Sci. (Camb.), 2010, 1(4), 441-446.
[http://dx.doi.org/10.1039/C0SC00203H]
[49]
Ghasemi-Mobarakeh, L.; Kolahreez, D.; Ramakrishna, S.; Williams, D. Key terminology in biomaterials and biocompatibility. Curr. Opin. Biomed. Eng., 2019, 10, 45-50.
[http://dx.doi.org/10.1016/j.cobme.2019.02.004]
[50]
Williams, D.F. Biocompatibility Pathways: Biomaterials-Induced Sterile Inflammation, Mechanotransduction, and Principles of Biocompatibility Control. ACS Biomater. Sci. Eng., 2016, 3(1), 2-35.
[http://dx.doi.org/10.1021/acsbiomaterials.6b00607]
[51]
Van Vlierberghe, S.; Dubruel, P.; Schacht, E. Biopolymer based hydrogels as scaffolds for tissue engineering applications: a review. Biomacromolecules, 2011, 12(5), 1387-1408.
[http://dx.doi.org/10.1021/bm200083n] [PMID: 21388145]
[52]
Lee, Y.P.; Liu, H.Y.; Lin, P.C.; Lee, Y.H.; Yu, L.R.; Hsieh, C.C.; Shih, P.J.; Shih, W.P.; Wang, I.J.; Yen, J.Y.; Dai, C.A. Facile fabrication of superporous and biocompatible hydrogel scaffolds for artificial corneal periphery. Colloids Surf. B Biointerfaces, 2019, 175, 26-35.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.013] [PMID: 30513471]
[53]
Haridas, N.; Rosemary, M.J. Effect of steam sterilization and biocompatibility studies of hyaluronic acid hydrogel for viscosupplementation. Polym. Degrad. Stabil., 2019, 163, 220-227.
[http://dx.doi.org/10.1016/j.polymdegradstab.2019.03.019]
[54]
Schroeter, M.; Wildemann, B.; Lendlein, A. Biodegradable Materials. Regen. Med., 2013, 2011, 469-492.
[55]
Pan, Y.; Farmahini-Farahani, M.; O’Hearn, P.; Xiao, H.; Ocampo, H. An overview of bio-based polymers for packaging materials. J. Biores. Bioprod., 2016, 1(3), 106-113.
[http://dx.doi.org/10.21967/jbb.v1i3.49]
[56]
Zhang, E.; Li, J.; Zhou, Y.; Che, P.; Ren, B.; Qin, Z.; Ma, L.; Cui, J.; Sun, H.; Yao, F. Biodegradable and injectable thermoreversible xyloglucan based hydrogel for prevention of postoperative adhesion. Acta Biomater., 2017, 55, 420-433.
[http://dx.doi.org/10.1016/j.actbio.2017.04.003] [PMID: 28391053]
[57]
Hawkins, A.M.; Tolbert, M.E.; Newton, B.; Milbrandt, T.A.; Hilt, J.Z. Tuning biodegradable hydrogel properties via synthesis procedure. Polymers (Basel), 2013, 54(17), 4422-4426.
[http://dx.doi.org/10.1016/j.polymer.2013.06.010]
[58]
Li, Y.; Tan, Y.; Xu, K.; Lu, C.; Wang, P. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polym. Degrad. Stabil., 2016, 137, 75-82.
[http://dx.doi.org/10.1016/j.polymdegradstab.2016.07.015]
[59]
Karaaslan, M.A.; Tshabalala, M.A.; Yelle, D.J.; Buschle-DilleR, G. Nanoreinforced biocompatible hydrogels from wood hemicelluloses and cellulose whiskers. Carbohydr. Polym., 2011, 86(1), 192-201.
[http://dx.doi.org/10.1016/j.carbpol.2011.04.030]
[60]
Kuzmenko, V.; Hägg, D.; Toriz, G.; Gatenholm, P. In situ forming spruce xylan-based hydrogel for cell immobilization. Carbohydr. Polym., 2014, 102(1), 862-868.
[http://dx.doi.org/10.1016/j.carbpol.2013.10.077] [PMID: 24507357]
[61]
Liu, J.; Chinga-Carrasco, G.; Cheng, F.; Xu, W.; Xu, C. Hemicellulose-reinforced nanocellulose hydrogels for wound healing application. Cellulose, 2016, 23(5), 1-15.
[http://dx.doi.org/10.1007/s10570-016-1038-3]
[62]
Nguyen, M.K.; Lee, D.S. Injectable biodegradable hydrogels. Macromol. Biosci., 2010, 10(6), 563-579.
[http://dx.doi.org/10.1002/mabi.200900402] [PMID: 20196065]
[63]
Silva, R.; Singh, R.; Sarker, B.; Papageorgiou, D.G.; Juhasz-Bortuzzo, J.A.; Roether, J.A.; Cicha, I.; Kaschta, J.; Schubert, D.W.; Chrissafis, K.; Detsch, R.; Boccaccini, A.R. Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int. J. Biol. Macromol., 2018, 114, 614-625.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.091] [PMID: 29572141]
[64]
Rao, K.M.; Kumar, A.; Han, S.S. Polysaccharide-based magnetically responsive polyelectrolyte hydrogels for tissue engineering applications. J. Mater. Sci. Technol., 2018, 34(8), 1371-1377.
[http://dx.doi.org/10.1016/j.jmst.2017.10.003]
[65]
Boschetti, F.; Gervaso, F.; Pennati, G.; Peretti, G.M.; Vena, P.; Dubini, G. Poroelastic numerical modelling of natural and engineered cartilage based on in vitro tests. Biorheology, 2006, 43(3-4), 235-247.
[PMID: 16912397]
[66]
Huang, T.; Xu, H.G.; Jiao, K.X.; Zhu, L.P.; Wang, H.L. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater., 2007, 19(12), 1622-1626.
[http://dx.doi.org/10.1002/adma.200602533]
[67]
Freitas, A.P.F.; Bitencourt, F.S.; Brito, G.A.C.; de Alencar, N.M.; Ribeiro, R.A.; Lima-Júnior, R.C.P.; Ramos, M.V.; Vale, M.L. Protein fraction of Calotropis procera latex protects against 5-fluorouracil-induced oral mucositis associated with downregulation of pivotal pro-inflammatory mediators. Naunyn Schmiedebergs Arch. Pharmacol., 2012, 385(10), 981-990.
[http://dx.doi.org/10.1007/s00210-012-0778-3] [PMID: 22797601]
[68]
Vasconcelos, M.S.; Souza, T.F.G.; Figueiredo, I.S.; Sousa, E.T.; Sousa, F.D.; Moreira, R.A.; Alencar, N.M.N.; Lima-Filho, J.V.; Ramos, M.V. A phytomodulatory hydrogel with enhanced healing effects. Phytother. Res., 2018, 32(4), 688-697.
[http://dx.doi.org/10.1002/ptr.6018] [PMID: 29468743]
[69]
Chaudhary, P.; de Araújo Viana, C.; Ramos, M.V.; Kumar, V.L. Antiedematogenic and antioxidant properties of high molecular weight protein sub-fraction of Calotropis procera latex in rat. J. Basic Clin. Pharm., 2015, 6(2), 69-73.
[http://dx.doi.org/10.4103/0976-0105.152098] [PMID: 25767367]
[70]
de Alencar, N.M.; da Silveira Bitencourt, F.; de Figueiredo, I.S.; Luz, P.B.; Lima-Júnior, R.C.P.; Aragão, K.S.; Magalhães, P.J.; de Castro Brito, G.A.; Ribeiro, R.A.; de Freitas, A.P.; Ramos, M.V. Side-effects of irinotecan (CPT-11), the clinically used drug for colon cancer therapy, are eliminated in experimental animals treated with latex proteins from Calotropis procera (Apocynaceae). Phytother. Res., 2017, 31(2), 312-320.
[http://dx.doi.org/10.1002/ptr.5752] [PMID: 27910140]
[71]
Figueiredo, I.S.T.; Ramos, M.V.; Ricardo, N.M.P.S.; Gonzaga, M.L.C.; Pinheiro, R.S.P.; Alencar, N.M.N. Efficacy of a membrane composed of polyvinyl alcohol as a vehicle for releasing of wound healing proteins belonging to latex of Calotropis procera. Process Biochem., 2014, 49(3), 512-519.
[http://dx.doi.org/10.1016/j.procbio.2013.12.015]
[72]
Ramos, M.V.; de Alencar, N.M.; de Oliveira, R.S.; Freitas, L.B.N.; Aragão, K.S.; de Andrade, T.A.; Frade, M.A.; Brito, G.A.; de Figueiredo, I.S. Wound healing modulation by a latex protein-containing polyvinyl alcohol biomembrane. Naunyn Schmiedebergs Arch. Pharmacol., 2016, 389(7), 747-756.
[http://dx.doi.org/10.1007/s00210-016-1238-2] [PMID: 27037828]
[73]
Darabi, M.A.; Khosrozadeh, A.; Mbeleck, R.; Liu, Y.; Chang, Q.; Jiang, J.; Cai, J.; Wang, Q.; Luo, G.; Xing, M. Skin-inspired multifunctional autonomic-intrinsic conductive self-healing hydrogels with pressure sensitivity, stretchability, and 3D printability. Adv. Mater., 2017, 29(31)
[http://dx.doi.org/10.1002/adma.201700533] [PMID: 28640439]
[74]
Perazzo, A.; Nunes, J.K.; Guido, S.; Stone, H.A. Flow induced gelation of microfiber suspensions. Proc. Natl. Acad. Sci. USA, 2017, 114(41), E8557-E8564.
[http://dx.doi.org/10.1073/pnas.1710927114] [PMID: 28923973]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy