Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Comprehensive Bioinformatics Analysis Identifies Tumor Microenvironment and Immune-related Genes in Small Cell Lung Cancer

Author(s): Yongchun Song, Yanqin Sun, Tuanhe Sun and Ruixiang Tang*

Volume 23, Issue 5, 2020

Page: [381 - 391] Pages: 11

DOI: 10.2174/1386207323666200407075004

Price: $65

Abstract

Background: Tumor microenvironment (TME) cells play important roles in tumor progression. Accumulating evidence show that they can be exploited to predict the clinical outcomes and therapeutic responses of the tumor. However, the role of immune genes of TME in small cell lung cancer (SCLC) is currently unknown.

Objective: To determine the role of immune genes in SCLC.

Methods: We downloaded the expression profile and clinical follow-up data of SCLC patients from Gene Expression Omnibus (GEO), and TME infiltration profile data of 158 patients using CIBERSORT. The correlation between TME phenotypes, genomic features, and clinicopathological features of SCLC was examined. A gene signature was constructed based on TME genes to further evaluate the relationship between molecular subtypes of SCLC with the prognosis and clinical features.

Results: We identified a group of genes that are highly associated with TME. Several immune cells in TME cells were significantly correlated with SCLC prognosis (p<0.0001). These immune cells displayed diverse immune patterns. Three molecular subtypes of SCLC (TMEC1-3) were identified on the basis of enrichment of immune cell components, and these subtypes showed dissimilar prognosis profiles (p=0.03). The subtype with the best prognosis, TMEC3, was enriched with immune activation factors such as oncogene M0, oncogene M2, T cells follicular helper, and T cells CD8 (p<0.001). The TMEC1 subtype with the worst prognosis was enriched with T cells CD4 naive, B cells memory and Dendritic cells activated cells (p<0.001). Further analysis showed that the TME was significantly enriched with immune checkpoint genes, immune genes, and immune pathway genes (p<0.01). From the gene expression data, we identified four TME-related genes, GZMB, HAVCR2, PRF1 and TBX2, which were significantly associated with poor prognosis in both the training set and the validation set (p<0.05). These genes may serve as markers for monitoring tumor responses to immune checkpoint inhibitors.

Conclusion: This study shows that TME features may serve as markers for evaluating the response of SCLC cells to immunotherapy.

Keywords: Tumor microenvironment, small cell lung cancer, TME, bioinformatics, GEO, immune genes and pathways.

[1]
Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2018, 68(6), 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2018. CA Cancer J. Clin., 2018, 68(1), 7-30.
[http://dx.doi.org/10.3322/caac.21442] [PMID: 29313949]
[3]
Miller, K.D.; Siegel, R.L.; Lin, C.C.; Mariotto, A.B.; Kramer, J.L.; Rowland, J.H.; Stein, K.D.; Alteri, R.; Jemal, A. Cancer treatment and survivorship statistics, 2016. CA Cancer J. Clin., 2016, 66(4), 271-289.
[http://dx.doi.org/10.3322/caac.21349] [PMID: 27253694]
[4]
Kong, F.M.; Lally, B.E.; Chang, J.Y.; Chetty, I.J.; Decker, R.H.; Ginsburg, M.E.; Kestin, L.L.; Langer, C.J.; Movsas, B.; Videtic, G.M.; Willers, H.; Rosenzweig, K.E. ACR Appropriateness Criteria® radiation therapy for small-cell lung cancer. Am. J. Clin. Oncol., 2013, 36(2), 206-213.
[http://dx.doi.org/10.1097/COC.0b013e31827e5523] [PMID: 23511336]
[5]
Joshi, M.; Ayoola, A.; Belani, C.P. Small-cell lung cancer: an update on targeted therapies. Adv. Exp. Med. Biol., 2013, 779, 385-404.
[http://dx.doi.org/10.1007/978-1-4614-6176-0_18] [PMID: 23288650]
[6]
Spigel, D.R.; Socinski, M.A. Rationale for chemotherapy, immunotherapy, and checkpoint blockade in SCLC: beyond traditional treatment approaches. J. Thorac. Oncol., 2013, 8(5), 587-598.
[http://dx.doi.org/10.1097/JTO.0b013e318286cf88] [PMID: 23546044]
[7]
Gajewski, T.F.; Schreiber, H.; Fu, Y.X. Innate and adaptive immune cells in the tumor microenvironment. Nat. Immunol., 2013, 14(10), 1014-1022.
[http://dx.doi.org/10.1038/ni.2703] [PMID: 24048123]
[8]
Chalmers, Z.R.; Connelly, C.F.; Fabrizio, D.; Gay, L.; Ali, S.M.; Ennis, R.; Schrock, A.; Campbell, B.; Shlien, A.; Chmielecki, J.; Huang, F.; He, Y.; Sun, J.; Tabori, U.; Kennedy, M.; Lieber, D.S.; Roels, S.; White, J.; Otto, G.A.; Ross, J.S.; Garraway, L.; Miller, V.A.; Stephens, P.J.; Frampton, G.M. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med., 2017, 9(1), 34.
[http://dx.doi.org/10.1186/s13073-017-0424-2] [PMID: 28420421]
[9]
McGranahan, N.; Furness, A.J.; Rosenthal, R.; Ramskov, S.; Lyngaa, R.; Saini, S.K.; Jamal-Hanjani, M.; Wilson, G.A.; Birkbak, N.J.; Hiley, C.T.; Watkins, T.B.; Shafi, S.; Murugaesu, N.; Mitter, R.; Akarca, A.U.; Linares, J.; Marafioti, T.; Henry, J.Y.; Van Allen, E.M.; Miao, D.; Schilling, B.; Schadendorf, D.; Garraway, L.A.; Makarov, V.; Rizvi, N.A.; Snyder, A.; Hellmann, M.D.; Merghoub, T.; Wolchok, J.D.; Shukla, S.A.; Wu, C.J.; Peggs, K.S.; Chan, T.A.; Hadrup, S.R.; Quezada, S.A.; Swanton, C. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science, 2016, 351(6280), 1463-1469.
[http://dx.doi.org/10.1126/science.aaf1490] [PMID: 26940869]
[10]
Joyce, J.A.; Pollard, J.W. Microenvironmental regulation of metastasis. Nat. Rev. Cancer, 2009, 9(4), 239-252.
[http://dx.doi.org/10.1038/nrc2618] [PMID: 19279573]
[11]
Zou, W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat. Rev. Cancer, 2005, 5(4), 263-274.
[http://dx.doi.org/10.1038/nrc1586] [PMID: 15776005]
[12]
Dunn, G.P.; Old, L.J.; Schreiber, R.D. The immunobiology of cancer immunosurveillance and immunoediting. Immunity, 2004, 21(2), 137-148.
[http://dx.doi.org/10.1016/j.immuni.2004.07.017] [PMID: 15308095]
[13]
Rosenberg, J.E.; Hoffman-Censits, J.; Powles, T.; van der Heijden, M.S.; Balar, A.V.; Necchi, A.; Dawson, N.; O’Donnell, P.H.; Balmanoukian, A.; Loriot, Y.; Srinivas, S.; Retz, M.M.; Grivas, P.; Joseph, R.W.; Galsky, M.D.; Fleming, M.T.; Petrylak, D.P.; Perez-Gracia, J.L.; Burris, H.A.; Castellano, D.; Canil, C.; Bellmunt, J.; Bajorin, D.; Nickles, D.; Bourgon, R.; Frampton, G.M.; Cui, N.; Mariathasan, S.; Abidoye, O.; Fine, G.D.; Dreicer, R. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet, 2016, 387(10031), 1909-1920.
[http://dx.doi.org/10.1016/S0140-6736(16)00561-4] [PMID: 26952546]
[14]
Turley, S.J.; Cremasco, V.; Astarita, J.L. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat. Rev. Immunol., 2015, 15(11), 669-682.
[http://dx.doi.org/10.1038/nri3902] [PMID: 26471778]
[15]
Nishino, M.; Ramaiya, N.H.; Hatabu, H.; Hodi, F.S. Monitoring immune-checkpoint blockade: response evaluation and biomarker development. Nat. Rev. Clin. Oncol., 2017, 14(11), 655-668.
[http://dx.doi.org/10.1038/nrclinonc.2017.88] [PMID: 28653677]
[16]
Mariathasan, S.; Turley, S.J.; Nickles, D.; Castiglioni, A.; Yuen, K.; Wang, Y.; Kadel, E.E., III; Koeppen, H.; Astarita, J.L.; Cubas, R.; Jhunjhunwala, S.; Banchereau, R.; Yang, Y.; Guan, Y.; Chalouni, C.; Ziai, J.; Şenbabaoğlu, Y.; Santoro, S.; Sheinson, D.; Hung, J.; Giltnane, J.M.; Pierce, A.A.; Mesh, K.; Lianoglou, S.; Riegler, J.; Carano, R.A.D.; Eriksson, P.; Höglund, M.; Somarriba, L.; Halligan, D.L.; van der Heijden, M.S.; Loriot, Y.; Rosenberg, J.E.; Fong, L.; Mellman, I.; Chen, D.S.; Green, M.; Derleth, C.; Fine, G.D.; Hegde, P.S.; Bourgon, R.; Powles, T. TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature, 2018, 554(7693), 544-548.
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[17]
Lee, K.; Hwang, H.; Nam, K.T. Immune response and the tumor microenvironment: how they communicate to regulate gastric cancer. Gut Liver, 2014, 8(2), 131-139.
[http://dx.doi.org/10.5009/gnl.2014.8.2.131] [PMID: 24672653]
[18]
Remark, R.; Becker, C.; Gomez, J.E.; Damotte, D.; Dieu-Nosjean, M.C.; Sautès-Fridman, C.; Fridman, W.H.; Powell, C.A.; Altorki, N.K.; Merad, M.; Gnjatic, S. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care Med., 2015, 191(4), 377-390.
[http://dx.doi.org/10.1164/rccm.201409-1671PP] [PMID: 25369536]
[19]
Öjlert, A.K.; Halvorsen, A.R.; Nebdal, D.; Lund-Iversen, M.; Solberg, S.; Brustugun, O.T.; Lingjaerde, O.C.; Helland, Å. The immune microenvironment in non-small cell lung cancer is predictive of prognosis after surgery. Mol. Oncol., 2019, 13(5), 1166-1179.
[PMID: 30854794]
[20]
Newman, A.M.; Liu, C.L.; Green, M.R.; Gentles, A.J.; Feng, W.; Xu, Y.; Hoang, C.D.; Diehn, M.; Alizadeh, A.A. Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods, 2015, 12(5), 453-457.
[http://dx.doi.org/10.1038/nmeth.3337] [PMID: 25822800]
[21]
Becht, E.; Giraldo, N.A.; Lacroix, L.; Buttard, B.; Elarouci, N.; Petitprez, F.; Selves, J.; Laurent-Puig, P.; Sautès-Fridman, C.; Fridman, W.H.; de Reyniès, A. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol., 2016, 17(1), 218.
[http://dx.doi.org/10.1186/s13059-016-1070-5] [PMID: 27765066]
[22]
Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; Carter, S.L.; Getz, G.; Stemke-Hale, K.; Mills, G.B.; Verhaak, R.G. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun., 2013, 4, 2612.
[http://dx.doi.org/10.1038/ncomms3612] [PMID: 24113773]
[23]
Fu, H.; Zhu, Y.; Wang, Y.; Liu, Z.; Zhang, J.; Xie, H.; Fu, Q.; Dai, B.; Ye, D.; Xu, J. Identification and validation of stromal immunotype predict survival and benefit from adjuvant chemotherapy in patients with muscle-invasive bladder cancer. Clin. Cancer Res., 2018, 24(13), 3069-3078.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-2687] [PMID: 29514839]
[24]
Zeng, D.; Li, M.; Zhou, R.; Zhang, J.; Sun, H.; Shi, M.; Bin, J.; Liao, Y.; Rao, J.; Liao, W. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. Cancer Immunol. Res., 2019, 7(5), 737-750.
[http://dx.doi.org/10.1158/2326-6066.CIR-18-0436] [PMID: 30842092]
[25]
Sørlie, T.; Perou, C.M.; Tibshirani, R.; Aas, T.; Geisler, S.; Johnsen, H.; Hastie, T.; Eisen, M.B.; van de Rijn, M.; Jeffrey, S.S.; Thorsen, T.; Quist, H.; Matese, J.C.; Brown, P.O.; Botstein, D.; Lønning, P.E.; Børresen-Dale, A.L. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc. Natl. Acad. Sci. USA, 2001, 98(19), 10869-10874.
[http://dx.doi.org/10.1073/pnas.191367098] [PMID: 11553815]
[26]
Zhang, S.; Wang, Y.; Gu, Y.; Zhu, J.; Ci, C.; Guo, Z.; Chen, C.; Wei, Y.; Lv, W.; Liu, H.; Zhang, D.; Zhang, Y. Specific breast cancer prognosis-subtype distinctions based on DNA methylation patterns. Mol. Oncol., 2018, 12(7), 1047-1060.
[http://dx.doi.org/10.1002/1878-0261.12309] [PMID: 29675884]
[27]
Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: a guide for non-statisticians. Int. J. Endocrinol. Metab., 2012, 10(2), 486-489.
[http://dx.doi.org/10.5812/ijem.3505] [PMID: 23843808]
[28]
Hazra, A.; Gogtay, N. Biostatistics series module 3: comparing groups: numerical variables. Indian J. Dermatol., 2016, 61(3), 251-260.
[http://dx.doi.org/10.4103/0019-5154.182416] [PMID: 27293244]
[29]
Sharma, P.; Wagner, K.; Wolchok, J.D.; Allison, J.P. Novel cancer immunotherapy agents with survival benefit: recent successes and next steps. Nat. Rev. Cancer, 2011, 11(11), 805-812.
[http://dx.doi.org/10.1038/nrc3153] [PMID: 22020206]
[30]
Macciò, A.; Madeddu, C. Inflammation and ovarian cancer. Cytokine, 2012, 58(2), 133-147.
[http://dx.doi.org/10.1016/j.cyto.2012.01.015] [PMID: 22349527]
[31]
Pagès, F.; Berger, A.; Camus, M.; Sanchez-Cabo, F.; Costes, A.; Molidor, R.; Mlecnik, B.; Kirilovsky, A.; Nilsson, M.; Damotte, D.; Meatchi, T.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Galon, J. Effector memory T cells, early metastasis, and survival in colorectal cancer. N. Engl. J. Med., 2005, 353(25), 2654-2666.
[http://dx.doi.org/10.1056/NEJMoa051424] [PMID: 16371631]
[32]
Galon, J.; Costes, A.; Sanchez-Cabo, F.; Kirilovsky, A.; Mlecnik, B.; Lagorce-Pagès, C.; Tosolini, M.; Camus, M.; Berger, A.; Wind, P.; Zinzindohoué, F.; Bruneval, P.; Cugnenc, P.H.; Trajanoski, Z.; Fridman, W.H.; Pagès, F. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science, 2006, 313(5795), 1960-1964.
[http://dx.doi.org/10.1126/science.1129139] [PMID: 17008531]
[33]
Arakawa, A.; Vollmer, S.; Tietze, J.; Galinski, A.; Heppt, M.V.; Bürdek, M.; Berking, C.; Prinz, J.C. Clonality of CD4+ blood T cells predicts longer survival with CTLA4 or PD-1 checkpoint inhibition in advanced melanoma. Front. Immunol., 2019, 10, 1336.
[http://dx.doi.org/10.3389/fimmu.2019.01336] [PMID: 31275310]
[34]
Xu, J.Y.; Wang, W.S.; Zhou, J.; Liu, C.Y.; Shi, J.L.; Lu, P.H.; Ding, J.L. The importance of a conjoint analysis of tumor-associated macrophages and immune checkpoints in pancreatic cancer. Pancreas, 2019, 48(7), 904-912.
[http://dx.doi.org/10.1097/MPA.0000000000001364] [PMID: 31268976]
[35]
Turbitt, W.J.; Xu, Y.; Sosnoski, D.M.; Collins, S.D.; Meng, H.; Mastro, A.M.; Rogers, C.J. Physical activity plus energy restriction prevents 4T1.2 mammary tumor progression, MDSC accumulation, and an immunosuppressive tumor microenvironment. Cancer Prev. Res., 2019.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0233]
[36]
Yarchoan, M.; Xing, D.; Luan, L.; Xu, H.; Sharma, R.B.; Popovic, A.; Pawlik, T.M.; Kim, A.K.; Zhu, Q.; Jaffee, E.M.; Taube, J.M.; Anders, R.A. Characterization of the immune microenvironment in hepatocellular carcinoma. Clin. Cancer Res., 2017, 23(23), 7333-7339.
[http://dx.doi.org/10.1158/1078-0432.CCR-17-0950] [PMID: 28928158]
[37]
Leonardi, G.C.; Candido, S.; Cervello, M.; Nicolosi, D.; Raiti, F.; Travali, S.; Spandidos, D.A.; Libra, M. The tumor microenvironment in hepatocellular carcinoma (review). Int. J. Oncol., 2012, 40(6), 1733-1747.
[PMID: 22447316]
[38]
Nagorsen, D.; Scheibenbogen, C.; Marincola, F.M.; Letsch, A.; Keilholz, U. Natural T cell immunity against cancer. Clin. Cancer Res., 2003, 9(12), 4296-4303.
[39]
Liu, Y.; Cao, X. Immunosuppressive cells in tumor immune escape and metastasis. J. Mol. Med. (Berl.), 2016, 94(5), 509-522.
[http://dx.doi.org/10.1007/s00109-015-1376-x] [PMID: 26689709]
[40]
Francisco, L.M.; Sage, P.T.; Sharpe, A.H. The PD-1 pathway in tolerance and autoimmunity. Immunol. Rev., 2010, 236, 219-242.
[http://dx.doi.org/10.1111/j.1600-065X.2010.00923.x] [PMID: 20636820]
[41]
Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; Zhang, C.; Lunceford, J.K.; Joe, A.; Cheng, J.; Webber, A.L.; Ibrahim, N.; Plimack, E.R.; Ott, P.A.; Seiwert, T.Y.; Ribas, A.; McClanahan, T.K.; Tomassini, J.E.; Loboda, A.; Kaufman, D. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science, 2018, 362(6411) eaar3593
[http://dx.doi.org/10.1126/science.aar3593] [PMID: 30309915]
[42]
Larimer, B.M.; Wehrenberg-Klee, E.; Dubois, F.; Mehta, A.; Kalomeris, T.; Flaherty, K.; Boland, G.; Mahmood, U.; Granzyme, B. Granzyme B PET imaging as a predictive biomarker of immunotherapy response. Cancer Res., 2017, 77(9), 2318-2327.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-3346] [PMID: 28461564]
[43]
Tasaka, R.; Fukuda, T.; Shimomura, M.; Inoue, Y.; Wada, T.; Kawanishi, M.; Yasui, T.; Sumi, T. TBX2 expression is associated with platinum-sensitivity of ovarian serous carcinoma. Oncol. Lett., 2018, 15(3), 3085-3090.
[PMID: 29435041]
[44]
Nandana, S.; Tripathi, M.; Duan, P.; Chu, C.Y.; Mishra, R.; Liu, C.; Jin, R.; Yamashita, H.; Zayzafoon, M.; Bhowmick, N.A.; Zhau, H.E.; Matusik, R.J.; Chung, L.W. Bone metastasis of prostate cancer can be therapeutically targeted at the TBX2-WNT signaling axis. Cancer Res., 2017, 77(6), 1331-1344.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0497] [PMID: 28108510]
[45]
Yi, F.; Du, J.; Ni, W.; Liu, W. Tbx2 confers poor prognosis in glioblastoma and promotes temozolomide resistance with change of mitochondrial dynamics. OncoTargets Ther., 2017, 10, 1059-1069.
[http://dx.doi.org/10.2147/OTT.S124012] [PMID: 28260920]
[46]
Song, M.J.; Lim, S.Y.; Park, J.S.; Yoon, H.I.; Lee, J.H.; Kim, S.Y.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Chang, J.; Lee, S.H.; Lee, C.T. Prognosis of small cell lung cancer with idiopathic pulmonary fibrosis: assessment according to GAP stage. J. Oncol., 2019, 2019, 5437390
[http://dx.doi.org/10.1155/2019/5437390] [PMID: 31186636]
[47]
Zhang, Z.; Guo, Y. High TBX2 expression predicts poor prognosis in non-small cell lung cancer. Neoplasma, 2014, 61(4), 476-480.
[http://dx.doi.org/10.4149/neo_2014_059] [PMID: 25027744]
[48]
Yang, W.; Wei, Y.; Yang, L.; Zhang, J.; Zhong, Z.; Storm, G.; Meng, F. cell-selective penetrating and reduction-responsive polymersomes effectively inhibit progression of orthotopic human lung tumor in vivo. J. Control. Release, 2018, 290, 141-149.
[49]
Shen, T.; Chen, Z.; Zhao, Z.J.; Wu, J. Genetic defects of the IRF1-mediated major histocompatibility complex class I antigen presentation pathway occur prevalently in the JAK2 gene in non-small cell lung cancer. Oncotarget, 2017, 8(37), 60975-60986.
[http://dx.doi.org/10.18632/oncotarget.17689] [PMID: 28977839]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy