Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Cancer Stem Cells and Combination Therapies to Eradicate Them

Author(s): Qi Tang, Dan Yin, Yao Wang, Wenxuan Du, Yuhan Qin, Anni Ding and Hanmei Li*

Volume 26, Issue 17, 2020

Page: [1994 - 2008] Pages: 15

DOI: 10.2174/1381612826666200406083756

Price: $65

Abstract

Cancer stem cells (CSCs) show self-renewal ability and multipotential differentiation, like normal stem or progenitor cells, and which proliferate uncontrollably and can escape the effects of drugs and phagocytosis by immune cells. Traditional monotherapies, such as surgical resection, radiotherapy and chemotherapy, cannot eradicate CSCs, however, combination therapy may be more effective at eliminating CSCs. The present review summarizes the characteristics of CSCs and several promising combination therapies to eradicate them.

Keywords: CSCs, combination therapy, nanoparticle, photothermal therapy, gene therapy, chemotherapy.

[1]
Hamburger AW, Salmon SE. Primary bioassay of human tumor stem cells. Science 1977; 197(4302): 461-3.
[http://dx.doi.org/10.1126/science.560061] [PMID: 560061]
[2]
Gupta PB, Chaffer CL, Weinberg RA. Cancer stem cells: mirage or reality? Nat Med 2009; 15(9): 1010-2.
[http://dx.doi.org/10.1038/nm0909-1010] [PMID: 19734877]
[3]
Clarke MF, Fuller M. Stem cells and cancer: two faces of eve. Cell 2006; 124(6): 1111-5.
[http://dx.doi.org/10.1016/j.cell.2006.03.011] [PMID: 16564000]
[4]
Shackleton M, Quintana E, Fearon ER, Morrison SJ. Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 2009; 138(5): 822-9.
[http://dx.doi.org/10.1016/j.cell.2009.08.017] [PMID: 19737509]
[5]
Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer 2005; 5(4): 275-84.
[http://dx.doi.org/10.1038/nrc1590] [PMID: 15803154]
[6]
Zhao Y, Alakhova DY, Kabanov AV. Can nanomedicines kill cancer stem cells? Adv Drug Deliv Rev 2013; 65(13-14): 1763-83.
[http://dx.doi.org/10.1016/j.addr.2013.09.016] [PMID: 24120657]
[7]
Li C, Heidt DG, Dalerba P, et al. Identification of pancreatic cancer stem cells. Cancer Res 2007; 67(3): 1030-7.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2030] [PMID: 17283135]
[8]
Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100(7): 3983-8.
[http://dx.doi.org/10.1073/pnas.0530291100] [PMID: 12629218]
[9]
Schmidt M, Scheulen ME, Dittrich C, et al. An open-label, randomized phase II study of adecatumumab, a fully human anti-EpCAM antibody, as monotherapy in patients with metastatic breast cancer. Ann Oncol 2010; 21(2): 275-82.
[http://dx.doi.org/10.1093/annonc/mdp314] [PMID: 19633042]
[10]
Shi P, Liu W, Tala , et al. Metformin suppresses triple-negative breast cancer stem cells by targeting KLF5 for degradation. Cell Discov 2017; 3: 17010.
[http://dx.doi.org/10.1038/celldisc.2017.10] [PMID: 28480051]
[11]
Barbieri F, Thellung S, Ratto A, et al. In vitro and in vivo antiproliferative activity of metformin on stem-like cells isolated from spontaneous canine mammary carcinomas: translational implications for human tumors. BMC Cancer 2015; 15: 228.
[http://dx.doi.org/10.1186/s12885-015-1235-8] [PMID: 25884842]
[12]
Chen JH, Huang WC, Bamodu OA, Chang PM, Chao TY, Huang TH. Monospecific antibody targeting of CDH11 inhibits epithelial-to-mesenchymal transition and represses cancer stem cell-like phenotype by up-regulating miR-335 in metastatic breast cancer, in vitro and in vivo. BMC Cancer 2019; 19(1): 634.
[http://dx.doi.org/10.1186/s12885-019-5811-1] [PMID: 31248373]
[13]
Mirzaei HR, Mirzaei H, Namdar A, Rahmati M, Till BG, Hadjati J. Predictive and therapeutic biomarkers in chimeric antigen receptor T-cell therapy: A clinical perspective. J Cell Physiol 2019; 234(5): 5827-41.
[http://dx.doi.org/10.1002/jcp.27519] [PMID: 30317583]
[14]
Pützer BM, Solanki M, Herchenröder O. Advances in cancer stem cell targeting: How to strike the evil at its root. Adv Drug Deliv Rev 2017; 120: 89-107.
[http://dx.doi.org/10.1016/j.addr.2017.07.013] [PMID: 28736304]
[15]
Honari M, Shafabakhsh R, Reiter RJ, Mirzaei H, Asemi Z. Resveratrol is a promising agent for colorectal cancer prevention and treatment: focus on molecular mechanisms. Cancer Cell Int 2019; 19: 180.
[http://dx.doi.org/10.1186/s12935-019-0906-y] [PMID: 31341423]
[16]
Zhao Y, Dong Q, Li J, et al. Targeting cancer stem cells and their niche: perspectives for future therapeutic targets and strategies. Semin Cancer Biol 2018; 53: 139-55.
[http://dx.doi.org/10.1016/j.semcancer.2018.08.002] [PMID: 30081228]
[17]
Baccelli I, Trumpp A. The evolving concept of cancer and metastasis stem cells. J Cell Biol 2012; 198(3): 281-93.
[http://dx.doi.org/10.1083/jcb.201202014] [PMID: 22869594]
[18]
Zhang L, Riethdorf S, Wu G, Wang T, Yang K, Peng G, et al. Meta-analysis of the prognostic value of circulating tumor cells in breast cancer Clinical cancer research: an official journal of the American Association for Cancer Research 2012; 18(20): 5701-10.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-1587]
[19]
O’Flaherty JD, Gray S, Richard D, et al. Circulating tumour cells, their role in metastasis and their clinical utility in lung cancer. Lung Cancer 2012; 76(1): 19-25.
[http://dx.doi.org/10.1016/j.lungcan.2011.10.018] [PMID: 22209049]
[20]
Msaouel P, Koutsilieris M. Diagnostic value of circulating tumor cell detection in bladder and urothelial cancer: systematic review and meta-analysis. BMC Cancer 2011; 11: 336.
[http://dx.doi.org/10.1186/1471-2407-11-336] [PMID: 21816094]
[21]
Hashimoto M, Tanaka F, Yoneda K, et al. Circulating tumor cells as a potential biomarker in selecting patients for pulmonary metastasectomy from colorectal cancer: report of a case. Case Rep Oncol 2012; 5(3): 542-5.
[http://dx.doi.org/10.1159/000343677] [PMID: 23139669]
[22]
Desai A, Yan Y, Gerson SL. Concise Reviews: Cancer Stem Cell Targeted Therapies: Toward Clinical Success. Stem Cells Transl Med 2019; 8(1): 75-81.
[http://dx.doi.org/10.1002/sctm.18-0123] [PMID: 30328686]
[23]
Fatima F, Nawaz M. Stem cell-derived exosomes: roles in stromal remodeling, tumor progression, and cancer immunotherapy. Chin J Cancer 2015; 34(12): 541-53.
[http://dx.doi.org/10.1186/s40880-015-0051-5] [PMID: 26369565]
[24]
Wang T, Shigdar S, Gantier MP, et al. Cancer stem cell targeted therapy: progress amid controversies. Oncotarget 2015; 6(42): 44191-206.
[http://dx.doi.org/10.18632/oncotarget.6176] [PMID: 26496035]
[25]
Gong W, Sun B, Sun H, et al. Nodal signaling activates the Smad2/3 pathway to regulate stem cell-like properties in breast cancer cells. Am J Cancer Res 2017; 7(3): 503-17.
[PMID: 28401007]
[26]
Park SY, Lee HE, Li H, Shipitsin M, Gelman R, Polyak K. Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer Clinical cancer research: an official journal of the American Association for Cancer Research 2010; 16(3): 876.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-1532]
[27]
Singh A, Settleman J. EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene 2010; 29(34): 4741-51.
[http://dx.doi.org/10.1038/onc.2010.215] [PMID: 20531305]
[28]
Polyak K, Weinberg RA. Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9(4): 265-73.
[http://dx.doi.org/10.1038/nrc2620] [PMID: 19262571]
[29]
Talukdar S, Emdad L, Das SK, Sarkar D, Fisher PB. Evolving Strategies for Therapeutically Targeting Cancer Stem Cells. Adv Cancer Res 2016; 131: 159-91.
[http://dx.doi.org/10.1016/bs.acr.2016.04.003] [PMID: 27451127]
[30]
Li HZ, Yi TB, Wu ZY. Suspension culture combined with chemotherapeutic agents for sorting of breast cancer stem cells. BMC Cancer 2008; 8: 135.
[http://dx.doi.org/10.1186/1471-2407-8-135] [PMID: 18477410]
[31]
Schech A, Kazi A, Yu S, Shah P, Sabnis G. Histone Deacetylase Inhibitor Entinostat Inhibits Tumor-Initiating Cells in Triple-Negative Breast Cancer Cells. Mol Cancer Ther 2015; 14(8): 1848-57.
[http://dx.doi.org/10.1158/1535-7163.MCT-14-0778] [PMID: 26037781]
[32]
Dragu DL, Necula LG, Bleotu C, Diaconu CC, Chivu-Economescu M. Therapies targeting cancer stem cells: Current trends and future challenges. World J Stem Cells 2015; 7(9): 1185-201.
[PMID: 26516409]
[33]
Gharagozloo M, Mirzaei HR, Bagherpour B, et al. Cell cycle analysis of the CD133(+) and CD133(-) cells isolated from human colorectal cancer. J Cancer Res Ther 2012; 8(3): 399-403.
[http://dx.doi.org/10.4103/0973-1482.103520] [PMID: 23174722]
[34]
Skubitz AP, Taras EP, Boylan KL, et al. Targeting CD133 in an in vivo ovarian cancer model reduces ovarian cancer progression. Gynecol Oncol 2013; 130(3): 579-87.
[http://dx.doi.org/10.1016/j.ygyno.2013.05.027] [PMID: 23721800]
[35]
Wu YH, Chiu WT, Young MJ, Chang TH, Huang YF, Chou CY. Solanum Incanum Extract Downregulates Aldehyde Dehydrogenase 1-Mediated Stemness and Inhibits Tumor Formation in Ovarian Cancer Cells. J Cancer 2015; 6(10): 1011-9.
[http://dx.doi.org/10.7150/jca.12738] [PMID: 26366215]
[36]
Yang Z, Li C, Fan Z, et al. Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells. Eur Urol 2017; 71(1): 8-12.
[http://dx.doi.org/10.1016/j.eururo.2016.06.025] [PMID: 27387124]
[37]
Zhu P, Fan Z. Cancer stem cells and tumorigenesis. Biophys Rep 2018; 4(4): 178-88.
[http://dx.doi.org/10.1007/s41048-018-0062-2] [PMID: 30310855]
[38]
Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, et al. Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. European journal of cancer (Oxford, England : 1990) 2007; 43(5): 935-46.
[http://dx.doi.org/10.1016/j.ejca.2007.01.017]
[39]
Rappa G, Fodstad O, Lorico A. The stem cell-associated antigen CD133 (Prominin-1) is a molecular therapeutic target for metastatic melanoma. Stem Cells 2008; 26(12): 3008-17.
[http://dx.doi.org/10.1634/stemcells.2008-0601] [PMID: 18802032]
[40]
Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell 2012; 21(3): 283-96.
[http://dx.doi.org/10.1016/j.ccr.2012.03.003] [PMID: 22439924]
[41]
Welte Y, Adjaye J, Lehrach HR, Regenbrecht CR. Cancer stem cells in solid tumors: elusive or illusive? Cell Commun Signal 2010; 8(1): 6.
[http://dx.doi.org/10.1186/1478-811X-8-6] [PMID: 20459772]
[42]
Gibbs KD Jr, Jager A, Crespo O, et al. Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1-driven AML. Cell Stem Cell 2012; 10(2): 210-7.
[http://dx.doi.org/10.1016/j.stem.2012.01.004] [PMID: 22305570]
[43]
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB. Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 2009; 8(10): 806-23.
[http://dx.doi.org/10.1038/nrd2137] [PMID: 19794444]
[44]
Visvader JE. Cells of origin in cancer. Nature 2011; 469(7330): 314-22.
[http://dx.doi.org/10.1038/nature09781] [PMID: 21248838]
[45]
Clarke MF. Self-renewal and solid-tumor stem cells Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation 2005; 112: 14-6.
[http://dx.doi.org/10.1016/j.bbmt.2004.11.011]
[46]
Pece S, Tosoni D, Confalonieri S, et al. Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 2010; 140(1): 62-73.
[http://dx.doi.org/10.1016/j.cell.2009.12.007] [PMID: 20074520]
[47]
Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139(5): 871-90.
[http://dx.doi.org/10.1016/j.cell.2009.11.007] [PMID: 19945376]
[48]
Mani SA, Guo W, Liao MJ, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell 2008; 133(4): 704-15.
[http://dx.doi.org/10.1016/j.cell.2008.03.027] [PMID: 18485877]
[49]
Friedl P, Alexander S. Cancer invasion and the microenvironment: plasticity and reciprocity. Cell 2011; 147(5): 992-1009.
[http://dx.doi.org/10.1016/j.cell.2011.11.016] [PMID: 22118458]
[50]
Clevers H. The cancer stem cell: premises, promises and challenges. Nat Med 2011; 17(3): 313-9.
[http://dx.doi.org/10.1038/nm.2304] [PMID: 21386835]
[51]
Mirzaei H, Salehi H, Sahebkar A, Avan A, Jaafari MR, Namdar A, et al. Deciphering biological characteristics of tumorigenic subpopulations in human colorectal cancer reveals cellular plasticity Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences 2016; 21: 64.
[http://dx.doi.org/10.4103/1735-1995.187355]
[52]
Medema JP. Cancer stem cells: the challenges ahead. Nat Cell Biol 2013; 15(4): 338-44.
[http://dx.doi.org/10.1038/ncb2717] [PMID: 23548926]
[53]
Meacham CE, Morrison SJ. Tumour heterogeneity and cancer cell plasticity. Nature 2013; 501(7467): 328-37.
[http://dx.doi.org/10.1038/nature12624] [PMID: 24048065]
[54]
Vakili-Ghartavol R, Mombeiny R, Salmaninejad A, et al. Tumor-associated macrophages and epithelial-mesenchymal transition in cancer: Nanotechnology comes into view. J Cell Physiol 2018; 233(12): 9223-36.
[http://dx.doi.org/10.1002/jcp.27027] [PMID: 30078227]
[55]
Eun K, Ham SW, Kim H. Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 2017; 50(3): 117-25.
[http://dx.doi.org/10.5483/BMBRep.2017.50.3.222] [PMID: 27998397]
[56]
Neal JT, Kuo CJ. Organoids as Models for Neoplastic Transformation. Annu Rev Pathol 2016; 11: 199-220.
[http://dx.doi.org/10.1146/annurev-pathol-012615-044249] [PMID: 26907527]
[57]
Hay M, Thomas DW, Craighead JL, Economides C, Rosenthal J. Clinical development success rates for investigational drugs. Nat Biotechnol 2014; 32(1): 40-51.
[http://dx.doi.org/10.1038/nbt.2786] [PMID: 24406927]
[58]
Prasetyanti PR, Medema JP. Intra-tumor heterogeneity from a cancer stem cell perspective. Mol Cancer 2017; 16(1): 41.
[http://dx.doi.org/10.1186/s12943-017-0600-4] [PMID: 28209166]
[59]
Amerasekera S, Turner M, Purushotham AD. Paget's "seed and soil" hypothesis revisited Journal of BUON : official journal of the Balkan Union of Oncology. 2004; 9(4): 465-7.
[60]
Fidler IJ. The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 2003; 3(6): 453-8.
[http://dx.doi.org/10.1038/nrc1098] [PMID: 12778135]
[61]
Riester M, Wu HJ, Zehir A, et al. Distance in cancer gene expression from stem cells predicts patient survival. PLoS One 2017; 12(3) e0173589
[http://dx.doi.org/10.1371/journal.pone.0173589] [PMID: 28333954]
[62]
Giancotti FG. Mechanisms governing metastatic dormancy and reactivation. Cell 2013; 155(4): 750-64.
[http://dx.doi.org/10.1016/j.cell.2013.10.029] [PMID: 24209616]
[63]
Cabrera MC, Hollingsworth RE, Hurt EM. Cancer stem cell plasticity and tumor hierarchy. World J Stem Cells 2015; 7(1): 27-36.
[http://dx.doi.org/10.4252/wjsc.v7.i1.27] [PMID: 25621103]
[64]
Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med 2013; 19(11): 1423-37.
[http://dx.doi.org/10.1038/nm.3394] [PMID: 24202395]
[65]
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell 2011; 144(5): 646-74.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[66]
Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001; 48(4): 526-35.
[http://dx.doi.org/10.1136/gut.48.4.526] [PMID: 11247898]
[67]
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet 2001; 357(9255): 539-45.
[http://dx.doi.org/10.1016/S0140-6736(00)04046-0] [PMID: 11229684]
[68]
Korkaya H, Kim GI, Davis A, et al. Activation of an IL6 inflammatory loop mediates trastuzumab resistance in HER2+ breast cancer by expanding the cancer stem cell population. Mol Cell 2012; 47(4): 570-84.
[http://dx.doi.org/10.1016/j.molcel.2012.06.014] [PMID: 22819326]
[69]
Pickup MW, Mouw JK, Weaver VM. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep 2014; 15(12): 1243-53.
[http://dx.doi.org/10.15252/embr.201439246] [PMID: 25381661]
[70]
Halder G, Dupont S, Piccolo S. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat Rev Mol Cell Biol 2012; 13(9): 591-600.
[http://dx.doi.org/10.1038/nrm3416] [PMID: 22895435]
[71]
Paszek MJ, Zahir N, Johnson KR, et al. Tensional homeostasis and the malignant phenotype. Cancer Cell 2005; 8(3): 241-54.
[http://dx.doi.org/10.1016/j.ccr.2005.08.010] [PMID: 16169468]
[72]
Provenzano PP, Inman DR, Eliceiri KW, et al. Collagen density promotes mammary tumor initiation and progression. BMC Med 2008; 6: 11.
[http://dx.doi.org/10.1186/1741-7015-6-11] [PMID: 18442412]
[73]
Dupont S, Morsut L, Aragona M, et al. Role of YAP/TAZ in mechanotransduction. Nature 2011; 474(7350): 179-83.
[http://dx.doi.org/10.1038/nature10137] [PMID: 21654799]
[74]
Mo JS, Park HW, Guan KL. The Hippo signaling pathway in stem cell biology and cancer. EMBO Rep 2014; 15(6): 642-56.
[http://dx.doi.org/10.15252/embr.201438638] [PMID: 24825474]
[75]
Yin MX, Zhang L. Hippo signaling in epithelial stem cells. Acta Biochim Biophys Sin (Shanghai) 2015; 47(1): 39-45.
[http://dx.doi.org/10.1093/abbs/gmu111] [PMID: 25476205]
[76]
Cordenonsi M, Zanconato F, Azzolin L, et al. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 2011; 147(4): 759-72.
[http://dx.doi.org/10.1016/j.cell.2011.09.048] [PMID: 22078877]
[77]
Dupont S. Role of YAP/TAZ in cell-matrix adhesion-mediated signalling and mechanotransduction. Exp Cell Res 2016; 343(1): 42-53.
[http://dx.doi.org/10.1016/j.yexcr.2015.10.034] [PMID: 26524510]
[78]
Kim JY, Lee HY, Park KK, Choi YK, Nam JS, Hong IS. CWP232228 targets liver cancer stem cells through Wnt/β-catenin signaling: a novel therapeutic approach for liver cancer treatment. Oncotarget 2016; 7(15): 20395-409.
[http://dx.doi.org/10.18632/oncotarget.7954] [PMID: 26967248]
[79]
Squadrito ML, De Palma M. A niche role for periostin and macrophages in glioblastoma. Nat Cell Biol 2015; 17(2): 107-9.
[http://dx.doi.org/10.1038/ncb3095] [PMID: 25633271]
[80]
Ambasta RK, Sharma A, Kumar P. Nanoparticle mediated targeting of VEGFR and cancer stem cells for cancer therapy. Vasc Cell 2011; 3: 26.
[http://dx.doi.org/10.1186/2045-824X-3-26] [PMID: 22082307]
[81]
Pautu V, Leonetti D, Lepeltier E, Clere N, Passirani C. Nanomedicine as a potent strategy in melanoma tumor microenvironment. Pharmacol Res 2017; 126: 31-53.
[http://dx.doi.org/10.1016/j.phrs.2017.02.014] [PMID: 28223185]
[82]
Zhang Y, Yang P, Wang XF. Microenvironmental regulation of cancer metastasis by miRNAs. Trends Cell Biol 2014; 24(3): 153-60.
[http://dx.doi.org/10.1016/j.tcb.2013.09.007] [PMID: 24125906]
[83]
Psaila B, Lyden D. The metastatic niche: adapting the foreign soil. Nat Rev Cancer 2009; 9(4): 285-93.
[http://dx.doi.org/10.1038/nrc2621] [PMID: 19308068]
[84]
Sceneay J, Smyth MJ, Möller A. The pre-metastatic niche: finding common ground. Cancer Metastasis Rev 2013; 32(3-4): 449-64.
[http://dx.doi.org/10.1007/s10555-013-9420-1] [PMID: 23636348]
[85]
Duong HQ, Hwang JS, Kim HJ, Kang HJ, Seong YS, Bae I. Aldehyde dehydrogenase 1A1 confers intrinsic and acquired resistance to gemcitabine in human pancreatic adenocarcinoma MIA PaCa-2 cells. Int J Oncol 2012; 41(3): 855-61.
[http://dx.doi.org/10.3892/ijo.2012.1516] [PMID: 22710732]
[86]
Efferth T, Konkimalla VB, Wang YF, Sauerbrey A, Meinhardt S, Zintl F, et al. Prediction of broad spectrum resistance of tumors towards anticancer drugs Clinical cancer research: an official journal of the American Association for Cancer Research 2008; 14(8): 2405-12.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4525]
[87]
Li YJ, Lei YH, Yao N, et al. Autophagy and multidrug resistance in cancer. Chin J Cancer 2017; 36(1): 52.
[http://dx.doi.org/10.1186/s40880-017-0219-2] [PMID: 28646911]
[88]
Sharom FJ. The P-glycoprotein multidrug transporter. Essays Biochem 2011; 50(1): 161-78.
[http://dx.doi.org/10.1042/bse0500161] [PMID: 21967057]
[89]
Cordon-Cardo C, O’Brien JP, Boccia J, Casals D, Bertino JR, Melamed MR. Expression of the multidrug resistance gene product (P-glycoprotein) in human normal and tumor tissues. J Histochem Cytochem 1990; 38(9): 1277-87.
[http://dx.doi.org/10.1177/38.9.1974900] [PMID: 1974900]
[90]
Sarkadi B, Homolya L, Szakács G, Váradi A. Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 2006; 86(4): 1179-236.
[http://dx.doi.org/10.1152/physrev.00037.2005] [PMID: 17015488]
[91]
Adamska A, Falasca M. ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol 2018; 24(29): 3222-38.
[http://dx.doi.org/10.3748/wjg.v24.i29.3222] [PMID: 30090003]
[92]
Tarasova NI, Seth R, Tarasov SG, et al. Transmembrane inhibitors of P-glycoprotein, an ABC transporter. J Med Chem 2005; 48(11): 3768-75.
[http://dx.doi.org/10.1021/jm049065t] [PMID: 15916428]
[93]
Crowley E, McDevitt CA, Callaghan R. Generating inhibitors of P-glycoprotein: where to, now? Methods Mol Biol 2010; 596: 405-32.
[http://dx.doi.org/10.1007/978-1-60761-416-6_18] [PMID: 19949934]
[94]
Angelastro JM, Lamé MW. Overexpression of CD133 promotes drug resistance in C6 glioma cells. Mol Cancer Res 2010; 8(8): 1105-15.
[http://dx.doi.org/10.1158/1541-7786.MCR-09-0383] [PMID: 20663862]
[95]
Frank NY, Pendse SS, Lapchak PH, et al. Regulation of progenitor cell fusion by ABCB5 P-glycoprotein, a novel human ATP-binding cassette transporter. J Biol Chem 2003; 278(47): 47156-65.
[http://dx.doi.org/10.1074/jbc.M308700200] [PMID: 12960149]
[96]
Frank NY, Margaryan A, Huang Y, et al. ABCB5-mediated doxorubicin transport and chemoresistance in human malignant melanoma. Cancer Res 2005; 65(10): 4320-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-3327] [PMID: 15899824]
[97]
Schatton T, Murphy GF, Frank NY, et al. Identification of cells initiating human melanomas. Nature 2008; 451(7176): 345-9.
[http://dx.doi.org/10.1038/nature06489] [PMID: 18202660]
[98]
Hirschmann-Jax C, Foster AE, Wulf GG, et al. A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 2004; 101(39): 14228-33.
[http://dx.doi.org/10.1073/pnas.0400067101] [PMID: 15381773]
[99]
Ho MM, Ng AV, Lam S, Hung JY. Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 2007; 67(10): 4827-33.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-3557] [PMID: 17510412]
[100]
Singh S, Brocker C, Koppaka V, et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilic stress. Free Radic Biol Med 2013; 56: 89-101.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.11.010] [PMID: 23195683]
[101]
Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, et al. Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer Clinical cancer research : an official journal of the American Association for Cancer Research. 2010; 16(1): 45-55.
[102]
Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Res 1984; 44(11): 5156-60.
[PMID: 6488175]
[103]
Friedman HS, Colvin OM, Kaufmann SH, et al. Cyclophosphamide resistance in medulloblastoma. Cancer Res 1992; 52(19): 5373-8.
[PMID: 1356617]
[104]
Tanei T, Morimoto K, Shimazu K, Kim SJ, Tanji Y, Taguchi T, et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential Paclitaxel and epirubicin-based chemotherapy for breast cancers Clinical cancer research: an official journal of the American Association for Cancer Research 2009; 15(12): 4234-1.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1479]
[105]
Rausch V, Liu L, Kallifatidis G, et al. Synergistic activity of sorafenib and sulforaphane abolishes pancreatic cancer stem cell characteristics. Cancer Res 2010; 70(12): 5004-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0066] [PMID: 20530687]
[106]
Dean M. ABC transporters, drug resistance, and cancer stem cells. J Mammary Gland Biol Neoplasia 2009; 14(1): 3-9.
[http://dx.doi.org/10.1007/s10911-009-9109-9] [PMID: 19224345]
[107]
Bao S, Wu Q, McLendon RE, et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444(7120): 756-60.
[http://dx.doi.org/10.1038/nature05236] [PMID: 17051156]
[108]
Blazek ER, Foutch JL, Maki G. Daoy medulloblastoma cells that express CD133 are radioresistant relative to CD133- cells, and the CD133+ sector is enlarged by hypoxia. Int J Radiat Oncol Biol Phys 2007; 67(1): 1-5.
[http://dx.doi.org/10.1016/j.ijrobp.2006.09.037] [PMID: 17084552]
[109]
Lu KH, Chen YW, Tsai PH, Tsai ML, Lee YY, Chiang CY, et al. Evaluation of radiotherapy effect in resveratrol-treated medulloblastoma cancer stem-like cells Child's nervous system : ChNS : official journal of the International Society for Pediatric Neurosurgery 2009; 25(5): 543-0.
[http://dx.doi.org/10.1007/s00381-009-0826-6]
[110]
Phillips TM, McBride WH, Pajonk F. The response of CD24(-/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 2006; 98(24): 1777-85.
[http://dx.doi.org/10.1093/jnci/djj495] [PMID: 17179479]
[111]
Pajonk F, Vlashi E, McBride WH. Radiation resistance of cancer stem cells: the 4 R’s of radiobiology revisited. Stem Cells 2010; 28(4): 639-48.
[http://dx.doi.org/10.1002/stem.318] [PMID: 20135685]
[112]
Rich JN. Cancer stem cells in radiation resistance. Cancer Res 2007; 67(19): 8980-4.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0895] [PMID: 17908997]
[113]
Trott KR. Experimental results and clinical implications of the four R’s in fractionated radiotherapy. Radiat Environ Biophys 1982; 20(3): 159-70.
[http://dx.doi.org/10.1007/BF01325465] [PMID: 7051129]
[114]
Goedegebuure RSA, de Klerk LK, Bass AJ, Derks S, Thijssen VLJL. Combining Radiotherapy With Anti-angiogenic Therapy and Immunotherapy; A Therapeutic Triad for Cancer? Front Immunol 2019; 9: 3107.
[http://dx.doi.org/10.3389/fimmu.2018.03107] [PMID: 30692993]
[115]
Krause M, Dubrovska A, Linge A, Baumann M. Cancer stem cells: Radioresistance, prediction of radiotherapy outcome and specific targets for combined treatments. Adv Drug Deliv Rev 2017; 109: 63-73.
[http://dx.doi.org/10.1016/j.addr.2016.02.002] [PMID: 26877102]
[116]
Diehn M, Cho RW, Lobo NA, et al. Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 2009; 458(7239): 780-3.
[http://dx.doi.org/10.1038/nature07733] [PMID: 19194462]
[117]
Bese NS, Sut PA, Ober A. The effect of treatment interruptions in the postoperative irradiation of breast cancer. Oncology 2005; 69(3): 214-23.
[http://dx.doi.org/10.1159/000087909] [PMID: 16127290]
[118]
Scharpfenecker M, Kruse JJ, Sprong D, Russell NS, Ten Dijke P, Stewart FA. Ionizing radiation shifts the PAI-1/ID-1 balance and activates notch signaling in endothelial cells. Int J Radiat Oncol Biol Phys 2009; 73(2): 506-13.
[http://dx.doi.org/10.1016/j.ijrobp.2008.09.052] [PMID: 19147015]
[119]
Weinmaster G, Kopan R. A garden of Notch-ly delights. Development 2006; 133(17): 3277-82.
[http://dx.doi.org/10.1242/dev.02515] [PMID: 16908627]
[120]
Ehrhart EJ, Segarini P, Tsang ML, Carroll AG, Barcellos-Hoff MH. Latent transforming growth factor beta1 activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J 1997; 11(12): 991-1002.
[http://dx.doi.org/10.1096/fasebj.11.12.9337152] [PMID: 9337152]
[121]
Itoh F, Itoh S, Goumans MJ, et al. Synergy and antagonism between Notch and BMP receptor signaling pathways in endothelial cells. EMBO J 2004; 23(3): 541-51.
[http://dx.doi.org/10.1038/sj.emboj.7600065] [PMID: 14739937]
[122]
Pawlik TM, Keyomarsi K. Role of cell cycle in mediating sensitivity to radiotherapy. Int J Radiat Oncol Biol Phys 2004; 59(4): 928-42.
[http://dx.doi.org/10.1016/j.ijrobp.2004.03.005] [PMID: 15234026]
[123]
Zölzer F, Streffer C. Increased radiosensitivity with chronic hypoxia in four human tumor cell lines. Int J Radiat Oncol Biol Phys 2002; 54(3): 910-20.
[http://dx.doi.org/10.1016/S0360-3016(02)02963-2] [PMID: 12377345]
[124]
Robert L, Ribas A, Hu-Lieskovan S. Combining targeted therapy with immunotherapy. Can 1+1 equal more than 2? Semin Immunol 2016; 28(1): 73-80.
[http://dx.doi.org/10.1016/j.smim.2016.01.001] [PMID: 26861544]
[125]
Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 2014; 5: 360.
[http://dx.doi.org/10.3389/fimmu.2014.00360] [PMID: 25120546]
[126]
Kawasaki BT, Farrar WL. Cancer stem cells, CD200 and immunoevasion. Trends Immunol 2008; 29(10): 464-8.
[http://dx.doi.org/10.1016/j.it.2008.07.005] [PMID: 18775673]
[127]
Nahas GR, Patel SA, Bliss SA, Rameshwar P. Can breast cancer stem cells evade the immune system? Curr Med Chem 2012; 19(35): 6036-49.
[http://dx.doi.org/10.2174/0929867311209066036] [PMID: 22963570]
[128]
Gajewski TF, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev 2006; 213: 131-45.
[http://dx.doi.org/10.1111/j.1600-065X.2006.00442.x] [PMID: 16972901]
[129]
Nathan C, Muller WA. Putting the brakes on innate immunity: a regulatory role for CD200? Nat Immunol 2001; 2(1): 17-9.
[http://dx.doi.org/10.1038/83124] [PMID: 11135572]
[130]
Kretz-Rommel A, Qin F, Dakappagari N, Ravey EP, McWhirter J, Oltean D, et al. CD200 expression on tumor cells suppresses antitumor immunity: new approaches to cancer immunotherapy Journal of immunology (Baltimore, Md : 1950) 2007; 178(9): 5595-605.
[http://dx.doi.org/10.4049/jimmunol.178.9.5595]
[131]
Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 2007; 7(11): 834-46.
[http://dx.doi.org/10.1038/nrc2256] [PMID: 17957189]
[132]
Kim YN, Koo KH, Sung JY, Yun UJ, Kim H. Anoikis resistance: an essential prerequisite for tumor metastasis. Int J Cell Biol 2012; 2012 306879
[http://dx.doi.org/10.1155/2012/306879] [PMID: 22505926]
[133]
Patel P, Chen EI. Cancer stem cells, tumor dormancy, and metastasis. Front Endocrinol (Lausanne) 2012; 3: 125.
[http://dx.doi.org/10.3389/fendo.2012.00125] [PMID: 23109929]
[134]
Crowley NJ, Seigler HF. Late recurrence of malignant melanoma. Analysis of 168 patients. Ann Surg 1990; 212(2): 173-7.
[http://dx.doi.org/10.1097/00000658-199008000-00010] [PMID: 2375648]
[135]
Saphner T, Tormey DC, Gray R. Annual hazard rates of recurrence for breast cancer after primary therapy. J Clin Oncol 1996; 14(10): 2738-46.
[http://dx.doi.org/10.1200/JCO.1996.14.10.2738] [PMID: 8874335]
[136]
Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G. Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 1994; 86(1): 45-8.
[http://dx.doi.org/10.1093/jnci/86.1.45] [PMID: 8271282]
[137]
Chin L, Garraway LA, Fisher DE. Malignant melanoma: genetics and therapeutics in the genomic era. Genes Dev 2006; 20(16): 2149-82.
[http://dx.doi.org/10.1101/gad.1437206] [PMID: 16912270]
[138]
Waldman FM, DeVries S, Chew KL, Moore DH II, Kerlikowske K, Ljung BM. Chromosomal alterations in ductal carcinomas in situ and their in situ recurrences. J Natl Cancer Inst 2000; 92(4): 313-20.
[http://dx.doi.org/10.1093/jnci/92.4.313] [PMID: 10675380]
[139]
Pantel K, Brakenhoff RH, Brandt B. Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nat Rev Cancer 2008; 8(5): 329-40.
[http://dx.doi.org/10.1038/nrc2375] [PMID: 18404148]
[140]
Kleffel S, Schatton T. Tumor dormancy and cancer stem cells: two sides of the same coin? Adv Exp Med Biol 2013; 734: 145-79.
[http://dx.doi.org/10.1007/978-1-4614-1445-2_8] [PMID: 23143979]
[141]
Almog N. Molecular mechanisms underlying tumor dormancy. Cancer Lett 2010; 294(2): 139-46.
[http://dx.doi.org/10.1016/j.canlet.2010.03.004] [PMID: 20363069]
[142]
Huang R, Rofstad EK. Cancer stem cells (CSCs), cervical CSCs and targeted therapies. Oncotarget 2017; 8(21): 35351-67.
[http://dx.doi.org/10.18632/oncotarget.10169] [PMID: 27343550]
[143]
Zheng ZG, Xu H, Suo SS, et al. The Essential Role of H19 Contributing to Cisplatin Resistance by Regulating Glutathione Metabolism in High-Grade Serous Ovarian Cancer. Sci Rep 2016; 6: 26093.
[http://dx.doi.org/10.1038/srep26093] [PMID: 27193186]
[144]
Mahmoodi S, Nezafat N, Negahdaripour M, Ghasemi Y. A New Approach for Cancer Immunotherapy Based on the Cancer Stem Cell Antigens Properties. Curr Mol Med 2019; 19(1): 2-11.
[http://dx.doi.org/10.2174/1566524019666190204114721] [PMID: 30714514]
[145]
Zeuner A, Francescangeli F, Contavalli P, et al. Elimination of quiescent/slow-proliferating cancer stem cells by Bcl-XL inhibition in non-small cell lung cancer. Cell Death Differ 2014; 21(12): 1877-88.
[http://dx.doi.org/10.1038/cdd.2014.105] [PMID: 25034785]
[146]
Ribas A, Wolchok JD. Cancer immunotherapy using checkpoint blockade. Science 2018; 359(6382): 1350-5.
[http://dx.doi.org/10.1126/science.aar4060] [PMID: 29567705]
[147]
Wang H, Chen NG, Minev BR, Szalay AA. Oncolytic vaccinia virus GLV-1h68 strain shows enhanced replication in human breast cancer stem-like cells in comparison to breast cancer cells. J Transl Med 2012; 10: 167.
[http://dx.doi.org/10.1186/1479-5876-10-167] [PMID: 22901246]
[148]
Marcato P, Dean CA, Giacomantonio CA, Lee PW. Oncolytic reovirus effectively targets breast cancer stem cells Molecular therapy: the journal of the American Society of Gene Therapy 2009; 17(6): 972.
[http://dx.doi.org/10.1038/mt.2009.58]
[149]
Cripe TP, Wang PY, Marcato P, Mahller YY, Lee PW. Targeting cancer-initiating cells with oncolytic viruses Molecular therapy: the journal of the American Society of Gene Therapy 2009; 17(10): 1677-82.
[http://dx.doi.org/10.1038/mt.2009.193]
[150]
Zhang X, Komaki R, Wang L, Fang B, Chang JY. Treatment of radioresistant stem-like esophageal cancer cells by an apoptotic gene-armed, telomerase-specific oncolytic adenovirus Clinical cancer research: an official journal of the American Association for Cancer Research 2008; 14(9): 2813-3.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1528]
[151]
Eriksson M, Guse K, Bauerschmitz G, Virkkunen P, Tarkkanen M, Tanner M, et al. Oncolytic adenoviruses kill breast cancer initiating CD44+CD24-/low cells Molecular therapy : the journal of the American Society of Gene Therapy. 2007; 15(12): 2088-93.
[152]
Yang Y, Xu H, Huang W, et al. Targeting lung cancer stem-like cells with TRAIL gene armed oncolytic adenovirus. J Cell Mol Med 2015; 19(5): 915-23.
[http://dx.doi.org/10.1111/jcmm.12397] [PMID: 25683371]
[153]
Beech JR, Shin SJ, Smith JA, Kelly KA. Mechanisms for targeted delivery of nanoparticles in cancer. Curr Pharm Des 2013; 19(37): 6560-74.
[http://dx.doi.org/10.2174/1381612811319370002] [PMID: 23621529]
[154]
Yhee JY, Lee S, Kim K. Advances in targeting strategies for nanoparticles in cancer imaging and therapy. Nanoscale 2014; 6(22): 13383-90.
[http://dx.doi.org/10.1039/C4NR04334K] [PMID: 25273283]
[155]
Kim C, Shah BP, Subramaniam P, Lee KB. Synergistic induction of apoptosis in brain cancer cells by targeted codelivery of siRNA and anticancer drugs. Mol Pharm 2011; 8(5): 1955-61.
[http://dx.doi.org/10.1021/mp100460h] [PMID: 21793576]
[156]
Khan M, Ong ZY, Wiradharma N, Attia AB, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater 2012; 1(4): 373-92.
[http://dx.doi.org/10.1002/adhm.201200109] [PMID: 23184770]
[157]
McGuire JJ. Anticancer antifolates: current status and future directions. Curr Pharm Des 2003; 9(31): 2593-613.
[http://dx.doi.org/10.2174/1381612033453712] [PMID: 14529544]
[158]
Pourquier P, Pommier Y. Topoisomerase I-mediated DNA damage. Adv Cancer Res 2001; 80: 189-216.
[http://dx.doi.org/10.1016/S0065-230X(01)80016-6] [PMID: 11034544]
[159]
Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell 2015; 161(2): 205-14.
[http://dx.doi.org/10.1016/j.cell.2015.03.030] [PMID: 25860605]
[160]
Phuphanich S, Wheeler CJ, Rudnick JD, et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62(1): 125-35.
[http://dx.doi.org/10.1007/s00262-012-1319-0] [PMID: 22847020]
[161]
Taieb J, Moehler M, Boku N, et al. Evolution of checkpoint inhibitors for the treatment of metastatic gastric cancers: Current status and future perspectives. Cancer Treat Rev 2018; 66: 104-13.
[http://dx.doi.org/10.1016/j.ctrv.2018.04.004] [PMID: 29730461]
[162]
Mirzaei HR, Pourghadamyari H, Rahmati M, et al. Gene-knocked out chimeric antigen receptor (CAR) T cells: Tuning up for the next generation cancer immunotherapy. Cancer Lett 2018; 423: 95-104.
[http://dx.doi.org/10.1016/j.canlet.2018.03.010] [PMID: 29544719]
[163]
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Front Immunol 2017; 8: 1850.
[http://dx.doi.org/10.3389/fimmu.2017.01850] [PMID: 29312333]
[164]
Mirzaei HR, Mirzaei H, Lee SY, Hadjati J, Till BG. Prospects for chimeric antigen receptor (CAR) γδ T cells: A potential game changer for adoptive T cell cancer immunotherapy. Cancer Lett 2016; 380(2): 413-23.
[http://dx.doi.org/10.1016/j.canlet.2016.07.001] [PMID: 27392648]
[165]
Mirzaei HR, Jamali A, Jafarzadeh L, et al. Construction and functional characterization of a fully human anti-CD19 chimeric antigen receptor (huCAR)-expressing primary human T cells. J Cell Physiol 2019; 234(6): 9207-15.
[http://dx.doi.org/10.1002/jcp.27599] [PMID: 30362586]
[166]
Collins DM, O’Donovan N, McGowan PM, O’Sullivan F, Duffy MJ, Crown J. Trastuzumab induces antibody-dependent cell-mediated cytotoxicity (ADCC) in HER-2-non-amplified breast cancer cell lines. Ann Oncol 2012; 23(7): 1788-95.
[http://dx.doi.org/10.1093/annonc/mdr484] [PMID: 22056974]
[167]
Luo M, Fan H, Nagy T, et al. Mammary epithelial-specific ablation of the focal adhesion kinase suppresses mammary tumorigenesis by affecting mammary cancer stem/progenitor cells. Cancer Res 2009; 69(2): 466-74.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3078] [PMID: 19147559]
[168]
Cooper ZA, Juneja VR, Sage PT, et al. Response to BRAF inhibition in melanoma is enhanced when combined with immune checkpoint blockade. Cancer Immunol Res 2014; 2(7): 643-54.
[http://dx.doi.org/10.1158/2326-6066.CIR-13-0215] [PMID: 24903021]
[169]
Schmittnaegel M, Rigamonti N, Kadioglu E, et al. Dual angiopoietin-2 and VEGFA inhibition elicits antitumor immunity that is enhanced by PD-1 checkpoint blockade. Sci Transl Med 2017; 9(385) eaak9670
[http://dx.doi.org/10.1126/scitranslmed.aak9670] [PMID: 28404865]
[170]
Tian L, Goldstein A, Wang H, et al. Mutual regulation of tumour vessel normalization and immunostimulatory reprogramming. Nature 2017; 544(7649): 250-4.
[http://dx.doi.org/10.1038/nature21724] [PMID: 28371798]
[171]
Rini BI, Stein M, Shannon P, et al. Phase 1 dose-escalation trial of tremelimumab plus sunitinib in patients with metastatic renal cell carcinoma. Cancer 2011; 117(4): 758-67.
[http://dx.doi.org/10.1002/cncr.25639] [PMID: 20922784]
[172]
Radvanyi L. Immunotherapy exposes cancer stem cell resistance and a new synthetic lethality Molecular therapy: the journal of the American Society of Gene Therapy 2013; 21(8): 1472-4.
[http://dx.doi.org/10.1038/mt.2013.160]
[173]
Bolm L, Käsmann L, Paysen A, et al. Multimodal Anti-tumor Approaches Combined with Immunotherapy to Overcome Tumor Resistance in Esophageal and Gastric Cancer. Anticancer Res 2018; 38(6): 3231-42.
[http://dx.doi.org/10.21873/anticanres.12588] [PMID: 29848670]
[174]
Zhang K, Peng Z, Huang X, et al. Phase II Trial of Adjuvant Immunotherapy with Autologous Tumor-derived Gp96 Vaccination in Patients with Gastric Cancer. J Cancer 2017; 8(10): 1826-32.
[http://dx.doi.org/10.7150/jca.18946] [PMID: 28819380]
[175]
Masuzawa T, Fujiwara Y, Okada K, et al. Phase I/II study of S-1 plus cisplatin combined with peptide vaccines for human vascular endothelial growth factor receptor 1 and 2 in patients with advanced gastric cancer. Int J Oncol 2012; 41(4): 1297-304.
[http://dx.doi.org/10.3892/ijo.2012.1573] [PMID: 22842485]
[176]
Dillman RO, Selvan SR, Schiltz PM, et al. Phase II trial of dendritic cells loaded with antigens from self-renewing, proliferating autologous tumor cells as patient-specific antitumor vaccines in patients with metastatic melanoma: final report. Cancer Biother Radiopharm 2009; 24(3): 311-9.
[http://dx.doi.org/10.1089/cbr.2008.0599] [PMID: 19538053]
[177]
Dillman RO, Cornforth AN, Depriest C, McClay EF, Amatruda TT, de Leon C, et al. Tumor stem cell antigens as consolidative active specific immunotherapy: a randomized phase II trial of dendritic cells versus tumor cells in patients with metastatic melanoma Journal of immunotherapy (Hagerstown, Md: 1997). 2012; 35(8): 641-9.
[http://dx.doi.org/10.1097/CJI.0b013e31826f79c8]
[178]
Dillman RO, Nayak SK, Beutel L. Establishing in vitro cultures of autologous tumor cells for use in active specific immunotherapy Journal of immunotherapy with emphasis on tumor immunology: official journal of the Society for Biological Therapy 1993; 14(1): 65-9.
[http://dx.doi.org/10.1097/00002371-199307000-00009]
[179]
Dillman RO, Beutel LD, Barth NM, et al. Irradiated cells from autologous tumor cell lines as patient-specific vaccine therapy in 125 patients with metastatic cancer: induction of delayed-type hypersensitivity to autologous tumor is associated with improved survival. Cancer Biother Radiopharm 2002; 17(1): 51-66.
[http://dx.doi.org/10.1089/10849780252824073] [PMID: 11915174]
[180]
Wang X, Bayer ME, Chen X, et al. Phase I trial of active specific immunotherapy with autologous dendritic cells pulsed with autologous irradiated tumor stem cells in hepatitis B-positive patients with hepatocellular carcinoma. J Surg Oncol 2015; 111(7): 862-7.
[http://dx.doi.org/10.1002/jso.23897] [PMID: 25873455]
[181]
Katschinski DM, Boos K, Schindler SG, Fandrey J. Pivotal role of reactive oxygen species as intracellular mediators of hyperthermia-induced apoptosis. J Biol Chem 2000; 275(28): 21094-8.
[http://dx.doi.org/10.1074/jbc.M001629200] [PMID: 10781588]
[182]
Matés JM, Sánchez-Jiménez FM. Role of reactive oxygen species in apoptosis: implications for cancer therapy. Int J Biochem Cell Biol 2000; 32(2): 157-70.
[http://dx.doi.org/10.1016/S1357-2725(99)00088-6] [PMID: 10687951]
[183]
Wang B, Zhang H, An J, et al. Sequential Intercellular Delivery Nanosystem for Enhancing ROS-Induced Antitumor Therapy. Nano Lett 2019; 19(6): 3505-18.
[http://dx.doi.org/10.1021/acs.nanolett.9b00336] [PMID: 31034238]
[184]
Fajardo LF, Egbert B, Marmor J, Hahn GM. Effects of hyperthermia in a malignant tumor. Cancer 1980; 45(3): 613-23.
[http://dx.doi.org/10.1002/1097-0142(19800201)45:3<613:AID-CNCR2820450331>3.0.CO;2-E] [PMID: 7353209]
[185]
Kreso A, Dick JE. Evolution of the cancer stem cell model. Cell Stem Cell 2014; 14(3): 275-91.
[http://dx.doi.org/10.1016/j.stem.2014.02.006] [PMID: 24607403]
[186]
Sun X, Xing L, Ling CC, Li GC. The effect of mild temperature hyperthermia on tumour hypoxia and blood perfusion: relevance for radiotherapy, vascular targeting and imaging. International journal of hyperthermia: the official journal of European Society for Hyperthermic Oncology North American Hyperthermia Group 2010; 26(3): 224-31.
[http://dx.doi.org/10.3109/02656730903479855]
[187]
Sun X, Li XF, Russell J, et al. Changes in tumor hypoxia induced by mild temperature hyperthermia as assessed by dual-tracer immunohistochemistry. Radiother Oncol 2008; 88(2): 269-76.
[http://dx.doi.org/10.1016/j.radonc.2008.05.015] [PMID: 18538874]
[188]
Huang H, Yu K, Mohammadi A, Karanthanasis E, Godley A, Yu JS. It’s Getting Hot in Here: Targeting Cancer Stem-like Cells with Hyperthermia. J Stem Cell Transplant Biol 2017; 2(2): 113.
[PMID: 30542674]
[189]
Shi J, Su Y, Liu W, Chang J, Zhang Z. A nanoliposome-based photoactivable drug delivery system for enhanced cancer therapy and overcoming treatment resistance. Int J Nanomedicine 2017; 12: 8257-75.
[http://dx.doi.org/10.2147/IJN.S143776] [PMID: 29180864]
[190]
Lee H, Park HJ, Park CS, et al. Response of breast cancer cells and cancer stem cells to metformin and hyperthermia alone or combined. PLoS One 2014; 9(2) e87979
[http://dx.doi.org/10.1371/journal.pone.0087979] [PMID: 24505341]
[191]
Chi MS, Yang KL, Chang YC, et al. Comparing the Effectiveness of Combined External Beam Radiation and Hyperthermia Versus External Beam Radiation Alone in Treating Patients With Painful Bony Metastases: A Phase 3 Prospective, Randomized, Controlled Trial. Int J Radiat Oncol Biol Phys 2018; 100(1): 78-87.
[http://dx.doi.org/10.1016/j.ijrobp.2017.09.030] [PMID: 29066122]
[192]
Atkinson RL, Zhang M, Diagaradjane P, et al. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2010; 2(55) 55ra79
[http://dx.doi.org/10.1126/scitranslmed.3001447] [PMID: 20980696]
[193]
Xu L, Tong G, Song Q, et al. Enhanced Intracellular Ca2+ Nanogenerator for Tumor-Specific Synergistic Therapy via Disruption of Mitochondrial Ca2+ Homeostasis and Photothermal Therapy. ACS Nano 2018; 12(7): 6806-18.
[http://dx.doi.org/10.1021/acsnano.8b02034] [PMID: 29966081]
[194]
Man J, Shoemake JD, Ma T, et al. Hyperthermia Sensitizes Glioma Stem-like Cells to Radiation by Inhibiting AKT Signaling. Cancer Res 2015; 75(8): 1760-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3621] [PMID: 25712125]
[195]
Goardon N, Marchi E, Atzberger A, et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19(1): 138-52.
[http://dx.doi.org/10.1016/j.ccr.2010.12.012] [PMID: 21251617]
[196]
Dieter SM, Ball CR, Hoffmann CM, et al. Distinct types of tumor-initiating cells form human colon cancer tumors and metastases. Cell Stem Cell 2011; 9(4): 357-65.
[http://dx.doi.org/10.1016/j.stem.2011.08.010] [PMID: 21982235]
[197]
Zhao L, Gu J, Dong A, et al. Potent antitumor activity of oncolytic adenovirus expressing mda-7/IL-24 for colorectal cancer. Hum Gene Ther 2005; 16(7): 845-58.
[http://dx.doi.org/10.1089/hum.2005.16.845] [PMID: 16000066]
[198]
Bauerschmitz GJ, Ranki T, Kangasniemi L, et al. Tissue-specific promoters active in CD44+CD24-/low breast cancer cells. Cancer Res 2008; 68(14): 5533-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-5288] [PMID: 18632604]
[199]
Ahmed M, Moussa M, Goldberg SN. Synergy in cancer treatment between liposomal chemotherapeutics and thermal ablation. Chem Phys Lipids 2012; 165(4): 424-37.
[http://dx.doi.org/10.1016/j.chemphyslip.2011.12.002] [PMID: 22197685]
[200]
Wang CH, Chiou SH, Chou CP, Chen YC, Huang YJ, Peng CA. Photothermolysis of glioblastoma stem-like cells targeted by carbon nanotubes conjugated with CD133 monoclonal antibody. Nanomedicine (Lond) 2011; 7(1): 69-79.
[http://dx.doi.org/10.1016/j.nano.2010.06.010] [PMID: 20620237]
[201]
Pan ST, Li ZL, He ZX, Qiu JX, Zhou SF. Molecular mechanisms for tumour resistance to chemotherapy. Clin Exp Pharmacol Physiol 2016; 43(8): 723-37.
[http://dx.doi.org/10.1111/1440-1681.12581] [PMID: 27097837]
[202]
Ghasemi F, Shafiee M, Banikazemi Z, et al. Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract 2019; 215(10) 152556
[http://dx.doi.org/10.1016/j.prp.2019.152556] [PMID: 31358480]
[203]
Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol Res 2019; 147 104353
[http://dx.doi.org/10.1016/j.phrs.2019.104353] [PMID: 31306775]
[204]
Hesari A, Azizian M, Sheikhi A, et al. Chemopreventive and therapeutic potential of curcumin in esophageal cancer: Current and future status. Int J Cancer 2019; 144(6): 1215-26.
[http://dx.doi.org/10.1002/ijc.31947] [PMID: 30362511]
[205]
Banikazemi Z, Haji HA, Mohammadi M, et al. Diet and cancer prevention: Dietary compounds, dietary MicroRNAs, and dietary exosomes. J Cell Biochem 2018; 119(1): 185-96.
[http://dx.doi.org/10.1002/jcb.26244] [PMID: 28657651]
[206]
Mirzaei H, Khoi MJ, Azizi M, Goodarzi M. Can curcumin and its analogs be a new treatment option in cancer therapy? Cancer Gene Ther 2016; 23(11): 410.
[http://dx.doi.org/10.1038/cgt.2016.47] [PMID: 27853147]
[207]
Pourhanifeh MH, Abbaszadeh-Goudarzi K, Goodarzi M, et al. Resveratrol: A new potential therapeutic agent for melanoma? Curr Med Chem 2019; 24(2): 457-9.
[http://dx.doi.org/10.2174/0929867326666191212101225] [PMID: 31830881]
[208]
Amiri A, Tehran MM, Asemi Z, et al. Role of resveratrol in modulating microRNAs in human diseases: From cancer to inflammatory disorder. Curr Med Chem 2019; 21(3): 451-4.
[http://dx.doi.org/10.2174/0929867326666191212102407] [PMID: 31830882]
[209]
Sun R, Liu Y, Li SY, et al. Co-delivery of all-trans-retinoic acid and doxorubicin for cancer therapy with synergistic inhibition of cancer stem cells. Biomaterials 2015; 37: 405-14.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.018] [PMID: 25453968]
[210]
Khan H, Mirzaei HR, Amiri A, Kupeli Akkol E, Ashhad Halimi SM, Mirzaei H. Glyco-nanoparticles: New drug delivery systems in cancer therapy. Semin Cancer Biol 2019; 579(19): 30400-6.
[http://dx.doi.org/10.1016/j.semcancer.2019.12.004] [PMID: 31870939]
[211]
Gao Z, Zhang L, Sun Y. Nanotechnology applied to overcome tumor drug resistance Journal of controlled release: official journal of the Controlled Release Society 2012; 162(1): 45-55.
[http://dx.doi.org/10.1016/j.jconrel.2012.05.051]
[212]
Steichen SD, Caldorera-Moore M, Peppas NA. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics European journal of pharmaceutical sciences: official journal of the European Federation for Pharmaceutical Sciences 2013; 48(3): 416-27.
[http://dx.doi.org/10.1016/j.ejps.2012.12.006]
[213]
Zhang M, Liu E, Cui Y, Huang Y. Nanotechnology-based combination therapy for overcoming multidrug-resistant cancer. Cancer Biol Med 2017; 14(3): 212-27.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2017.0054] [PMID: 28884039]
[214]
Gurunathan S, Kang MH, Qasim M, Kim JH. Nanoparticle-Mediated Combination Therapy: Two-in-One Approach for Cancer. Int J Mol Sci 2018; 19(10) E3264
[http://dx.doi.org/10.3390/ijms19103264] [PMID: 30347840]
[215]
Mirzaei HR, Sahebkar A, Salehi R, et al. Boron neutron capture therapy: Moving toward targeted cancer therapy. J Cancer Res Ther 2016; 12(2): 520-5.
[http://dx.doi.org/10.4103/0973-1482.176167] [PMID: 27461603]
[216]
Xue HY, Liu S, Wong HL. Nanotoxicity: a key obstacle to clinical translation of siRNA-based nanomedicine. Nanomedicine (Lond) 2014; 9(2): 295-312.
[http://dx.doi.org/10.2217/nnm.13.204] [PMID: 24552562]
[217]
Salarinia R, Sahebkar A, Peyvandi M, et al. Epi-Drugs and Epi-miRs: Moving Beyond Current Cancer Therapies. Curr Cancer Drug Targets 2016; 16(9): 773-88.
[http://dx.doi.org/10.2174/1568009616666151207110143] [PMID: 26638884]
[218]
Pecot CV, Calin GA, Coleman RL, Lopez-Berestein G, Sood AK. RNA interference in the clinic: challenges and future directions. Nat Rev Cancer 2011; 11(1): 59-67.
[http://dx.doi.org/10.1038/nrc2966] [PMID: 21160526]
[219]
Peer D, Dekel Y, Melikhov D, Margalit R. Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res 2004; 64(20): 7562-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-4046] [PMID: 15492283]
[220]
Abbasi M, Lavasanifar A, Uludag H. Recent attempts at RNAi-mediated P-glycoprotein downregulation for reversal of multidrug resistance in cancer. Med Res Rev 2013; 33(1): 33-53.
[http://dx.doi.org/10.1002/med.20244] [PMID: 21523793]
[221]
Shi S, Han L, Deng L, Zhang Y, Shen H, Gong T, et al. Dual drugs (microRNA-34a and paclitaxel)-loaded functional solid lipid nanoparticles for synergistic cancer cell suppression Journal of controlled release : official journal of the Controlled Release Society. 2014; 194: 228-37.
[222]
Shi J, Liu W, Fu Y, Yin N, Zhang H, Chang J, et al. US-detonated nano bombs facilitate targeting treatment of resistant breast cancer Journal of controlled release: official journal of the Controlled Release Society 2018; 374: 9-23.
[223]
Meng H, Mai WX, Zhang H, et al. Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo. ACS Nano 2013; 7(2): 994-1005.
[http://dx.doi.org/10.1021/nn3044066] [PMID: 23289892]
[224]
Zhang CG, Zhu WJ, Liu Y, et al. Novel polymer micelle mediated co-delivery of doxorubicin and P-glycoprotein siRNA for reversal of multidrug resistance and synergistic tumor therapy. Sci Rep 2016; 6: 23859.
[http://dx.doi.org/10.1038/srep23859] [PMID: 27030638]
[225]
Si ML, Zhu S, Wu H, Lu Z, Wu F, Mo YY. miR-21-mediated tumor growth. Oncogene 2007; 26(19): 2799-803.
[http://dx.doi.org/10.1038/sj.onc.1210083] [PMID: 17072344]
[226]
Rui M, Qu Y, Gao T, Ge Y, Feng C, Xu X. Simultaneous delivery of anti-miR21 with doxorubicin prodrug by mimetic lipoprotein nanoparticles for synergistic effect against drug resistance in cancer cells. Int J Nanomedicine 2016; 12: 217-37.
[http://dx.doi.org/10.2147/IJN.S122171] [PMID: 28115844]
[227]
Mirzaei H, Sahebkar A, Jaafari MR, et al. PiggyBac as a novel vector in cancer gene therapy: current perspective. Cancer Gene Ther 2016; 23(2-3): 45-7.
[http://dx.doi.org/10.1038/cgt.2015.68] [PMID: 26742580]
[228]
Li SY, Sun R, Wang HX, Shen S, Liu Y, Du XJ, et al. Combination therapy with epigenetic-targeted and chemotherapeutic drugs delivered by nanoparticles to enhance the chemotherapy response and overcome resistance by breast cancer stem cells Journal of controlled release: official journal of the Controlled Release Society 2015; 205: 7-14.
[http://dx.doi.org/10.1016/j.jconrel.2014.11.011]
[229]
Moradian Tehrani R, Verdi J, Noureddini M, et al. Mesenchymal stem cells: A new platform for targeting suicide genes in cancer. J Cell Physiol 2018; 233(5): 3831-45.
[http://dx.doi.org/10.1002/jcp.26094] [PMID: 28703313]
[230]
Mohammadi M, Jaafari MR, Mirzaei HR, Mirzaei H. Mesenchymal stem cell: a new horizon in cancer gene therapy. Cancer Gene Ther 2016; 23(9): 285-6.
[http://dx.doi.org/10.1038/cgt.2016.35] [PMID: 27650780]
[231]
Mirzaei H, Sahebkar A, Avan A, et al. Application of Mesenchymal Stem Cells in Melanoma: A Potential Therapeutic Strategy for Delivery of Targeted Agents. Curr Med Chem 2016; 23(5): 455-63.
[http://dx.doi.org/10.2174/0929867323666151217122033] [PMID: 26674785]
[232]
Mirzaei H, Salehi H, Oskuee RK, et al. The therapeutic potential of human adipose-derived mesenchymal stem cells producing CXCL10 in a mouse melanoma lung metastasis model. Cancer Lett 2018; 419: 30-9.
[http://dx.doi.org/10.1016/j.canlet.2018.01.029] [PMID: 29331419]
[233]
Mirzaei H, Sahebkar A, Sichani LS, et al. Therapeutic application of multipotent stem cells. J Cell Physiol 2018; 233(4): 2815-23.
[http://dx.doi.org/10.1002/jcp.25990] [PMID: 28475219]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy