Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Artemia species: An Important Tool to Screen General Toxicity Samples

Author(s): Epole Ntungwe N, Eva M. Domínguez-Martín, Amilcar Roberto, Joana Tavares, Vera M. S. Isca, Paula Pereira, Maria-João Cebola and Patrícia Rijo*

Volume 26, Issue 24, 2020

Page: [2892 - 2908] Pages: 17

DOI: 10.2174/1381612826666200406083035

Abstract

Medicinal plants are a good source of novel therapeutic drugs, due to the phytochemicals present. Artemia, commonly known as brine shrimp, is a tiny halophilic invertebrate belonging to class Crustacean, which plays an important role in saline aquatic and marine eco-systems. Besides its usage in aquaculture, it is also highly valued for its application in toxicity detection and it is used in areas such as Ecology, Physiology, Ecotoxicology, Aquaculture and Genetics. Furthermore, Artemia based lethality assay (brine shrimp lethality assay, BSLA) is rapid, convenient and low cost. Presently, brine shrimp lethality assays are enormously employed in research and applied toxicology. It has been used in the study of natural products as a preliminary toxicity assay to screen a large number of extracts and compounds for drug discovery in medicinal plants. The aim of this review paper is to collect, organize, select and discuss the existing knowledge about the different uses of Artemia salina as a bench-top bioassay for the discovery and purification of bioactive natural products.

Keywords: Artemia, brine shrimp, general toxicity, natural products, correlation, alternative model, screening.

[1]
Campos KC, Rivera JH, Gutierres JR, et al. Biological screening of select Puerto Rican plants for cytotoxic and antitumor activities. P R Health Sci J 2015; 34(1): 25-30.
[2]
Fatima I, Kanwal S, Mahmood T. Evaluation of biological potential of selected species of family Poaceae from Bahawalpur BMC Complement Altern Med 2018; 18(1): 27.
[http://dx.doi.org/10.1186/s12906-018-2092-1]
[3]
Cragg GM, Newman DJ. Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 2013; 1830(6): 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[4]
Conniot J, Silva JM, Fernandes JG, et al. Cancer immunotherapy: nanodelivery approaches for immune cell targeting and tracking. Front Chem 2014; 2: 105.
[http://dx.doi.org/10.3389/fchem.2014.00105]
[5]
Ramawat KG, Goyal S. Natural Products in cancer chemoprevention and chemotherapy. Herbal drugs: Ethnomedicine to Modern Medicine Heildelberg. Springer 2008; 153-71.
[6]
Onguéné PA, Simoben CV, Fotso GW, et al. In silico toxicity profiling of natural product compound libraries from African flora with anti-malarial and anti-HIV properties. Comput Biol Chem 2018; 72: 136-49.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.12.002]
[7]
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 2007; 45(5): 31-4.
[http://dx.doi.org/10.1055/s-2007-971236]
[8]
Freires IA, Sardi J de CO, de Castro RD, Rosalen PL. Alternative animal and non-animal models for drug discovery and development: Bonus or burden? Pharm Res 2017; 34(4): 681-6.
[http://dx.doi.org/10.1007/s11095-016-2069-z]
[9]
Monteiro JA, Ferreira Júnior JM, Oliveira IR, et al. Bioactivity and toxicity of Senna cana and Senna pendula extracts. Biochem Res Int 2018; 2018 8074306
[http://dx.doi.org/10.1155/2018/8074306]
[10]
Mandrell D, Truong L, Jephson C, et al. Automated zebrafish chorion removal and single embryo placement: optimizing throughput of zebrafish developmental toxicity screens. J Lab Autom 2012; 17(1): 66-74.
[http://dx.doi.org/10.1177/2211068211432197]
[11]
Libralato G, Prato E, Migliore L, Cicero AM, Manfra L. A review of toxicity testing protocols and endpoints with Artemia spp. Ecol Indic 2016; 69: 35-49.
[http://dx.doi.org/10.1016/j.ecolind.2016.04.017]
[12]
Domínguez-Villegas V, Domínguez-Villegas V, García ML, Calpena A, Clares-Naveros B, Garduño-Ramírez ML. Anti-inflammatory, antioxidant and cytotoxicity activities of methanolic extract and prenylated flavanones isolated from leaves of Eysehardtia platycarpa. Nat Prod Commun 2013; 8(2): 177-80.
[http://dx.doi.org/10.1177/1934578X1300800211]
[13]
Baravalia Y, Vaghasiya Y, Chanda S. Brine shrimp cytotoxicity, anti-inflammatory and analgesic properties of Woodfordia fruticosa Kurz flowers. Iran J Pharm Res 2012; 11(3): 851-61.
[14]
Khodaie L, Delazar A, Nazemiyeh H. Biological activities and phytochemical study of Pedicularis wilhelmsiana Fisch Ex. from Iran. Iran J Pharm Res 2019; 18(1): 339-47.
[15]
Islam S. In vitro pharmacological investigations of dichloromethane fraction of Opuntia elatior submitted by Silvia Islam department of pharmacy. Medicine (Baltimore) 2010; 1: 70-049.
[16]
Hamidi M, Jovanova B, Panovska T. Toxicоlogical evaluation of the plant products using Brine Shrimp (Artemia salina L. ) model Macedonian pharmaceutical bulletin 2014; 60(1): 9-18.
[17]
Ntungwe NE, Marçalo J, Garcia C, et al. Biological activity screening of seven Plectranthus species. Biomed Biopharm Res 2017; 1(14): 95-108.
[http://dx.doi.org/10.19277/BBR.14.1.153]
[18]
Alanís-Garza BA, González-González GM, Salazar-Aranda R, Waksman de Torres N, Rivas-Galindo VM. Screening of antifungal activity of plants from the northeast of Mexico. J Ethnopharmacol 2007; 114(3): 468-71.
[http://dx.doi.org/10.1016/j.jep.2007.08.026]
[19]
Rimpiläinen T, Andrade J, Nunes A, et al. Aminobenzylated 4-nitrophenols as antibacterial agents obtained from 5-nitrosalicylaldehyde through a petasis borono-mannich reaction. ACS Omega 2018; 3(11): 16191-202.
[http://dx.doi.org/10.1021/acsomega.8b02381]
[20]
Melo LF de A. Camara CAG da, Oliveira LLD da SS de, Modesto JCDA, Pérez CD. Toxicity against Artemia salina of the zoanthid Palythoa caribaeorum (Cnidaria: Anthozoa) used in folk medicine on the coast of Pernambuco. Biotemas 2012; 25(3): 145-51.
[http://dx.doi.org/10.5007/2175-7925.2012v25n3p145]
[21]
Rekulapally R, Murthy Chavali LN, Idris MM, Singh S. Toxicity of TiO2, SiO2, ZnO, CuO, Au and Ag engineered nanoparticles on hatching and early nauplii of Artemia sp. PeerJ 2019; 6 e6138
[http://dx.doi.org/10.7717/peerj.6138]
[22]
Lu Y, Yu J, Lu Y. Artemia spp. model - a well-established method for rapidly assessing the toxicity on an environmental perspective. Med Res Arch 2018; 6(2): 1-15.
[23]
Rotini A, Manfra L, Canepa S, Tornambè A, Migliore L. Can Artemia hatching assay be a (Sensitive) alternative tool to acute toxicity test? Bull Environ Contam Toxicol 2015; 95(6): 745-51.
[http://dx.doi.org/10.1007/s00128-015-1626-1]
[24]
Manfra L, Savorelli F, Pisapia M, Magaletti E, Cicero AM. Long-term lethal toxicity test with the crustacean Artemia franciscana. J Vis Exp 2012; (62): 3790.
[http://dx.doi.org/10.3791/3790]
[25]
Dumitrascu M. Artemia salina. Balneo-Research J 2011; 2(4): 119-22.
[http://dx.doi.org/10.12680/balneo.2011.1022]
[26]
Asem A, Rastegar-Pouyani N, De P, Ríos-Escalante L. The genus Artemia Leach, 1819 (Crustacea: Branchiopoda). I. true and false taxonomical descriptions. Lat Am J Aquat Res 2010; 38(3): 501-6.
[27]
El-Magsodi MO, El-Ghebli HM, Enbaya MA, Hamza M, Drebika UA, Sorgeloos P. Reproductive and lifespan characteristics of Artemia from Lybian Abu Kammash Sabbha. Libian Journal of Marine Science 2005; 10: 1-8.
[28]
Ogello EO, Kembenya E, Githukia CM, Betty M, Munguti JM. The occurrence of the brine shrimp, Artemia franciscana (Kellog 1906) in Kenya and the potential economic impacts among Kenyan coastal communities. Int J Fisheries Aquatic Studies 2014; 1(5): 151-6.
[29]
Arulvasu C, Jennifer SM, Prabhu D, Chandhirasekar D. Toxicity effect of silver nanoparticles in brine shrimp Artemia. ScientificWorldJournal 2014; 2014 256919
[http://dx.doi.org/10.1155/2014/256919]
[30]
Carrasco NK, Perissinotto R. Development of a halotolerant community in the St. Lucia Estuary (South Africa) during a hypersaline phase. PLoS One 2012; 7(1) e29927
[http://dx.doi.org/10.1371/journal.pone.0029927]
[31]
Abatzopoulos TJ, Agh N, Van Stappen G, Razavi Rouhani SM, Sorgeloos P. Artemia sites in Iran. J Mar Biol Assoc U K 2006; 86: 299-307.
[http://dx.doi.org/10.1017/S0025315406013154]
[32]
Ben Naceur H, Jenhani ABR, El Cafsi M, Romdhane MS. Determination of biological characteristics of Artemia salina (Crustacea: Anostraca) population from Sabkhet Sijoumi (NE Tunisia). Transit Waters Bull 2008; 2(3): 65-74.
[33]
Oliveira TMN, Vaz C. Bioassays: Advanced methods and applications. Amsterdam, The Netherlands: Elsevier 2018.
[34]
John C, Marian P, Abatzopoulos T. Characterization of a new parthenogenetic Artemia population from Thamaraikulam, India. J Biol Res (Thessalon) 2004; 2: 63-74.
[35]
Camargo WN, Durán GC, Rada OC, et al. Determination of biological and physicochemical parameters of Artemia franciscana strains in hypersaline environments for aquaculture in the Colombian Caribbean. Saline Syst 2005; 1(9): 9.
[http://dx.doi.org/10.1186/1746-1448-1-9]
[36]
Amarouayache M, Kara MH. Aspects of life history of Artemia salina (Crustacea, Branchiopoda) from Algeria reared in different conditions of salinity. Vie Milieu 2017; 67(1): 15-20.
[37]
Sáez AG, Escalante R, Sastre L. High DNA sequence variability at the α 1 Na/K-ATPase locus of Artemia franciscana (brine shrimp): polymorphism in a gene for salt-resistance in a salt-resistant organism. Mol Biol Evol 2000; 17(2): 235-50.
[http://dx.doi.org/10.1093/oxfordjournals.molbev.a026303]
[38]
Nunes BS, Carvalho FD, Guilhermino LM, Van Stappen G. Use of the genus Artemia in ecotoxicity testing. Environ Pollut 2006; 144(2): 453-62.
[http://dx.doi.org/10.1016/j.envpol.2005.12.037]
[39]
Thong O, Chiew S, Geethaa S, Thavamany P. Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test. J Adv Pharm Technol Res 2013; 4(4): 179.
[http://dx.doi.org/10.4103/2231-4040.121411]
[40]
Rahman A, Choudhary MI, Thomson WJ. Bioassay techniques for drug development. San Diego, USA: Harwood Academic Publishers 2005.
[41]
Braguini WL, Alves BB, Pires NV. Toxicity assessment of Lavandula officinalis extracts in Brine Shrimp (Artemia salina). Toxicol Mech Methods 2019; 29(6): 411-2.
[http://dx.doi.org/10.1080/15376516.2019.1567892]
[42]
Noé W, Murhekar S, White A, Davis C, Cock IE. Inhibition of the growth of human dermatophytic pathogens by selected australian and asian plants traditionally used to treat fungal infections. J Mycol Med 2019; 29(4): 331-44.
[http://dx.doi.org/10.1016/j.mycmed.2019.05.003]
[43]
Mandeville A, Edwin I. Terminalia chebula Retz. Fruit extracts inhibit bacterial triggers of some autoimmune diseases and potentiate the activity of tetracycline. Indian J Microbiol 2018; 58: 496-506.
[http://dx.doi.org/10.1007/s12088-018-0754-9]
[44]
Akhalwaya S, van Vuuren S, Patel M. An in vitro investigation of indigenous South African medicinal plants used to treat oral infections. J Ethnopharmacol 2018; 210: 359-71.
[http://dx.doi.org/10.1016/j.jep.2017.09.002]
[45]
Jha BN, Shrestha M, Pandey DP, Bhattarai T, Bhattarai HD, Paudel B. Investigation of antioxidant, antimicrobial and toxicity activities of lichens from high altitude regions of Nepal. BMC Complement Altern Med 2017; 17(1): 282.
[http://dx.doi.org/10.1186/s12906-017-1797-x]
[46]
Doke SK, Dhawale SC. Alternatives to animal testing: A review. Saudi Pharm J 2015; 23(3): 223-9.
[http://dx.doi.org/10.1016/j.jsps.2013.11.002]
[47]
Adamski Z, Bufo SA, Chowański S, et al. Beetles as model organisms in physiological, biomedical and environmental studies - A review. Front Physiol 2019; 10: 319.
[http://dx.doi.org/10.3389/fphys.2019.00319]
[48]
Ségalat L. Invertebrate animal models of diseases as screening tools in drug discovery. ACS Chem Biol 2007; 2(4): 231-6.
[http://dx.doi.org/10.1021/cb700009m]
[49]
Castano A. Applying the three Rs in acute ecotoxicity. ALTEX 2005; 22(2): 298-303.
[50]
Braunbeck T, Boettcher M, Hollert H, et al. Towards an alternative for the acute multi-species - an update the fish embryo toxicity test goes fish LC50 test in chemical assessment. ALTEX 2005; 22(2): 87-102.
[51]
Junprung W, Norouzitallab P, De Vos S, et al. Sequence and expression analysis of HSP70 family genes in Artemia franciscana. Sci Rep 2019; 9(8391): 1-13.
[http://dx.doi.org/10.1038/s41598-019-44884-y]
[52]
Brocchieri L, Conway de Macario E, Macario AJL. hsp70 genes in the human genome: Conservation and differentiation patterns predict a wide array of overlapping and specialized functions. BMC Evol Biol 2008; 8: 1-20.
[http://dx.doi.org/10.1186/1471-2148-8-19]
[53]
Grubišić MR, Dulić ZP, Stanković MB, et al. Importance of zooplankton as live feed for carp larvae Proceedings of 6th Central European Congress on Food - CEFood Congress. 1553-57.
[54]
Meyer BN, Ferrigni NR, Putnam JE, Jacobsen LB, Nichols DE, McLaughlin JL. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med 1982; 45(5): 31-4.
[http://dx.doi.org/10.1055/s-2007-971236]
[55]
Pelka M, Danzl C, Distler W, Petschelt A. A new screening test for toxicity testing of dental materials. J Dent 2000; 28(5): 341-5.
[http://dx.doi.org/10.1016/S0300-5712(00)00007-5]
[56]
Manfra L, Canepa S, Piazza V, Faimali M. Lethal and sublethal endpoints observed for Artemia exposed to two reference toxicants and an ecotoxicological concern organic compound. Ecotoxicol Environ Saf 2016; 123: 60-4.
[http://dx.doi.org/10.1016/j.ecoenv.2015.08.017]
[57]
Baek I, Choi HJ, Rhee JS. Inhibitory effects of biocides on hatching and acetylcholinesterase activity in the brine shrimp Artemia salina. Toxicol Environ Health Sci 2015; 7: 303-8.
[http://dx.doi.org/10.1007/s13530-015-0253-x]
[58]
Nunes B, Carvalho F, Guilhermino L. Effects of widely used pharmaceuticals and a detergent on oxidative stress biomarkers of the crustacean Artemia parthenogenetica. Chemosphere 2006; 62(4): 581-9.
[http://dx.doi.org/10.1016/j.chemosphere.2005.06.013]
[59]
Libralato G. The case of Artemia spp. in nanoecotoxicology. Mar Environ Res 2014; 101: 38.
[http://dx.doi.org/10.1016/j.marenvres.2014.08.002]
[60]
Kummara S, Patil MB, Uriah T. Synthesis, characterization, biocompatible and anticancer activity of green and chemically synthesized silver nanoparticles - A comparative study. Biomed Pharmacother 2016; 84: 10-21.
[http://dx.doi.org/10.1016/j.biopha.2016.09.003]
[61]
Amado PA, Ferraz V, da Silva DB, Carollo CA, Castro AHF, Alves Rodrigues Dos Santos Lima L. Chemical composition, antioxidant and cytotoxic activities of extracts from the leaves of Smilax brasiliensis Sprengel (Smilacaceae). Nat Prod Res 2018; 32(5): 610-5.
[http://dx.doi.org/10.1080/14786419.2017.1327861]
[62]
Silva FRG, Matias TMS, Souza LIO, et al. Phytochemical screening and in vitro antibacterial, antifungal, antioxidant and antitumor activities of the red propolis Alagoas. Braz J Biol 2019; 79(3): 452-959.
[http://dx.doi.org/10.1590/1519-6984.182959]
[63]
Mayorga P, Pérez KR, Cruz SM, Cáceres A. Comparison of bioassays using the anostracan crustaceans Artemia salina and Thamnocephalus platyurus for plant extract toxicity screening. Rev Bras Farmacogn 2010; 20(6): 897-90.
[http://dx.doi.org/10.1590/S0102-695X2010005000029]
[64]
Ohikhena FU, Wintola OA, Afolayan AJ. Toxicity assessment of different solvent extracts of the medicinal plant, Phragmanthera capitata (sprengel) balle on brine shrimp (Artemia salina). Int J Pharmacol 2016; 12(7): 701-10.
[http://dx.doi.org/10.3923/ijp.2016.701.710]
[65]
Khalighi-Sigaroodi F, Ahvazi M, Yazdani D, Kashefi M. Cytotoxicity and antioxidant activity of five plant species of solanaceae family from Iran. Faslnamah-i Giyahan-i Daruyi 2012; 11(43): 41-53.
[66]
Mirzaei M, Mirzaei A. Comparison of the Artemia salina and Artemia uramiana bioassays for toxicity of 4 Iranian medicinal plants. Int Res J Biol Sci 2013; 8(1): 11-6.
[67]
Atanasov AG, Waltenberger B, Pferschy-Wenzig EM, et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol Adv 2015; 33(8): 1582-614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001]
[68]
Khatun A, Rahman M, Haque T. Cytotoxicity potentials of eleven Bangladeshi medicinal plants. Scientific World J 2014; 2014 913127
[http://dx.doi.org/10.1155/2014/913127]
[69]
Hilmi Y, Abushama MF, Abdalgadir H, Khalid A, Khalid H. A study of antioxidant activity, enzymatic inhibition and in vitro toxicity of selected traditional Sudanese plants with anti-diabetic potential. BMC Complement Altern Med 2014; 14: 149.
[http://dx.doi.org/10.1186/1472-6882-14-149]
[70]
Sharififar F, Moshafi MH, Shafazand E, Koohpayeh A. Acetyl cholinesterase inhibitory, antioxidant and cytotoxic activity of three dietary medicinal plants. Food Chem 2012; 130(1): 20-3.
[http://dx.doi.org/10.1016/j.foodchem.2011.06.034]
[71]
Nwodo UU, Ngene AA, Anaga AO, Chigor VN, Henrietta II, Okoh AI. Acute toxicity and hepatotoxicokinetic studies of Tamarindus indica extract. Molecules 2011; 16(9): 7415-27.
[http://dx.doi.org/10.3390/molecules16097415]
[72]
Déciga-Campos M, Rivero-Cruz I, Arriaga-Alba M, et al. Acute toxicity and mutagenic activity of Mexican plants used in traditional medicine. J Ethnopharmacol 2007; 110(2): 334-42.
[http://dx.doi.org/10.1016/j.jep.2006.10.001]
[73]
Watthanachaiyingcharoen R, Kamkaen N, Phanwichien K, Pradermwong A. Acute toxicity test of medicinal plants and herbal remedies of aphthous ulcer. J Health Res 2009; 23(4): 169-74.
[74]
Ali N, Ahmed G, Shah SW, Shah I, Ghias M, Khan I. Acute toxicity, brine shrimp cytotoxicity and relaxant activity of fruits of callistemon citrinus curtis. BMC Complement Altern Med 2011; 11: 99.
[http://dx.doi.org/10.1186/1472-6882-11-99]
[75]
Ali N, Aleem U, Shah SW, et al. Acute toxicity, brine shrimp cytotoxicity, anthelmintic and relaxant potentials of fruits of Rubus fruticosus Agg. BMC Complement Altern Med 2013; 13: 138.
[http://dx.doi.org/10.1186/1472-6882-13-138]
[76]
Bogavac M, Karaman M, Janjušević Lj, et al. Alternative treatment of vaginal infections – in vitro antimicrobial and toxic effects of Coriandrum sativum L. and Thymus vulgaris L. essential oils. J Appl Microbiol 2015; 119(3): 697-710.
[http://dx.doi.org/10.1111/jam.12883]
[77]
Nisar M, Tariq SA, Marwat IK, Shah MR, Khan IA. Antibacterial, antifungal, insecticidal, cytotoxicity and phytotoxicity studies on Indigofera gerardiana. J Enzyme Inhib Med Chem 2009; 24(1): 224-9.
[http://dx.doi.org/10.1080/14756360802051313]
[78]
Islam MS, Ali S, Rahman M, et al. Antidiabetic, cytotoxic activities and phytochemical screening of Peltophorum pterocarpum (DC.) K. Heyne root. J Med Plants Res 2011; 5(16): 3745-50.
[79]
Queiroz EAM, Paim RTT, Lira SM, et al. Antihyperglycemic effect of Passiflora glandulosa cav. fruit rinds flour in streptozotocin-induced diabetic mice. Asian Pac J Trop Med 2018; 11(9): 510-1.
[http://dx.doi.org/10.4103/1995-7645.242308]
[80]
Ansari P, Uddin MJ, Rahman MM, et al. Anti-inflammatory, anti-diarrheal, thrombolytic and cytotoxic activities of an ornamental medicinal plant: Persicaria orientalis. J Basic Clin Physiol Pharmacol 2017; 28(1): 51-8.
[http://dx.doi.org/10.1515/jbcpp-2016-0023]
[81]
Shah NA, Khan MR, Nadhman A. Antileishmanial, toxicity, and phytochemical evaluation of medicinal plants collected from Pakistan. BioMed Res Int 2014; 2014 384204
[http://dx.doi.org/10.1155/2014/384204]
[82]
Ogbole OO, Saka YA, Fasinu PS, Fadare AA, Ajaiyeoba EO. Antimalarial and cytotoxic properties of Chukrasia tabularis A. Juss and Turraea vogelii Hook F. Ex. Benth. Parasitol Res 2016; 115(4): 1667-74.
[http://dx.doi.org/10.1007/s00436-016-4906-8]
[83]
Latha LY, Sasidharan S, Zuraini Z, et al. Antimicrobial activities and toxicity of crude extract of the Psophocarpus tetragonolobus pods. Afr J Tradit Complement Altern Med 2006; 4(1): 59-63.
[84]
Chowdhury MA, Rahman MM, Chowdhury MR, Uddin MJ, Sayeed MA, Hossain MA. Antinociceptive and cytotoxic activities of an epiphytic medicinal orchid: Vanda tessellata Roxb. BMC Complement Altern Med 2014; 14: 464.
[http://dx.doi.org/10.1186/1472-6882-14-464]
[85]
Wangensteen H, Dang HC, Uddin SJ, Alamgir M, Malterud KE. Antioxidant and antimicrobial effects of the mangrove tree Heritiera fomes. Nat Prod Commun 2009; 4(3): 371-6.
[http://dx.doi.org/10.1177/1934578X0900400311]
[86]
Saefudin S, Basri E, Sukito A. Antioxidant activity and toxicity effect of eleven types of bark extracts acquired from Euphorbiaceae. Indones J For Res 2018; 5(2): 133-46.
[http://dx.doi.org/10.20886/ijfr.2018.5.2.133-146]
[87]
Quadery TM, Islam F, Ahsan M, Hasan CM. Antioxidant and cytotoxic activities of Parabaena sagitatta Miers. Bangladesh J Bot 2012; 41(2): 155-8.
[http://dx.doi.org/10.3329/bjb.v41i2.13441]
[88]
Addae-Kyereme J, Croft SL, Kendrick H, Wright CW. Antiplasmodial activities of some Ghanaian plants traditionally used for fever/malaria treatment and of some alkaloids isolated from Pleiocarpa mutica; in vivo antimalarial activity of pleiocarpine. J Ethnopharmacol 2001; 76(1): 99-103.
[http://dx.doi.org/10.1016/S0378-8741(01)00212-4]
[89]
Kirira PG, Rukunga GM, Wanyonyi AW, et al. Anti-plasmodial activity and toxicity of extracts of plants used in traditional malaria therapy in Meru and Kilifi Districts of Kenya. J Ethnopharmacol 2006; 106(3): 403-7.
[http://dx.doi.org/10.1016/j.jep.2006.01.017]
[90]
Austarheim I, Nergard CS, Sanogo R, Diallo D, Paulsen BS. Inulin-rich fractions from Vernonia kotschyana roots have anti-ulcer activity. J Ethnopharmacol 2012; 144(1): 82.
[http://dx.doi.org/10.1016/j.jep.2012.08.031]
[91]
Onocha PA, Oloyede GK, Afolabi QO. Chemical Composition, cytotoxicity and antioxidant activity of essential oils of Acalypha hispida flowers. Int J Pharmacol 2011; 7(1): 144-8.
[http://dx.doi.org/10.3923/ijp.2011.144.148]
[92]
Genest S, Kerr C, Shah A, Rahman M, et al. Comparative bioactivity studies on two Mimosa species. BLACPMA 2008; 7(1): 38-43.
[93]
Sarker SD, Nahar L, Gujja S, Begum S, Celik S. Bioactivity of Centaurea persica Boiss. (Asteraceae). Arch Biol Sci 2012; 64(2): 517-23.
[http://dx.doi.org/10.2298/ABS1202517S]
[94]
Mwangi GG, Wagacha JM, Nguta JM, Mbaria JM. Brine shrimp cytotoxicity and antimalarial activity of plants traditionally used in treatment of malaria in Msambweni district. Pharm Biol 2015; 53(4): 588-93.
[http://dx.doi.org/10.3109/13880209.2014.935861]
[95]
Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol 2013; 148(3): 988-92.
[http://dx.doi.org/10.1016/j.jep.2013.05.053]
[96]
Wanyoike GN, Chhabra SC, Lang’at-Thoruwa CC, Omar SA. Brine shrimp toxicity and antiplasmodial activity of five Kenyan medicinal plants. J Ethnopharmacol 2004; 90(1): 129-33.
[http://dx.doi.org/10.1016/j.jep.2003.09.047]
[97]
de França-Neto A, Cardoso-Teixeira AC, Medeiros TC, et al. Essential oil of Croton argyrophylloides: toxicological aspects and vasorelaxant activity in rats. Nat Prod Commun 2012; 7(10): 1397-400.
[http://dx.doi.org/10.1177/1934578X1200701040]
[98]
Rahman MK, Chowdhury MA, Islam MT, Chowdhury MA, Uddin ME, Sumi CD. Evaluation of antidiarrheal activity of methanolic extract of Maranta arundinacea Linn. leaves. Advances in Pharmacol Pharm Sci 2015; 2015 257057
[99]
Mota KSL, Pita J, Estevam EC, et al. Evaluation of the toxicity and antiulcerogenic activity of the ethanol extract of Maytenus obtusifolia Mart. leaves. Br J Pharmacol 2008; 18(3): 441-6.
[http://dx.doi.org/10.1590/S0102-695X2008000300019]
[100]
Kiraithe MN, Nguta JM, Mbaria JM, Kiama SG. Evaluation of the use of Ocimum suave Willd. (Lamiaceae), Plectranthus barbatus Andrews (Lamiaceae) and Zanthoxylum chalybeum Engl. (Rutaceae) as antimalarial remedies in Kenyan folk medicine. J Ethnopharmacol 2016; 178(266): 7-71.
[101]
de Oliveira AM, Mda SM, da Silva GC, et al. Evaluation of toxicity and antimicrobial activity of an ethanolic extract from leaves of Morus alba L. (Moraceae). Evid Based Complement Alternat Med 2015; 2015 513978
[http://dx.doi.org/10.1155/2015/513978]
[102]
Magalhães AF, Tozzi AM, Magalhães EG, Sannomiya M, Mdel PS, Perez MA. Flavonoids of Lonchocarpus montanus A.M.G. Azevedo and biological activity. Annals of the Brazilian Academy of Science 2007; 79(3): 351-67.
[http://dx.doi.org/10.1590/S0001-37652007000300001]
[103]
Schmeda-Hirschmann G, Loyola JI, Sierra J, Retamal R, Rodriguez J. Hypotensive effect and enzyme inhibition activity of mapuche medicinal plant extracts. Phytother Res 1992; 6(4): 184-8.
[http://dx.doi.org/10.1002/ptr.2650060404]
[104]
Leos-Rivas C, Verde-Star MJ, Torres LO, et al. In vitro amoebicidal activity of borage (Borago officinalis) extract on Entamoeba histolytica. J Med Food 2011; 14(7-8): 866-9.
[http://dx.doi.org/10.1089/jmf.2010.0164]
[105]
Ojewunmi OO, Oshodi T, Ogundele OI, Micah C, Adenekan S. In vitro Antioxidant, antihyperglycaemic and antihyperlipidaemic activities of ethanol extract of Lawsonia inermis leaves. Br J Pharm Res 2014; 4(3): 301.
[http://dx.doi.org/10.9734/BJPR/2014/6359]
[106]
Ayuko TA, Njau RN, Cornelius W, Leah N, Ndiege IO. In vitro antiplasmodial activity and toxicity assessment of plant extracts used in traditional malaria therapy in the Lake Victoria Region. Mem Inst Oswaldo Cruz 2009; 104(5): 689-94.
[http://dx.doi.org/10.1590/S0074-02762009000500004]
[107]
Kpoviessi BGK, Kpoviessi SD, Ladekan EY, et al. In vitro antitrypanosomal and antiplasmodial activities of crude extracts and essential oils of Ocimum gratissimum Linn from Benin and influence of vegetative stage. J Ethnopharmacol 2014; 155(3): 1417-2.
[http://dx.doi.org/10.1016/j.jep.2014.07.014]
[108]
George M, Josekumar VS. In vitro cytotoxicity screening, phytochemical profile and heavy metal analysis of different extracts of Acrostichum heterophyllum L. Indian J Nat Prod Resour 2016; 7(1): 19-2.
[109]
Mahlke JD, Boligon AA, Machado MM, Athayde ML. In vitro toxicity, antiplatelet and acetylcholinesterase inhibition of Buddleja thyrsoides Lam. leaves. Nat Prod Res 2012; 26(23): 2223-6.
[http://dx.doi.org/10.1080/14786419.2011.643884]
[110]
Wickramaratne MN, Punchihewa JC, Wickramaratne DB. In-vitro alpha amylase inhibitory activity of the leaf extracts of Adenanthera pavonina. BMC Complement Altern Med 2016; 16(1): 466.
[http://dx.doi.org/10.1186/s12906-016-1452-y]
[111]
Olajuyigbe OO, Afolayan AJ. Pharmacological assessment of the medicinal potential of Acacia mearnsii De Wild.: antimicrobial and toxicity activities. Int J Mol Sci 2012; 13(4): 4255-67.
[http://dx.doi.org/10.3390/ijms13044255]
[112]
Ajaiyeoba EO, Rahman AU, Choudhary IM. Preliminary antifungal and cytotoxicity studies of extracts of Ritchiea capparoides var. longipedicellata. J Ethnopharmacol 1998; 62(3): 243-6.
[http://dx.doi.org/10.1016/S0378-8741(98)00010-5]
[113]
Ramazani A, Zakeri S, Sardari S, Khodakarim N, Djadidt ND. In vitro and in vivo anti-malarial activity of Boerhavia elegans and Solanum surattense. Malar J 2010; 9: 124.
[http://dx.doi.org/10.1186/1475-2875-9-124]
[114]
Lagnika L, Anago E, Sanni A. Screening for antibacterial, antioxidant activity and toxicity of some medicinal plants used in Benin folkloric medicine. J Med Plants Res 2011; 5(5): 773-7.
[115]
Abed SA, Sirat HM, Taher M. Total phenolic, antioxidant, antimicrobial activities and toxicity study of Gynotroches axillaris blume (Rhizophoraceae). EXCLI J 2013; 12: 404-12.
[116]
Ajayi AM, Umukoro S, Ben-Azu B, Adzu B, Ademowo OG. Toxicity and protective effect of phenolic-enriched ethylacetate fraction of Ocimum gratissimum (Linn.) leaf against acute inflammation and oxidative stress in rats. Drug Dev Res 2017; 78(3-4): 135-45.
[http://dx.doi.org/10.1002/ddr.21384]
[117]
Orhan I, Nasim S, Sener B, et al. Two isoflavones and bioactivity spectrum of the crude extracts of Iris germanica rhizomes. Phytother Res 2003; 17(5): 575-7.
[http://dx.doi.org/10.1002/ptr.1169]
[118]
Wagemaker TAL, Campos PMBGM, et al. Unsaponifiable matter from oil of green coffee beans: cosmetic properties and safety evaluation. Drug Dev Ind Pharm 2016; 42(10): 1695-9.
[http://dx.doi.org/10.3109/03639045.2016.1165692]
[119]
Satish L, Santhakumari S, Gowrishankar S. Rapid biosynthesized AgNPs from Gelidiella acerosa aqueous extract mitigates quorum sensing mediated biofilm formation of Vibrio species-an in vitro and in vivo approach. Environ Sci Pollut Res Int 2017; 24(35): 27254-68.
[http://dx.doi.org/10.1007/s11356-017-0296-4]
[120]
Silva CO, Rijo P, Molpeceres J, et al. Polymeric nanoparticles modified with fatty acids encapsulating betamethasone for anti-inflammatory treatment. Int J Pharm 2015; 493(1-2): 271-84.
[http://dx.doi.org/10.1016/j.ijpharm.2015.07.044]
[121]
Rajabi S, Ramazani A, Hamidi M, Naji T. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru 2015; 23(1): 20.
[http://dx.doi.org/10.1186/s40199-015-0105-x]
[122]
Zhu S, Xue MY, Luo F, Chen WC, Zhu B, Wang GX. Developmental toxicity of Fe3O4 nanoparticles on cysts and three larval stages of Artemia salina. Environ Pollut 2017; 230: 683-91.
[http://dx.doi.org/10.1016/j.envpol.2017.06.065]
[123]
Freire PLL, Albuquerque AJR, Farias IAP, et al. Antimicrobial and cytotoxicity evaluation of colloidal chitosan - silver nanoparticles - fluoride nanocomposites. Int J Biol Macromol 2016; 93((Pt A)): 896-903.
[124]
Abbasi BA, Iqbal J, Mahmood T, Qyyum A, Kanwal S. Biofabrication of iron oxide nanoparticles by leaf extract of Rhamnus virgata: characterization and evaluation of cytotoxic, antimicrobial and antioxidant potentials. Appl Organomet Chem 2019; 33(7) e4947
[http://dx.doi.org/10.1002/aoc.4947]
[125]
Khalil AT, Ovais M, Ullah I, et al. Sageretia thea (Osbeck.) mediated synthesis of zinc oxide nanoparticles and its biological applications. Nanomedicine (Lond) 2017; 12(15): 1767-89.
[http://dx.doi.org/10.2217/nnm-2017-0124]
[126]
Latha LY, Sasidharan S, Zuraini Z, et al. Antimicrobial activities and toxicity of crude extract of the Psophocarpus tetragonolobus pods. Afr J Tradit Complement Altern Med 2007; 4(1): 59-63.
[http://dx.doi.org/10.4314/ajtcam.v4i1.31195]
[127]
Balalakshmi C, Gopinath K, Govindarajan M, et al. Green synthesis of gold nanoparticles using a cheap Sphaeranthus indicus extract: Impact on plant cells and the aquatic crustacean Artemia nauplii. J Photochem Photobiol B 2017; 173: 598-6.
[http://dx.doi.org/10.1016/j.jphotobiol.2017.06.040]
[128]
Dos Santos Ramos MA, da Silva PB, de Toledo LG, et al. Intravaginal delivery of Syngonanthus nitens (Bong.) Ruhland fraction based on a nanoemulsion system applied to vulvovaginal candidiasis treatment. J Biomed Nanotechnol 2019; 15(5): 1072-89.
[http://dx.doi.org/10.1166/jbn.2019.2750]
[129]
Iqbal J, Abbasi BA, Mahmood T, Hameed S, Munir A, Kanwal S. Green synthesis and characterizations of Nickel oxide nanoparticles using leaf extract of Rhamnus virgata and their potential biological applications. Appl Organomet Chem 2019; 33(8) e4950
[http://dx.doi.org/10.1002/aoc.4950]
[130]
Anand K, Tiloke C, Phulukdaree A, et al. Biosynthesis of palladium nanoparticles by using Moringa oleifera flower extract and their catalytic and biological properties. J Photochem Photobiol B 2016; 165: 87-95.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.09.039]
[131]
Phull A-R, Abbas Q, Ali A, Raza H. Antioxidant, cytotoxic and antimicrobial activities of green synthesized silver nanoparticles from crude extract of Bergenia ciliata. Future J Pharm Sci 2016; 2(1): 31-6.
[http://dx.doi.org/10.1016/j.fjps.2016.03.001]
[132]
Kumara swamy M, Pokharen N, Dahal S, Anuradha M. Phytochemical and antimicrobial studies of leaf extract of Euphorbia neriifolia. J Med Plant Res 2011; 5(24): 5785-88.8.
[133]
Ravichandran A, Subramanian P, Manoharan V, et al. Phyto-mediated synthesis of silver nanoparticles using fucoidan isolated from Spatoglossum asperum and assessment of antibacterial activities. J Photochem Photobiol B 2018; 185: 117-25.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.05.031]
[134]
Contreras-Cortés AG, Almendariz-Tapia FJ, Gómez-Álvarez A, et al. Toxicological assessment of cross-linked beads of chitosan-alginate and Aspergillus australensis biomass, with efficiency as biosorbent for copper removal. Polymers (Basel) 2019; 11(2) E222
[http://dx.doi.org/10.3390/polym11020222]
[135]
Nemati T, Sarkheil M, Johari SA. Trophic transfer of CuO nanoparticles from brine shrimp (Artemia salina) nauplii to convict cichlid (Amatitlania nigrofasciata) larvae: uptake, accumulation and elimination. Environ Sci Pollut Res Int 2019; 26(10): 9610-8.
[http://dx.doi.org/10.1007/s11356-019-04263-6]
[136]
Kokkali V, Katramados I, Newman JD. Monitoring the effect of metal ions on the mobility of Artemia salina Nauplii. Biosensors (Basel) 2011; 1(2): 36-45.
[http://dx.doi.org/10.3390/bios1020036]
[137]
Hisem D, Hrouzek P, Tomek P, Tomšíčková J, et al. Cyanobacterial cytotoxicity versus toxicity to brine shrimp Artemia salina. Toxicon 2011; 57(1): 76-83.
[http://dx.doi.org/10.1016/j.toxicon.2010.10.002]
[138]
Kiviranta J, Sivonen K, Niemelä SI, Huovinen K. Detection of toxicity of cyanobacteria by Artemia salina bioassay. Environ Toxicol Water Qual 1991; 6(4): 423-36.
[http://dx.doi.org/10.1002/tox.2530060407]
[139]
Lee T-H, Chen Y-M, Chou H-N. Toxicity assay of cyanobacterial strains using Artemia salina in comparison with the mouse bioassay. Acta Zool Taiwanica 1999; 10(1): 1-8.
[140]
Maurer-Jones MA, Love SA, Meierhofer S, Marquis BJ, Liu Z, Haynes CL. Toxicity of nanoparticles to brine shrimp: An introduction to nanotoxicity and interdisciplinary science. J Chem Educ 2013; 90(4): 475-8.
[http://dx.doi.org/10.1021/ed3005424]
[141]
Karchesy YM, Kelsey RG, Constantine G, Karchesy JJ. Biological screening of selected Pacific Northwest forest plants using the brine shrimp (Artemia salina) toxicity bioassay. Springerplus 2016; 5: 510.
[http://dx.doi.org/10.1186/s40064-016-2145-1]
[142]
Chichiriccò G, Ferrante C, Menghini L, et al. Crocus sativus by-products as sources of bioactive extracts: Pharmacological and toxicological focus on anthers. Food Chem Toxicol 2019; 126: 7-14.
[http://dx.doi.org/10.1016/j.fct.2019.01.040]
[143]
Ferrante C, Recinella L, Maurizio R, et al. Multiple pharmacognostic characterization on hemp commercial cultivars: Focus on inflorescence water extract activity. Food Chem Toxicol 2019; 125: 452-61.
[144]
Taviano MF, Rashed K, Filocamo A, et al. Phenolic profile and biological properties of the leaves of Ficus vasta Forssk. (Moraceae) growing in Egypt. BMC Complement Altern Med 2018; 18(1): 161.
[http://dx.doi.org/10.1186/s12906-018-2210-0]
[145]
Barth EF, Pinto LS, Dileli P, et al. Biological screening of extracts from leaf and stem bark of Croton floribundus Spreng. (Euphorbiaceae). Braz J Biol 2018; 78(4): 601-8.
[http://dx.doi.org/10.1590/1519-6984.166522]
[146]
Naz R, Ayub H, Nawaz S, et al. Antimicrobial activity, toxicity and anti-inflammatory potential of methanolic extracts of four ethnomedicinal plant species from Punjab, Pakistan. BMC Complement Altern Med 2017; 17(1): 302.
[http://dx.doi.org/10.1186/s12906-017-1815-z]
[147]
Olivas-Quintero S, López-Angulo G, Montes-Avila J, et al. Chemical composition and biological activities of Helicteres vegae and Heliopsis sinaloensis. Pharm Biol 2017; 55(1): 1473-82.
[http://dx.doi.org/10.1080/13880209.2017.1306712]
[148]
Castanho S, Califano G, Soares F, et al. The effect of live feeds bathed with the red seaweed Asparagopsis armata on the survival, growth and physiology status of Sparus aurata larvae. Fish Physiol Biochem 2017; 43(4): 1043-54.
[http://dx.doi.org/10.1007/s10695-017-0351-6]
[149]
Nguyen TL, Rusten A, Bugge MS, et al. Flavonoids, gallotannins and ellagitannins in Syzygium guineense and the traditional use among Malian healers. J Ethnopharmacol 2016; 192: 450-8.
[http://dx.doi.org/10.1016/j.jep.2016.09.035]
[150]
Rodrigues MJ, Neves V, Martins A, et al. In vitro antioxidant and anti-inflammatory properties of Limonium algarvense flowers’ infusions and decoctions: A comparison with green tea (Camellia sinensis). Food Chem 2016; 200: 322-9.
[http://dx.doi.org/10.1016/j.foodchem.2016.01.048]
[151]
Olaru OT, Venables L, Van De Venter M, et al. Anticancer potential of selected Fallopia Adans species. Oncol Lett 2015; 10(3): 1323-32.
[http://dx.doi.org/10.3892/ol.2015.3453]
[152]
Arcanjo D, Albuquerque A, Melo-Neto B, Santana L, Medeiros M, Citó A. Bioactivity evaluation against Artemia salina Leach of medicinal plants used in Brazilian Northeastern folk medicine. Braz J Biol 2012; 72(3): 505-9.
[http://dx.doi.org/10.1590/S1519-69842012000300013]
[153]
Lawi Y, Saria J, Kidukuli AW. Brine shrimp cytotoxicity, phytochemical screening and larvicidal activities of Plectranthus barbatus extracts. Res Rev Insights 2018; 2(1): 2-4.
[154]
Biological activity screening of seven Plectranthus species Pesquisa de actividade biológica de sete espécies de Plectranthus. Biomedical Biopharmaceutical Research 2017; 14: 95-108.
[http://dx.doi.org/10.19277/BBR.14.1.153]
[155]
Garcia C, Teodósio C, Oliveira C, et al. Naturally occurring Plectranthus-derived diterpenes with antitumoral activities. Curr Pharm Des 2018; 24(36): 4207-36.
[http://dx.doi.org/10.2174/1381612825666190115144241]
[156]
Prakash S, Ramasubburayan R, Ramkumar VS, Kannapiran E, Palavesam A, Immanuel G. In vitro-Scientific evaluation on antimicrobial, antioxidant, cytotoxic properties and phytochemical constituents of traditional coastal medicinal plants. Biomed Pharmacother 2016; 83: 648-57.
[157]
Seremet OC, Olaru OT, Gutu CM, et al. Toxicity of plant extracts containing pyrrolizidine alkaloids using alternative invertebrate models. Mol Med Rep 2018; 17(6): 7757-63.
[158]
Ogbole OO, Segun PA, Adeniji AJ. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts. BMC Complement Altern Med 2017; 17(1): 494.
[http://dx.doi.org/10.1186/s12906-017-2005-8]
[159]
Regueiras A, Pereira S, Costa MS, Vasconcelos V. Differential toxicity of cyanobacteria isolated from marine sponges towards echinoderms and crustaceans. Toxins (Basel) 2018; 10(7) E297
[http://dx.doi.org/10.3390/toxins10070297]
[160]
Ferraz-Filha ZS, Lombardi JA, Guzzo LS, Saúde-Guimarães DA. Brine shrimp (Artemia salina Leach) bioassay of extracts from Lychnophoriopsis candelabrum and different Lychnophora species. Rev Bras Pl Med 2012; 14(2): 358-61.
[http://dx.doi.org/10.1590/S1516-05722012000200016]
[161]
Mendonça de Assis P, Cypriano Dutra R, Amarante CBD, et al. Plinia cauliflora (Mart.) Kausel: toxicological assays, biological activities, and elemental analysis of organic compounds. Nat Prod Res 2019; 2019: 1-5.
[http://dx.doi.org/10.1080/14786419.2019.1633642]
[162]
Olivares-Bañuelos T, Gutiérrez-Rodríguez AG, Méndez-Bellido R, et al. Brown seaweed Egregia menziesii’s cytotoxic activity against brain cancer cell lines. Molecules 2019; 24(2): 260.
[http://dx.doi.org/10.3390/molecules24020260]
[163]
Arslanyoulu M, Erdemgil FZ. Evaluation of the antibacterial activity and toxicity of isolated arctiin from the seeds of Centaurea sclerolepis. J Fac Pharm, Ankara 2006; 35(2): 103-9.9.
[164]
Nguta JM, Mbaria JM. Brine shrimp toxicity and antimalarial activity of some plants traditionally used in treatment of malaria in Msambweni district of Kenya. J Ethnopharmacol 2013; 148: 988-2.
[165]
Bhatt D, Jethva K, Zaveri M. Cytotoxicity screening of the commonly used indigenous medicinal plants using brine shrimp lethality bio-assay. Int J Pharm Sci Rev Res 2016; 37(2): 147-50.
[166]
Tlili H, Marino A, Ginestra G, et al. Polyphenolic profile, antibacterial activity and brine shrimp toxicity of leaf extracts from six Tunisian spontaneous species. Nat Prod Res 2019; 1-7. Online ahead or print.
[http://dx.doi.org/10.1080/14786419.2019.1616725]
[167]
Zengin G, Ferrante C, Senkardes I, et al. Multidirectional biological investigation and phytochemical profile of Rubus sanctus and Rubus ibericus. Food Chem Toxicol 2019; 127: 237-50.
[http://dx.doi.org/10.1016/j.fct.2019.03.041]
[168]
Winnett V, Sirdaarta J, White A, Clarke FM, Cock IE. Inhibition of Klebsiella pneumoniae growth by selected Australian plants: natural approaches for the prevention and management of ankylosing spondylitis. Inflammopharmacology 2017; 25(2): 223-35.
[http://dx.doi.org/10.1007/s10787-017-0328-1]
[169]
Parra A, Silva R, Guerra SI, Iglesias BL. Comparative study of the assay of Artemia salina L. and the estimate of the medium lethal dose (LD50 value) in mice, to determine oral acute toxicity of plant extracts. Phytomedicine 2001; 8(5): 395-400.
[http://dx.doi.org/10.1078/0944-7113-00044]
[170]
Naidu JR, Ismail R, Sasidharan S. Acute oral toxicity and brine shrimp lethality of methanol extract of Mentha spicata L(Lamiaceae). Trop J Pharm Res 2014; 13(1): 101-7.
[http://dx.doi.org/10.4314/tjpr.v13i1.15]
[171]
Sasidharan S, Mordi MN, Ismail S, Mansor S, Sahgal G, Ramanathan S. Brine shrimp lethality and acute oral toxicity studies on Swietenia mahagoni (Linn.) Jacq. seed methanolic extract 2010 Pharmacognosy Res 2010; 2(4): 215-0.
[172]
Hossain MM, Mondal M, Morad RU, et al. Evaluation of bioactivities of methanol and petroleum ether extracts of Cassia renigera seed. Clinical Phytoscience 2018; 4: 33.
[http://dx.doi.org/10.1186/s40816-018-0091-x]
[173]
Araújo RMS, Vaz AFM, Aguiar JS, et al. Lectin from Crataeva tapia bark exerts antitumor, anti-inflammatory and analgesic activities. Nat Prod Bioprospect 2011; 1(2): 97-100.
[http://dx.doi.org/10.1007/s13659-011-0014-8]
[174]
Moshi MJ, Nondo RSO, Haule EE, Mahunnah RLA, Kidukuli AW. Antimicrobial activity, acute toxicity and cytoprotective effect of Crassocephalum vitellinum (Benth.) S Moore extract in a rat ethanol- HCl gastric ulcer model BMC Research Notes 2014; 7: 91.7.
[175]
Hamimed S, Boulebda N, Laouer H, Belkhiri A. Bioactivity-guided isolation of alkamides from a cytotoxic fraction of the ethyl acetate extract of Anacyclus pyrethrum (L.) DC. Roots. Curr Issues Pharm Med Sci 2018; 31(4): 18.
[http://dx.doi.org/10.1515/cipms-2018-0033]
[176]
Silva TMS, Nascimento RJB, Batista MM, Agra MF, Camara CA. Brine shrimp bioassay of some species of Solanum from Northestern Brazil. Rev Bras Farmacogn 2007; 17(1): 35-8.
[http://dx.doi.org/10.1590/S0102-695X2007000100008]
[177]
Martins RL, Simões RC, De Menezes Rabelo E, et al. Chemical composition, an antioxidant, cytotoxic and microbiological activity of the essential oil from the leaves of Aeollanthus suaveolens mart. ex Spreng. PLoS One 2016; 11(12) e0166684
[http://dx.doi.org/10.1371/journal.pone.0166684]
[178]
Kabir SR, Hossen A, Zubair A, et al. A new lectin from the tuberous rhizome of Kaempferia rotunda: isolation, characterization, antibacterial and antiproliferative activities. Protein Pept Lett 2011; 18(11): 1140-9.
[http://dx.doi.org/10.2174/092986611797200896]
[179]
Akhbari M, Kord R, Jafari Nodooshan S, Hamedi S. Analysis and evaluation of the antimicrobial and anticancer activities of the essential oil isolated from Foeniculum vulgare from Hamedan, Iran. Nat Prod Res 2019; 33(11): 1629-32.
[http://dx.doi.org/10.1080/14786419.2017.1423310]
[180]
Krstić NM, Matić IZ, Juranić ZD, Novaković IT, Sladić DM. Steroid dimers-in vitro cytotoxic and activities. J Steroid Biochem Mol Biol 2014; 143: 365-75.
[http://dx.doi.org/10.1016/j.jsbmb.2014.06.005]
[181]
Mondal M, Hossain MS, Das N, et al. Phytochemical screening and evaluation of pharmacological activity of leaf Methanolic extract of Colocasia affinis Schott. Clinical Phytoscience 2019; 5: 8.
[http://dx.doi.org/10.1186/s40816-019-0100-8]
[182]
Matthews RS. Artemia salina as a test organism for measuring superoxide-mediated toxicity. Free Radic Biol Med 1995; 18(5): 919-22.
[http://dx.doi.org/10.1016/0891-5849(94)00205-X]
[183]
Movahhedin N, Barar J, Azad FF, Barzegari A, Nazemiyeh H. Phytochemistry and biologic activities of caulerpa peltata native to oman sea. Iran J Pharm Res 2014; 13(2): 515-21.
[184]
Carballo JL, Hernández-Inda ZL, Pérez P, García-Grávalos MD. A comparison between two brine shrimp assays to detect in vitro cytotoxicity in marine natural products. BMC Biotechnol 2002; 2: 17.
[http://dx.doi.org/10.1186/1472-6750-2-17]
[185]
Caldwell GS, Bentley MG, Olive PJW. The use of a brine shrimp (Artemia salina) bioassay to assess the toxicity of diatom extracts and short chain aldehydes. Toxicon 2003; 42(3): 301-6.
[http://dx.doi.org/10.1016/S0041-0101(03)00147-8]
[186]
Unuofin JO, Otunola GA, Afolayan AJ. Toxicity assessment of Kedrostis africana cogn : a medicinal plant used in the management of obesity in south africa using brine shrimp (Artemia Salina Linn.) Assay. Int J Pharm Sci Res 2017; 8(9): 3719-25.
[187]
Shaala NMA, Zulkifli SZ, Ismail A, Azmai MNA, Mohamat-Yusuff F. lethal concentration 50 (LC50) and effects of diuron on morphology of brine shrimp Artemia salina (Branchiopoda: Anostraca) Nauplii. Procedia Environ Sci 2015; 30: 279-84.
[http://dx.doi.org/10.1016/j.proenv.2015.10.050]

© 2025 Bentham Science Publishers | Privacy Policy