Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Role of Bioactive Compounds and other Metabolites from Mushrooms against Skin Disorders- A Systematic Review Assessing their Cosmeceutical and Nutricosmetic Outcomes

Author(s): Oludemi Taofiq, Maria Filomena Barreiro and Isabel C.F.R. Ferreira*

Volume 27, Issue 41, 2020

Page: [6926 - 6965] Pages: 40

DOI: 10.2174/0929867327666200402100157

Price: $65

Abstract

Bioactive compounds derived from mushrooms have been shown to present promising potential as cosmeceutical or nutricosmetic ingredients. Scientific data reviewed herein showed that extracts prepared from medicinal and edible mushrooms and their individual metabolites presented antiinflammatory, antioxidant, photoprotective, antimicrobial, anti-tyrosinase, anti-elastase, and anticollagenase activities. These metabolites can be utilised as ingredients to suppress the severity of Inflammatory Skin Diseases, offer photoprotection to the skin, and correct Hyperpigmentation. However, studies regarding the molecular mechanism behind the mentioned bioactivities are still lacking. Challenges associated with the use of mushroom extracts and their associated metabolites as cosmeceutical and nutricosmetic ingredients include several steps from the fruiting bodies to the final product: extraction optimization, estimation of the efficacy and safety claims, the use of micro and nanocarriers to allow for controlled release and the pros and cons associated with the use of extracts vs individual compounds. This systematic review highlights that mushrooms contain diverse biomolecules that can be sustainably used in the development of nutricosmetic and cosmeceutical formulations. Reports regarding stability, compatibility, and safety assessment, but also toxicological studies are still needed to be considered. Furthermore, some of the constraints and limitations hindering the development of this type of ingredients still require long-term studies to achieve major breakthroughs.

Keywords: Skin diseases, mushrooms, bioactive molecules, cosmeceuticals, nutricosmetics, metabolites.

[1]
Lall, N.; Kishore, N. Are plants used for skin care in South Africa fully explored? J. Ethnopharmacol., 2014, 153(1), 61-84.
[http://dx.doi.org/10.1016/j.jep.2014.02.021] [PMID: 24566124]
[2]
Kamble, P.; Sadarani, B.; Majumdar, A.; Bhullar, S. Nanofiber based drug delivery systems for skin: a promising therapeutic approach. J. Drug Deliv. Sci. Technol., 2017, 41, 124-133.
[http://dx.doi.org/10.1016/j.jddst.2017.07.003]
[3]
Mota, A.H.; Rijo, P.; Molpeceres, J.; Reis, C.P. Broad overview of engineering of functional nanosystems for skin delivery. Int. J. Pharm., 2017, 532(2), 710-728.
[http://dx.doi.org/10.1016/j.ijpharm.2017.07.078] [PMID: 28764984]
[4]
Costa, R.; Santos, L. Delivery systems for cosmetics - from manufacturing to the skin of natural antioxidants. Powder Technol., 2017, 322, 402-416.
[http://dx.doi.org/10.1016/j.powtec.2017.07.086]
[5]
Bolzinger, M.A.; Briançon, S.; Pelletier, J.; Chevalier, Y. Penetration of drugs through skin, a complex rate-controlling membrane. Curr. Opin. Colloid Interface Sci., 2012, 17, 156-165.
[http://dx.doi.org/10.1016/j.cocis.2012.02.001]
[6]
Lane, M.E. Skin penetration enhancers. Int. J. Pharm., 2013, 447(1-2), 12-21.
[http://dx.doi.org/10.1016/j.ijpharm.2013.02.040] [PMID: 23462366]
[7]
Xie, P. jun; Huang, L. xin; Zhang, C. hong; Ding, S.; Deng, Y. jun; Wang, X. jie. Skin-care effects of dandelion leaf extract and stem extract: antioxidant properties, tyrosinase inhibitory and molecular docking simulations. Ind. Crops Prod., 2018, 111, 238-246.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.017]
[8]
Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci., 2016, 17(2), 160.
[http://dx.doi.org/10.3390/ijms17020160] [PMID: 26901191 ]
[9]
Kular, J.K.; Basu, S.; Sharma, R.I. The extracellular matrix: structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J. Tissue Eng., 2014, 52041731414557112
[http://dx.doi.org/10.1177/2041731414557112] [PMID: 25610589]
[10]
Taofiq, O.; González-Paramás, A.M.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Mushrooms extracts and compounds in cosmetics, cosmeceuticals and nutricosmetics-a review. Ind. Crops Prod., 2016, 90, 38-48.
[http://dx.doi.org/10.1016/j.indcrop.2016.06.012]
[11]
Taofiq, O.; González-Paramás, A.M.; Barreiro, M.F.; Ferreira, I.C.F.R. Hydroxycinnamic acids and their derivatives: cosmeceutical significance, challenges and future perspectives, a review. Molecules, 2017, 22(2), 1-24.
[http://dx.doi.org/10.3390/molecules22020281] [PMID: 28208818]
[12]
Xu, H.; Wu, P.R.; Shen, Z.Y.; Chen, X.D. Chemical analysis of Hericium erinaceum polysaccharides and effect of the polysaccharides on derma antioxidant enzymes, MMP-1 and TIMP-1 activities. Int. J. Biol. Macromol., 2010, 47(1), 33-36.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.03.024] [PMID: 20380848]
[13]
Akdis, C.A.; Akdis, M.; Trautmann, A.; Blaser, K. Immune regulation in atopic dermatitis. Curr. Opin. Immunol., 2000, 12(6), 641-646.
[http://dx.doi.org/10.1016/S0952-7915(00)00156-4] [PMID: 11102766]
[14]
Choi, E.J.; Lee, S.; Kim, H.H.; Singh, T.S.K.; Choi, J.K.; Choi, H.G.; Suh, W.M.; Lee, S.H.; Kim, S.H. Suppression of dust mite extract and 2,4-dinitrochlorobenzene-induced atopic dermatitis by the water extract of Lindera obtusiloba. J. Ethnopharmacol., 2011, 137(1), 802-807.
[http://dx.doi.org/10.1016/j.jep.2011.06.043] [PMID: 21762765]
[15]
Taofiq, O.; Martins, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Anti-inflammatory potential of mushroom extracts and isolated metabolites. Trends Food Sci. Technol., 2016, 50, 193-210.
[http://dx.doi.org/10.1016/j.tifs.2016.02.005]
[16]
Fisk, W.A.; Agbai, O.; Lev-Tov, H.A.; Sivamani, R.K. The use of botanically derived agents for hyperpigmentation: a systematic review. J. Am. Acad. Dermatol., 2014, 70(2), 352-365.
[http://dx.doi.org/10.1016/j.jaad.2013.09.048] [PMID: 24280646]
[17]
Chaowattanapanit, S.; Silpa-Archa, N.; Kohli, I.; Lim, H.W.; Hamzavi, I. Postinflammatory hyperpigmentation: a comprehensive overview: treatment options and prevention. J. Am. Acad. Dermatol., 2017, 77(4), 607-621.
[http://dx.doi.org/10.1016/j.jaad.2017.01.036] [PMID: 28917452]
[18]
Yahaya, E.S.; Cordier, W.; Steenkamp, P.A.; Steenkamp, V. Effect of ethnomedicinal extracts used for wound healing on cellular migration and intracellular reactive oxygen species release in sc-1 fibroblasts. S. Afr. J. Bot., 2018, 118, 11-17.
[http://dx.doi.org/10.1016/j.sajb.2018.06.003]
[19]
Pitz, H.D.S.; Pereira, A.; Blasius, M.B.; Voytena, A.P.L.; Affonso, R.C.L.; Fanan, S.; Trevisan, A.C.D.; Ribeiro-do-Valle, R.M.; Maraschin, M. In vitro evaluation of the antioxidant activity and wound healing properties of jaboticaba (Plinia peruviana) fruit peel hydroalcoholic extract. Oxid. Med. Cell. Longev., 2016.
[http://dx.doi.org/10.1155/2016/3403586 ] [PMID: 27630758 ]
[20]
Agrawal, S.; Adholeya, A.; Barrow, C.J.; Deshmukh, S.K. Marine fungi: an untapped bioresource for future cosmeceuticals. Phytochem. Lett., 2018, 23, 15-20.
[http://dx.doi.org/10.1016/j.phytol.2017.11.003]
[21]
Tamrakar, S.; Nishida, M.; Amen, Y.; Tran, H.B.; Suhara, H.; Fukami, K.; Parajuli, G.P.; Shimizu, K. Antibacterial activity of nepalese wild mushrooms against Staphylococcus aureus and Propionibacterium acnes. J. Wood Sci., 2017, 63, 379-387.
[http://dx.doi.org/10.1007/s10086-017-1636-1]
[22]
de Mattos-Shipley, K.M.J.; Ford, K.L.; Alberti, F.; Banks, A.M.; Bailey, A.M.; Foster, G.D. The good, the bad and the tasty: The many roles of mushrooms. Stud. Mycol., 2016, 85, 125-157.
[http://dx.doi.org/10.1016/j.simyco.2016.11.002] [PMID: 28082758]
[23]
Landi, N.; Pacifico, S.; Ragucci, S.; Iglesias, R.; Piccolella, S.; Amici, A.; Di Giuseppe, A.M.A.; Di Maro, A. Purification, characteri-zation and cytotoxicity assessment of Ageritin: The first ribotoxin from the basidiomycete mushroom Agrocybe aegerita. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(5 Pt A), 1113-1121.
[http://dx.doi.org/10.1016/j.bbagen.2017.02.023] [PMID: 28232091]
[24]
Taofiq, O.; Calhelha, R.C.; Heleno, S.; Barros, L.; Martins, A.; Santos-Buelga, C.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. The contribu-tion of phenolic acids to the anti-inflammatory activity of mushrooms: Screening in phenolic extracts, individual parent molecules and synthesized glucuronated and methylated derivatives. Food Res. Int., 2015, 76(Pt 3), 821-827.
[http://dx.doi.org/10.1016/j.foodres.2015.07.044] [PMID: 28455068]
[25]
Heleno, S.A.; Ferreira, I.C.F.R.; Esteves, A.P.; Ćirić, A.; Glamočlija, J.; Martins, A.; Soković, M.; Queiroz, M.J.R.P. Antimicrobial and demelanizing activity of Ganoderma lucidum extract, p-hydroxybenzoic and cinnamic acids and their synthetic acetylated glucuronide methyl esters. Food Chem. Toxicol., 2013, 58, 95-100.
[http://dx.doi.org/10.1016/j.fct.2013.04.025] [PMID: 23607932]
[26]
Money, N.P. Are mushrooms medicinal? Fungal Biol., 2016, 120(4), 449-453.
[http://dx.doi.org/10.1016/j.funbio.2016.01.006] [PMID: 27020147]
[27]
Oliveira, M.; Reis, F.S.; Sousa, D.; Tavares, C.; Lima, R.T.; Ferreira, I.C.F.R.; dos Santos, T.; Vasconcelos, M.H. A methanolic extract of Ganoderma lucidum fruiting body inhibits the growth of a gastric cancer cell line and affects cellular autophagy and cell cycle. Food Funct., 2014, 5(7), 1389-1394.
[http://dx.doi.org/10.1039/C4FO00258J] [PMID: 24892846]
[28]
Barreira, J.C.M.; Oliveira, M.B.P.P.; Ferreira, I.C.F.R. Development of a novel methodology for the analysis of ergosterol in mush-rooms. Food Anal. Methods, 2013, 7, 217-223.
[http://dx.doi.org/10.1007/s12161-013-9621-9]
[29]
Ferreira, I.C.F.R.; Heleno, S.A.; Reis, F.S.; Stojkovic, D.; Queiroz, M.J.R.P.; Vasconcelos, M.H.; Sokovic, M. Chemical features of Ganoderma polysaccharides with antioxidant, antitumor and antimicrobial activities. Phytochemistry, 2015, 114, 38-55.
[http://dx.doi.org/10.1016/j.phytochem.2014.10.011] [PMID: 25457487]
[30]
Reis, F.S.; Martins, A.; Vasconcelos, M.H.; Morales, P.; Ferreira, I.C.F.R. Functional foods based on extracts or compounds derived from mushrooms. Trends Food Sci. Technol., 2017, 66, 48-62.
[http://dx.doi.org/10.1016/j.tifs.2017.05.010]
[31]
Rathore, H.; Prasad, S.; Sharma, S. Mushroom nutraceuticals for improved nutrition and better human health: a review. PharmaNutrition, 2017, 5, 35-46.
[http://dx.doi.org/10.1016/j.phanu.2017.02.001]
[32]
Leiva, F.J.; Saenz-Díez, J.C.; Martínez, E.; Jiménez, E.; Blanco, J. Environmental impact of Agaricus bisporus cultivation process. Eur. J. Agron., 2015, 71, 141-148.
[http://dx.doi.org/10.1016/j.eja.2015.09.013]
[33]
Hearst, R.; Nelson, D.; McCollum, G.; Millar, B.C.; Maeda, Y.; Goldsmith, C.E.; Rooney, P.J.; Loughrey, A.; Rao, J.R.; Moore, J.E. An examination of antibacterial and antifungal properties of constituents of Shiitake (Lentinula edodes) and oyster (Pleurotus ostreatus) mushrooms. Complement. Ther. Clin. Pract., 2009, 15(1), 5-7.
[http://dx.doi.org/10.1016/j.ctcp.2008.10.002] [PMID: 19161947]
[34]
Sasaki, S.H.; Linhares, R.E.C.; Nozawa, C.M.; Montalván, R.; Paccola-Meirelles, L.D. Strains of Lentinula Edodes suppress growth of phytopathogenic fungi and inhibit alagoas serotype of vesicular stomatitis virus. Braz. J. Microbiol., 2001, 32, 52-55.
[http://dx.doi.org/10.1590/S1517-83822001000100012]
[35]
Heleno, S.A.; Martins, A.; Queiroz, M.J.R.P.; Ferreira, I.C.F.R. Bioactivity of phenolic acids: metabolites versus parent compounds: a review. Food Chem., 2015, 173, 501-513.
[http://dx.doi.org/10.1016/j.foodchem.2014.10.057] [PMID: 25466052]
[36]
Moro, C.; Palacios, I.; Lozano, M.; D’Arrigo, M.; Guillamón, E.; Villares, A.; Martínez, J.A.; García-Lafuente, A. Anti-inflammatory activity of methanolic extracts from edible mushrooms in lps activated RAW 264.7 macrophages. Food Chem., 2012, 130, 350-355.
[http://dx.doi.org/10.1016/j.foodchem.2011.07.049]
[37]
Ferreira, I.C.; Barros, L.; Abreu, R.M. Antioxidants in wild mushrooms. Curr. Med. Chem., 2009, 16(12), 1543-1560.
[http://dx.doi.org/10.2174/092986709787909587] [PMID: 19355906]
[38]
Carocho, M.; Ferreira, I.C.F.R. The role of phenolic compounds in the fight against cancer-a review. Anticancer. Agents Med. Chem., 2013, 13(8), 1236-1258.
[http://dx.doi.org/10.2174/18715206113139990301] [PMID: 23796249]
[39]
Amirullah, N.A.; Zainal Abidin, N.; Abdullah, N. The potential applications of mushrooms against some facets of atherosclerosis: a review. Food Res. Int., 2018, 105, 517-536.
[http://dx.doi.org/10.1016/j.foodres.2017.11.023] [PMID: 29433243]
[40]
Singdevsachan, S.K.; Auroshree, P.; Mishra, J.; Baliyarsingh, B.; Tayung, K.; Thatoi, H. Mushroom polysaccharides as potential prebiotics with their antitumor and immunomodulating properties: a review. Bioact. Carbohydrates Diet. Fibre, 2016, 7, 1-14.
[http://dx.doi.org/10.1016/j.bcdf.2015.11.001]
[41]
Meng, X.; Liang, H.; Luo, L. Antitumor polysaccharides from mushrooms: a review on the structural characteristics, antitumor mech-anisms and immunomodulating activities. Carbohydr. Res., 2016, 424, 30-41.
[http://dx.doi.org/10.1016/j.carres.2016.02.008] [PMID: 26974354]
[42]
Shimizu, T.; Kawai, J.; Ouchi, K.; Kikuchi, H.; Osima, Y.; Hidemi, R. Agarol, an ergosterol derivative from Agaricus blazei, induces caspase-independent apoptosis in human cancer cells. Int. J. Oncol., 2016, 48(4), 1670-1678.
[http://dx.doi.org/10.3892/ijo.2016.3391] [PMID: 26893131]
[43]
Tuli, H.S.; Sharma, A.K.; Sandhu, S.S.; Kashyap, D. Cordycepin: a bioactive metabolite with therapeutic potential. Life Sci., 2013, 93(23), 863-869.
[http://dx.doi.org/10.1016/j.lfs.2013.09.030] [PMID: 24121015]
[44]
Imamura, K.; Asai, M.; Sugamoto, K.; Matsumoto, T.; Yamasaki, Y.; Kamei, I.; Hattori, T.; Kishimoto, M.; Niisaka, S.; Kubo, M.; Nishiyama, K.; Yamasaki, M. Suppressing effect of cordycepin on the lipopolysaccharide-induced nitric oxide production in RAW 264.7 cells. Biosci. Biotechnol. Biochem., 2015, 79(6), 1021-1025.
[http://dx.doi.org/10.1080/09168451.2015.1008977] [PMID: 25652735]
[45]
Luque de Castro, M.D. Cosmetobolomics as an incipient “-omics” with high analytical involvement. Trends Analyt. Chem., 2011, 30, 1365-1371.
[http://dx.doi.org/10.1016/j.trac.2011.04.013]
[46]
Hyde, K.D.; Bahkali, A.H.; Moslem, M.A. Fungi - an unusual source for cosmetics. Fungal Divers., 2010, 43, 1-9.
[http://dx.doi.org/10.1007/s13225-010-0043-3]
[47]
Ramli, N.S. Immigrant entrepreneurs on the world’s successful global brands in the cosmetic industry. Procedia Soc. Behav. Sci., 2015, 195, 113-122.
[http://dx.doi.org/10.1016/j.sbspro.2015.06.417]
[48]
Sharma, P. Cosmeceuticals: regulatory scenario in US, Erope & India. Int. J. Pharm. Technol., 2011, 3, 1512-1535.
[49]
Amer, M.; Maged, M. Cosmeceuticals versus pharmaceuticals. Clin. Dermatol., 2009, 27(5), 428-430.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.004] [PMID: 19695472]
[50]
Kadam Vaishali, S.; Chintale Ashwini, G.D.K.P.; Nalwad Digambar, N. Cosmeceuticals an emerging concept : A comprehensive review. Int. J. Res. Pharm. Chem., 2013, 3, 308-316.
[51]
Ramos-e-Silva, M.; Celem, L.R.; Ramos-e-Silva, S.; Fucci-da-Costa, A.P. Anti-aging cosmetics: facts and controversies. Clin. Dermatol., 2013, 31(6), 750-758.
[http://dx.doi.org/10.1016/j.clindermatol.2013.05.013] [PMID: 24160281]
[52]
Brandt, F.S.; Cazzaniga, A.; Hann, M. Cosmeceuticals: current trends and market analysis. Semin. Cutan. Med. Surg., 2011, 30(3), 141-143.
[http://dx.doi.org/10.1016/j.sder.2011.05.006] [PMID: 21925366]
[53]
Haruta-Ono, Y.; Setoguchi, S.; Ueno, H.M.; Higurashi, S.; Ueda, N.; Kato, K.; Saito, T.; Matsunaga, K.; Takata, J. Orally administered sphingomyelin in bovine milk is incorporated into skin sphingolipids and is involved in the water-holding capacity of hairless mice. J. Dermatol. Sci., 2012, 68(1), 56-62.
[http://dx.doi.org/10.1016/j.jdermsci.2012.07.006] [PMID: 22890148]
[54]
Keller, S.; Le, H.Y.; Rödiger, C.; Hipler, U.C.; Kertscher, R.; Malarski, A.; Hunstock, L.M.; Kiehntopf, M.; Kaatz, M.; Norgauer, J.; Jahreis, G. Supplementation of a dairy drink enriched with milk phospholipids in patients with atopic dermatitis - a double-blind, pla-cebo-controlled, randomized, cross-over study. Clin. Nutr., 2014, 33(6), 1010-1016.
[http://dx.doi.org/10.1016/j.clnu.2014.01.014] [PMID: 24559855]
[55]
Rodrigues, F.; Pimentel, F.B.; Oliveira, M.B.P.P. Olive by-products: challenge application in cosmetic industry. Ind. Crops Prod., 2015, 70, 116-124.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.027]
[56]
Royer, M.; Prado, M.; García-Pérez, M.E.; Diouf, P.N.; Stevanovic, T. Study of nutraceutical, nutricosmetics and cosmeceutical po-tentials of polyphenolic bark extracts from canadian forest species. PharmaNutrition, 2013, 1, 158-167.
[http://dx.doi.org/10.1016/j.phanu.2013.05.001]
[57]
Draelos, Z.D. Nutrition and enhancing youthful-appearing skin. Clin. Dermatol., 2010, 28(4), 400-408.
[http://dx.doi.org/10.1016/j.clindermatol.2010.03.019] [PMID: 20620756]
[58]
Hong, Y-H.; Jung, E.Y.; Noh, D.O.; Suh, H.J. Physiological effects of formulation containing tannase-converted green tea extract on skin care: physical stability, collagenase, elastase, and tyrosinase activities. Integr. Med. Res., 2014, 3(1), 25-33.
[http://dx.doi.org/10.1016/j.imr.2013.12.003] [PMID: 28664075]
[59]
González, S.; Fernández-Lorente, M.; Gilaberte-Calzada, Y. The latest on skin photoprotection. Clin. Dermatol., 2008, 26(6), 614-626.
[http://dx.doi.org/10.1016/j.clindermatol.2007.09.010] [PMID: 18940542]
[60]
Rona, C.; Berardesca, E. Aging skin and food supplements: the myth and the truth. Clin. Dermatol., 2008, 26(6), 641-647.
[http://dx.doi.org/10.1016/j.clindermatol.2007.09.002] [PMID: 18940546]
[61]
Draelos, Z.D. Cosmeceuticals: undefined, unclassified, and unregulated. Clin. Dermatol., 2009, 27(5), 431-434.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.005] [PMID: 19695473]
[62]
Levin, J.; Momin, S.B. How much do we really know about our favorite cosmeceutical ingredients? J. Clin. Aesthet. Dermatol., 2010, 3(2), 22-41.
[PMID: 20725560]
[63]
Wen, L.; Gao, Q.; Ma, C. wah; Ge, Y.; You, L.; Liu, R.H.; Fu, X.; Liu, D. Effect of polysaccharides from Tremella fuciformis on UV-induced photoaging. J. Funct. Foods, 2016, 20, 400-410.
[http://dx.doi.org/10.1016/j.jff.2015.11.014]
[64]
Taofiq, O.; Rodrigues, F.; Barros, L.; Barreiro, M.F.; Ferreira, I.C.F.R.; Oliveira, M.B.P.P. Mushroom ethanolic extracts as cosmeceu-ticals ingredients: safety and ex vivo skin permeation studies. Food Chem. Toxicol., 2019, 127, 228-236.
[http://dx.doi.org/10.1016/j.fct.2019.03.045] [PMID: 30922966]
[65]
Li, S.; Liu, M.; Zhang, C.; Tian, C.; Wang, X.; Song, X.; Jing, H.; Gao, Z.; Ren, Z.; Liu, W.; Zhang, J.; Jia, L. Purification, in vitro antioxidant and in vivo anti-aging activities of soluble polysaccharides by enzyme-assisted extraction from Agaricus bisporus. Int. J. Biol. Macromol., 2018, 109, 457-466.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.108] [PMID: 29274427]
[66]
Bae, J.T.; Sim, G.S.; Lee, D.H.; Lee, B.C.; Pyo, H.B.; Choe, T.B.; Yun, J.W. Production of exopolysaccharide from mycelial culture of Grifola frondosa and its inhibitory effect on matrix metalloproteinase-1 expression in UV-irradiated human dermal fibroblasts. FEMS Microbiol. Lett., 2005, 251(2), 347-354.
[http://dx.doi.org/10.1016/j.femsle.2005.08.021] [PMID: 16165320]
[67]
Zhao, H.; Li, J.; Zhang, J.; Wang, X.; Hao, L.; Jia, L. Purification, in vitro antioxidant and in vivo anti-aging activities of exopolysac-charides by Agrocybe cylindracea. Int. J. Biol. Macromol., 2017, 102, 351-357.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.04.039] [PMID: 28412338]
[68]
Li, S.; Liu, H.; Wang, W.; Wang, X.; Zhang, C.; Zhang, J.; Jing, H.; Ren, Z.; Gao, Z.; Song, X.; Jia, L. Antioxidant and anti-aging effects of acidic-extractable polysaccharides by Agaricus bisporus. Int. J. Biol. Macromol., 2018, 106, 1297-1306.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.135] [PMID: 28855134]
[69]
Govindan, S.; Johnson, E.E.R.; Christopher, J.; Shanmugam, J.; Thirumalairaj, V.; Gopalan, J. Antioxidant and anti-aging activities of polysaccharides from Calocybe indica var. APK2. Exp. Toxicol. Pathol., 2016, 68(6), 329-334.
[http://dx.doi.org/10.1016/j.etp.2016.04.001] [PMID: 27174669]
[70]
Jing, H.; Li, J.; Zhang, J.; Wang, W.; Li, S.; Ren, Z.; Gao, Z.; Song, X.; Wang, X.; Jia, L. The antioxidative and anti-aging effects of acidic- and alkalic-extractable mycelium polysaccharides by Agrocybe aegerita (Brig.). Sing. Int. J. Biol. Macromol., 2018, 106, 1270-1278.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.08.138] [PMID: 28851637]
[71]
Ruksiriwanich, W.; Sirithunyalug, J.; Boonpisuttinant, K.; Jantrawut, P. Potent in vitro collagen biosynthesis stimulating and antioxidant activities of edible mushroom Volvariella volvacea aqueous extract. Int. J. Pharm. Pharm. Sci., 2014, 6, 406-412.
[72]
Zhang, Z.S.; Wang, X.M.; Han, Z.P.; Zhao, M.X.; Yin, L. Purification, antioxidant and moisture-preserving activities of polysaccharides from papaya. Carbohydr. Polym., 2012, 87, 2332-2337.
[http://dx.doi.org/10.1016/j.carbpol.2011.10.067]
[73]
Kwon, A.H.; Qiu, Z.; Hashimoto, M.; Yamamoto, K.; Kimura, T. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am. J. Surg., 2009, 197(4), 503-509.
[http://dx.doi.org/10.1016/j.amjsurg.2007.11.021] [PMID: 18585672]
[74]
Yamamoto, K.; Kimura, T. Orally and topically administered Sparassis crispa (Hanabiratake) improved healing of skin wounds in mice with streptozotocin-induced diabetes. Biosci. Biotechnol. Biochem., 2013, 77(6), 1303-1305.
[http://dx.doi.org/10.1271/bbb.121016] [PMID: 23748764]
[75]
Kimura, T.; Hashimoto, M.; Yamada, M.; Nishikawa, Y. Sparassis crispa (Hanabiratake) ameliorates skin conditions in rats and hu-mans. Biosci. Biotechnol. Biochem., 2013, 77(9), 1961-1963.
[http://dx.doi.org/10.1271/bbb.130185] [PMID: 24018675]
[76]
Cheng, P.; Phan, C.; Sabaratnam, V.; Abdullah, N.; Abdulla, M.A.; Kuppusamy, U.R. Polysaccharides-rich extract of Ganoderma lucidum (M.A. Curtis : Fr.) P. Karst accelerates wound healing in streptozotocin-induced diabetic rats. Evidence-Based Complement. Altern. Med., 2013, 671252
[http://dx.doi.org/10.1155/2013/671252] [PMID: 24348715]
[77]
Amin, Z.A.; Ali, H.M.; Alshawsh, M.A.; Darvish, P.H.; Abdulla, M.A. Application of Antrodia camphorata promotes rat’s wound healing in vivo and facilitates fibroblast cell proliferation in vitro. Evidence-based Complement. Altern. Med., 2015, 2015317693
[http://dx.doi.org/10.1155/2015/317693 ] [PMID: 26557855 ]
[78]
Krupodorova, T.A.; Klymenko, P.P.; Barshteyn, V.Y.; Leonov, Y.I.; Shytikov, D.W.; Orlova, T.N. Effects of Ganoderma lucidum (Curtis) P. Karst and Crinipellis schevczenkovi Buchalo aqueous extracts on skin wound healing. J. Phytopharm., 2015, 4, 197-201.
[79]
Sui, Z.; Yang, R.; Liu, B.; Gu, T.; Zhao, Z.; Shi, D.; Chang, D. Chemical analysis of Agaricus blazei polysaccharides and effect of the polysaccharides on IL-1β mRNA expression in skin of burn wound-treated rats. Int. J. Biol. Macromol., 2010, 47(2), 155-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.05.006] [PMID: 20471414]
[80]
Stern, R. Hyaluronan catabolism: a new metabolic pathway. Eur. J. Cell Biol., 2004, 83(7), 317-325.
[http://dx.doi.org/10.1078/0171-9335-00392] [PMID: 15503855]
[81]
Meng, T.X.; Furuta, S.; Fukamizu, S.; Yamamoto, R.; Ishikawa, H.; Arung, E.T.; Shimizu, K.; Ohga, S.; Kondo, R. Evaluation of biological activities of extracts from the fruiting body of Pleurotus citrinopileatus for skin cosmetics. J. Wood Sci., 2011, 57, 452-458.
[http://dx.doi.org/10.1007/s10086-011-1192-z]
[82]
Yahaya, Y.A.; Don, M.M. Evaluation of Trametes lactinea extracts on the inhibition of hyaluronidase, lipoxygenase and xanthine oxidase activities in vitro. J. Physiol. Sci., 2012, 23(2), 1-15.
[83]
Lee, B.C.; Bae, J.T.; Pyo, H.B.; Choe, T.B.; Kim, S.W.; Hwang, H.J.; Yun, J.W. Biological activities of the polysaccharides produced from submerged culture of the edible basidiomycete Grifola frondosa. Enzyme Microb. Technol., 2003, 32, 574-581.
[http://dx.doi.org/10.1016/S0141-0229(03)00026-7]
[84]
Barros, L.; Pereira, C.; Ferreira, I.C.F.R. Optimized analysis of organic acids in edible mushrooms from Portugal by ultra-fast liquid chromatography and photodiode array detection. Food Anal. Methods, 2013, 6, 309-316.
[http://dx.doi.org/10.1007/s12161-012-9443-1]
[85]
Sams, R.L., II; Couch, L.H.; Miller, B.J.; Okerberg, C.V.; Warbritton, A.; Wamer, W.G.; Beer, J.Z.; Howard, P.C. Basal cell prolifer-ation in female SKH-1 mice treated with α- and β-hydroxy acids. Toxicol. Appl. Pharmacol., 2001, 175(1), 76-82.
[http://dx.doi.org/10.1006/taap.2001.9232] [PMID: 11509029]
[86]
Moghimipour, E. Hydroxy acids, the most widely used anti-aging agents. Jundishapur J. Nat. Pharm. Prod., 2012, 7(1), 9-10.
[http://dx.doi.org/10.5812/jjnpp.4181] [PMID: 24624144]
[87]
Green, B.A.; Yu, R.J.; Van Scott, E.J. Clinical and cosmeceutical uses of hydroxyacids. Clin. Dermatol., 2009, 27(5), 495-501.
[http://dx.doi.org/10.1016/j.clindermatol.2009.06.023] [PMID: 19695482]
[88]
Kornhauser, A.; Coelho, S.G.; Hearing, V.J. Effects of cosmetic formulations containing hydroxyacids on sun-exposed skin: current applications and future developments. Dermatol. Res. Pract., 2012, 2012710893
[http://dx.doi.org/10.1155/2012/710893] [PMID: 22675344]
[89]
Fiume, M.M.; Heldreth, B.A.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr; Shank, R.C.; Slaga, T.J.; Snyder, P.W.; Andersen, F.A. Safety assessment of citric acid, inorganic citrate salts, and alkyl citrate esters as used in cosmetics. Int. J. Toxicol., 2014, 33(2)(Suppl.), 16S-46S.
[http://dx.doi.org/10.1177/1091581814526891] [PMID: 24861367]
[90]
Bernstein, E.F.; Underhill, C.B.; Lakkakorpi, J.; Ditre, C.M.; Uitto, J.; Yu, R.J.; Scott, E.V. Citric acid increases viable epidermal thickness and glycosaminoglycan content of sun-damaged skin. Dermatol. Surg., 1997, 23(8), 689-694.
[http://dx.doi.org/10.1111/j.1524-4725.1997.tb00391.x] [PMID: 9256916]
[91]
Tang, S.C.; Yang, J.H. Dual effects of alpha-hydroxy acids on the skin. Molecules, 2018, 23(4), 1-12.
[http://dx.doi.org/10.3390/molecules23040863] [PMID: 29642579 ]
[92]
Maske, P.P.; Lokapure, S.G.; Nimbalkar, D.; Malavi, S.; D’souza, J.I. In vitro determination of sun protection factor and chemical stability of Rosa kordesii extract gel. J. Pharm. Res., 2013, 7, 520-524.
[http://dx.doi.org/10.1016/j.jopr.2013.05.021]
[93]
Saija, A.; Tomaino, A.; Lo Cascio, R.; Trombetta, D.; Proteggente, A.; De Pasquale, A.; Uccella, N.; Bonina, F. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric., 1999, 79, 476-480.
[http://dx.doi.org/10.1002/(SICI)1097-0010(19990301)79:3<476:AID-JSFA270>3.0.CO;2-L]
[94]
Fernandes, A.S.; Mazzei, J.L.; Evangelista, H.; Marques, M.R.C.; Ferraz, E.R.A.; Felzenszwalb, I. Protection against UV-induced oxidative stress and DNA damage by Amazon moss extracts. J. Photochem. Photobiol. B, 2018, 183, 331-341.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.04.038] [PMID: 29758545]
[95]
Saija, A.; Tomaino, A.; Trombetta, D.; De Pasquale, A.; Uccella, N.; Barbuzzi, T.; Paolino, D.; Bonina, F. In vitro and in vivo evaluation of caffeic and ferulic acids as topical photoprotective agents. Int. J. Pharm., 2000, 199(1), 39-47.
[http://dx.doi.org/10.1016/S0378-5173(00)00358-6] [PMID: 10794925]
[96]
Pluemsamran, T.; Onkoksoong, T.; Panich, U. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells. Photochem. Photobiol., 2012, 88(4), 961-968.
[http://dx.doi.org/10.1111/j.1751-1097.2012.01118.x] [PMID: 22360712]
[97]
Kwak, J.Y.; Park, S.; Seok, J.K.; Liu, K.H.; Boo, Y.C. Ascorbyl coumarates as multifunctional cosmeceutical agents that inhibit mel-anogenesis and enhance collagen synthesis. Arch. Dermatol. Res., 2015, 307(7), 635-643.
[http://dx.doi.org/10.1007/s00403-015-1583-x] [PMID: 26078014]
[98]
Freedman, B.M. Topical antioxidant application enhances the effects of facial microdermabrasion. J. Dermatolog. Treat., 2009, 20(2), 82-87.
[http://dx.doi.org/10.1080/09546630802301818] [PMID: 18720185]
[99]
Lee, H.J.; Kim, M.H.; Choi, Y.Y.; Kim, E.H.; Hong, J.; Kim, K.; Yang, W.M. Improvement of atopic dermatitis with topical application of Spirodela polyrhiza. J. Ethnopharmacol., 2016, 180, 12-17.
[http://dx.doi.org/10.1016/j.jep.2016.01.010] [PMID: 26778605]
[100]
Geng, Y.; Zhu, S.; Cheng, P.; Lu, Z.M.; Xu, H.Y.; Shi, J.S.; Xu, Z.H. Bioassay-guided fractionation of ethyl acetate extract from Ar-millaria mellea attenuates inflammatory response in lipopolysaccharide (LPS) stimulated BV-2 microglia. Phytomedicine, 2017, 26, 55-61.
[http://dx.doi.org/10.1016/j.phymed.2017.01.005] [PMID: 28257665]
[101]
Yoshikawa, K.; Inoue, M.; Matsumoto, Y.; Sakakibara, C.; Miyataka, H.; Matsumoto, H.; Arihara, S. Lanostane triterpenoids and triterpene glycosides from the fruit body of Fomitopsis pinicola and their inhibitory activity against COX-1 and COX-2. J. Nat. Prod., 2005, 68(1), 69-73.
[http://dx.doi.org/10.1021/np040130b] [PMID: 15679320]
[102]
Stanikunaite, R.; Khan, S.I.; Trappe, J.M.; Ross, S.A. Cyclooxygenase-2 inhibitory and antioxidant compounds from the truffle Ela-phomyces granulatus. Phytother. Res., 2009, 23(4), 575-578.
[http://dx.doi.org/10.1002/ptr.2698] [PMID: 19067382]
[103]
Hseu, Y.C.; Huang, H.C.; Hsiang, C.Y. Antrodia camphorata suppresses lipopolysaccharide-induced nuclear factor-kappaB activation in transgenic mice evaluated by bioluminescence imaging. Food Chem. Toxicol., 2010, 48(8-9), 2319-2325.
[http://dx.doi.org/10.1016/j.fct.2010.05.066] [PMID: 20621584]
[104]
Kashif, M.; Akhtar, N.; Mustafa, R. An overview of dermatological and cosmeceutical benefits of Diospyros kaki and its phytocon-stituents. Brazilian J. Pharmacogn., 2017, 27, 650-662.
[http://dx.doi.org/10.1016/j.bjp.2017.06.004]
[105]
Li, H.; Lu, X.; Zhang, S.; Lu, M.; Liu, H. Anti-inflammatory activity of polysaccharide from Pholiota nameko. Biochemistry (Mosc.), 2008, 73(6), 669-675.
[http://dx.doi.org/10.1134/S0006297908060060] [PMID: 18620532]
[106]
Ruthes, A.C.; Rattmann, Y.D.; Malquevicz-Paiva, S.M.; Carbonero, E.R.; Córdova, M.M.; Baggio, C.H.; Santos, A.R.S.; Gorin, P.A.J.; Iacomini, M. Agaricus bisporus fucogalactan: structural characterization and pharmacological approaches. Carbohydr. Polym., 2013, 92(1), 184-191.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.071] [PMID: 23218281]
[107]
Silveira, M.L.L.; Smiderle, F.R.; Agostini, F.; Pereira, E.M.; Bonatti-Chaves, M.; Wisbeck, E.; Ruthes, A.C.; Sassaki, G.L.; Cipriani, T.R.; Furlan, S.A.; Iacomini, M. Exopolysaccharide produced by Pleurotus sajorcaju: its chemical structure and anti-inflammatory activity. Int. J. Biol. Macromol., 2015, 75, 90-96.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.023] [PMID: 25600989]
[108]
Castro, A.J.G.; Castro, L.S.E.P.W.; Santos, M.S.N.; Faustino, M.G.C.; Pinheiro, T.S.; Dore, C.M.P.G.; Baseia, I.G.; Leite, E.L. Anti-inflamatory, anti-angiogenenic and antioxidant activities of polysaccharide-rich extract from fungi Caripia montagnei. Biomed. Prev. Nutr., 2014, 4, 121-129.
[http://dx.doi.org/10.1016/j.bionut.2013.08.004]
[109]
Chang, C.W.; Lur, H.S.; Lu, M.K.; Cheng, J.J. Sulfated polysaccharides of Armillariella mellea and their anti-inflammatory activities via nf-kb suppression. Food Res. Int., 2013, 54, 239-245.
[http://dx.doi.org/10.1016/j.foodres.2013.07.005]
[110]
Guerra Dore, C.M.P.; Azevedo, T.C.G.; de Souza, M.C.R.; Rego, L.A.; de Dantas, J.C.M.; Silva, F.R.F.; Rocha, H.A.O.; Baseia, I.G.; Leite, E.L. Antiinflammatory, antioxidant and cytotoxic actions of β-glucan-rich extract from Geastrum saccatum mushroom. Int. Immunopharmacol., 2007, 7(9), 1160-1169.
[http://dx.doi.org/10.1016/j.intimp.2007.04.010] [PMID: 17630194]
[111]
Akihisa, T.; Nakamura, Y.; Tagata, M.; Tokuda, H.; Yasukawa, K.; Uchiyama, E.; Suzuki, T.; Kimura, Y. Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem. Biodivers., 2007, 4(2), 224-231.
[http://dx.doi.org/10.1002/cbdv.200790027] [PMID: 17311233]
[112]
Choi, S.; Nguyen, V.T.; Tae, N.; Lee, S.; Ryoo, S.; Min, B.S.; Lee, J.H. Anti-inflammatory and heme oxygenase-1 inducing activities of lanostane triterpenes isolated from mushroom Ganoderma lucidum in RAW 264.7 cells. Toxicol. Appl. Pharmacol., 2014, 280(3), 434-442.
[http://dx.doi.org/10.1016/j.taap.2014.09.007] [PMID: 25239868]
[113]
Dudhgaonkar, S.; Thyagarajan, A.; Sliva, D. Suppression of the inflammatory response by triterpenes isolated from the mushroom Ganoderma lucidum. Int. Immunopharmacol., 2009, 9(11), 1272-1280.
[http://dx.doi.org/10.1016/j.intimp.2009.07.011] [PMID: 19651243]
[114]
Ukawa, Y.; Izumi, Y.; Ohbuchi, T.; Takahashi, T.; Ikemizu, S.; Kojima, Y. Oral administration of the extract from Hatakeshimeji (Lyophyllum decastes sing.) mushroom inhibits the development of atopic dermatitis-like skin lesions in NC/Nga mice. J. Nutr. Sci. Vitaminol. (Tokyo), 2007, 53(3), 293-296.
[http://dx.doi.org/10.3177/jnsv.53.293] [PMID: 17874836]
[115]
Wang, H.D.; Chen, C.C.; Huynh, P.; Chang, J.S. Exploring the potential of using algae in cosmetics. Bioresour. Technol., 2015, 184, 355-362.
[http://dx.doi.org/10.1016/j.biortech.2014.12.001] [PMID: 25537136]
[116]
Wang, H.D.; Li, X.C.; Lee, D.J.; Chang, J.S. Potential biomedical applications of marine algae. Bioresour. Technol., 2017, 244(Pt 2), 1407-1415.
[http://dx.doi.org/10.1016/j.biortech.2017.05.198] [PMID: 28697977]
[117]
Milhorini, S.D.S.; Smiderle, F.R.; Biscaia, S.M.P.; Rosado, F.R.; Trindade, E.S.; Iacomini, M. Fucogalactan from the giant mushroom Macrocybe titans inhibits melanoma cells migration. Carbohydr. Polym., 2018, 190, 50-56.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.063] [PMID: 29628259]
[118]
Han, S.B.; Lee, C.W.; Kang, J.S.; Yoon, Y.D.; Lee, K.H.; Lee, K.; Park, S.K.; Kim, H.M. Acidic polysaccharide from Phellinus linteus inhibits melanoma cell metastasis by blocking cell adhesion and invasion. Int. Immunopharmacol., 2006, 6(4), 697-702.
[http://dx.doi.org/10.1016/j.intimp.2005.10.003] [PMID: 16504934]
[119]
Njue, A.W.; Omolo, J.O.; Cheplogoi, P.K.; Langat, M.K.; Mulholland, D.A. Cytotoxic ergostane derivatives from the edible mushroom Termitomyces microcarpus (lyophyllaceae). Biochem. Syst. Ecol., 2018, 76, 12-14.
[http://dx.doi.org/10.1016/j.bse.2017.11.006]
[120]
Youn, M.J.; Kim, J.K.; Park, S. yeol; Kim, Y.; Park, C.; Kim, E.S.; Park, K.I.; So, H.S.; Park, R. Potential anticancer properties of the water extract of Inontus obliquus by induction of apoptosis in melanoma B16-F10 cells. J. Ethnopharmacol., 2009, 121, 221-228.
[http://dx.doi.org/10.1016/j.jep.2008.10.016] [PMID: 19041933]
[121]
Harhaji, Lj.; Mijatović, S.; Maksimović-Ivanić, D.; Stojanović, I.; Momcilović, M.; Maksimović, V.; Tufegdzić, S.; Marjanović, Z.; Mostarica-Stojković, M.; Vucinić, Z.; Stosić-Grujicić, S. Anti-tumor effect of Coriolus versicolor methanol extract against mouse B16 melanoma cells: in vitro and in vivo study. Food Chem. Toxicol., 2008, 46(5), 1825-1833.
[http://dx.doi.org/10.1016/j.fct.2008.01.027] [PMID: 18313195]
[122]
Wu, J.Y.; Zhang, Q.X.; Leung, P.H. Inhibitory effects of ethyl acetate extract of Cordyceps sinensis mycelium on various cancer cells in culture and B16 melanoma in C57BL/6 mice. Phytomedicine, 2007, 14(1), 43-49.
[http://dx.doi.org/10.1016/j.phymed.2005.11.005] [PMID: 16423520]
[123]
Fyhrquist, N.; Salava, A.; Auvinen, P.; Lauerma, A. Skin Biomes. Curr. Allergy Asthma Rep., 2016, 16(5), 40.
[http://dx.doi.org/10.1007/s11882-016-0618-5] [PMID: 27056560]
[124]
Kerdudo, A.; Burger, P.; Merck, F.; Dingas, A.; Rolland, Y.; Michel, T.; Fernandez, X. Development of a natural ingredient - natural preservative: A case study. C. R. Chim., 2016, 19, 1077-1089.
[http://dx.doi.org/10.1016/j.crci.2016.06.004]
[125]
Kizhedath, A.; Wilkinson, S.; Glassey, J. Assessment of hepatotoxicity and dermal toxicity of butyl paraben and methyl paraben using HepG2 and HDFn in vitro models. Toxicol. In Vitro, 2019, 55, 108-115.
[http://dx.doi.org/10.1016/j.tiv.2018.12.007] [PMID: 30572011]
[126]
Teodoro, G.R.; Ellepola, K.; Seneviratne, C.J.; Koga-Ito, C.Y. Potential use of phenolic acids as anti-Candida agents: a review. Front. Microbiol., 2015, 6, 1420.
[http://dx.doi.org/10.3389/fmicb.2015.01420] [PMID: 26733965]
[127]
Martins, N.; Barros, L.; Henriques, M.; Silva, S.; Ferreira, I.C.F.R. Activity of phenolic compounds from plant origin against Candida species. Ind. Crops Prod., 2015, 74, 648-670.
[http://dx.doi.org/10.1016/j.indcrop.2015.05.067]
[128]
Alam, N.; Yoon, K.N.; Lee, J.S.; Cho, H.J.; Lee, T.S. Consequence of the antioxidant activities and tyrosinase inhibitory effects of various extracts from the fruiting bodies of Pleurotus ferulae. Saudi J. Biol. Sci., 2012, 19(1), 111-118.
[http://dx.doi.org/10.1016/j.sjbs.2011.11.004] [PMID: 23961169]
[129]
Nuhu, A.; Ki, N.Y.; Tae, S.L. Evaluation of the antioxidant and antityrosinase activities of three extracts from Pleurotus nebrodensis fruiting bodies. Afr. J. Biotechnol., 2011, 10, 2978-2986.
[http://dx.doi.org/10.5897/AJB10.2660]
[130]
Hapsari, R.; Elya, B.; Amin, J. Formulation and evaluation of antioxidant and tyrosinase inhibitory effect from gel containing the 70% ethanolic Pleurotus ostreatus extract. Int. J. Med. Arom. Plants, 2012, 2, 135-140.
[131]
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Barreiro, M.F.; González-Paramás, A.M.; Ferreira, I.C. Development of mushroom-based cosmeceutical formulations with anti-inflammatory, anti-tyrosinase, antioxidant, and antibacterial properties. Molecules, 2016, 21(10), 1372.
[http://dx.doi.org/10.3390/molecules21101372] [PMID: 27754433]
[132]
Hu, S.; Zhou, G.; Wang, Y. Tyrosinase inhibitory activity of total triterpenes and poricoic acid a isolated from Poria cocos. Chin. Herb. Med., 2017, 9, 321-327.
[http://dx.doi.org/10.1016/S1674-6384(17)60111-4]
[133]
Yan, Z.F.; Yang, Y.; Tian, F.H.; Mao, X.X.; Li, Y.; Li, C.T. Inhibitory and acceleratory effects of Inonotus obliquus on tyrosinase activity and melanin formation in b16 melanoma cells. J evid based complement. Altern Med, 2014, 2014, 1-11.
[http://dx.doi.org/10.1155/2014/259836 ] [PMID: 25197307]
[134]
Satooka, H.; Cerda, P.; Kim, H.J.; Wood, W.F.; Kubo, I. Effects of matsutake mushroom scent compounds on tyrosinase and murine B16-F10 melanoma cells. Biochem. Biophys. Res. Commun., 2017, 487(4), 840-846.
[http://dx.doi.org/10.1016/j.bbrc.2017.04.137] [PMID: 28456625]
[135]
Miyake, M.; Yamamoto, S.; Sano, O.; Fujii, M.; Kohno, K.; Ushio, S.; Iwaki, K.; Fukuda, S. Inhibitory effects of 2-amino-3H-phenoxazin-3-one on the melanogenesis of murine B16 melanoma cell line. Biosci. Biotechnol. Biochem., 2010, 74(4), 753-758.
[http://dx.doi.org/10.1271/bbb.90795] [PMID: 20445320]
[136]
An, S.M.; Koh, J.S.; Boo, Y.C. p-coumaric acid not only inhibits human tyrosinase activity in vitro but also melanogenesis in cells exposed to UVB. Phytother. Res., 2010, 24(8), 1175-1180.
[http://dx.doi.org/10.1002/ptr.3095] [PMID: 20077437]
[137]
Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol., 2016, 8, 79-90.
[http://dx.doi.org/10.1016/j.redox.2015.12.006] [PMID: 26765101]
[138]
Seo, Y.K.; Kim, S.J.; Boo, Y.C.; Baek, J.H.; Lee, S.H.; Koh, J.S. Effects of p-coumaric acid on erythema and pigmentation of human skin exposed to ultraviolet radiation. Clin. Exp. Dermatol., 2011, 36(3), 260-266.
[http://dx.doi.org/10.1111/j.1365-2230.2010.03983.x] [PMID: 21198798]
[139]
Thangboonjit, W.; Limsaeng-u-rai, S.; Panich, U. Comparative evaluation of antityrosinase and antioxidant activities of dietary phenolics and their activities in melanoma cells exposed to UVA. Siriraj Med. J., 2014, 66(1), 5-10.
[140]
Li, H.R.; Habasi, M.; Xie, L.Z.; Aisa, H.A. Effect of chlorogenic acid on melanogenesis of B16 melanoma cells. Molecules, 2014, 19(9), 12940-12948.
[http://dx.doi.org/10.3390/molecules190912940] [PMID: 25157464]
[141]
Ullah, S.; Kang, D.; Lee, S.; Ikram, M.; Park, C.; Park, Y.; Yoon, S.; Chun, P.; Moon, H.R. Synthesis of cinnamic amide derivatives and their anti-melanogenic effect in α-MSH-stimulated B16F10 melanoma cells. Eur. J. Med. Chem., 2019, 161, 78-92.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.025] [PMID: 30347330]
[142]
Lin, Y.S.; Chen, S.H.; Huang, W.J.; Chen, C.H.; Chien, M.Y.; Lin, S.Y.; Hou, W.C. Effects of nicotinic acid derivatives on tyrosinase inhibitory and antioxidant activities. Food Chem., 2012, 132, 2074-2080.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.052]
[143]
Otte, N.; Borelli, C.; Korting, H.C. Nicotinamide - biologic actions of an emerging cosmetic ingredient. Int. J. Cosmet. Sci., 2005, 27(5), 255-261.
[http://dx.doi.org/10.1111/j.1467-2494.2005.00266.x] [PMID: 18492206]
[144]
Chanioti, S.; Tzia, C. Extraction of phenolic compounds from olive pomace by using natural deep eutectic solvents and innovative extraction techniques. Innov. Food Sci. Emerg. Technol., 2018, 48, 228-239.
[http://dx.doi.org/10.1016/j.ifset.2018.07.001]
[145]
Santos, A.; Barros, L.; Calhelha, R.C.; Dueñas, M.; Carvalho, A.M.; Santos-Buelga, C.; Ferreira, I.C.F.R. Leaves and decoction of Juglans regia L.: different performances regarding bioactive compounds and in vitro antioxidant and antitumor effects. Ind. Crops Prod., 2013, 51, 430-436.
[http://dx.doi.org/10.1016/j.indcrop.2013.10.003]
[146]
Heleno, S.A.; Prieto, M.A.; Barros, L.; Rodrigues, A.; Barreiro, M.F.; Ferreira, I.C.F.R. Optimization of microwave-assisted extraction of ergosterol from Agaricus bisporus L. by-products using response surface methodology. Food Bioprod. Process., 2016, 100, 25-35.
[http://dx.doi.org/10.1016/j.fbp.2016.06.006]
[147]
Albuquerque, B.R.; Prieto, M.A.; Barreiro, M.F.; Rodrigues, A.; Curran, T.P.; Barros, L.; Ferreira, I.C.F.R. Catechin-based extract optimization obtained from Arbutus unedo L. fruits using maceration/microwave/ultrasound extraction techniques. Ind. Crops Prod., 2016, 95, 404-415.
[http://dx.doi.org/10.1016/j.indcrop.2016.10.050]
[148]
Pasquel Reátegui, J.L.; Machado, A.P.D.F.; Barbero, G.F.; Rezende, C.A.; Martínez, J. Extraction of antioxidant compounds from blackberry (rubus sp.) bagasse using supercritical CO2 assisted by ultrasound. J. Supercrit. Fluids, 2014, 94, 223-233.
[http://dx.doi.org/10.1016/j.supflu.2014.07.019]
[149]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: a review. J. Food Eng., 2013, 117, 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[150]
Oludemi, T.; Barros, L.; Prieto, M.A.; Heleno, S.A.; Barreiro, M.F.; Ferreira, I.C.F.R. Extraction of triterpenoids and phenolic com-pounds from Ganoderma lucidum: optimization study using the response surface methodology. Food Funct., 2018, 9(1), 209-226.
[http://dx.doi.org/10.1039/C7FO01601H] [PMID: 29215673]
[151]
Pinela, J.; Prieto, M.A.A.; Carvalho, A.M.; Barreiro, M.F.; Oliveira, M.B.P.; Barros, L.; Ferreira, I.C.F.R. Microwave-assisted extrac-tion of phenolic acids and flavonoids and production of antioxidant ingredients from tomato: a nutraceutical-oriented optimization study. Separ. Purif. Tech., 2016, 164, 114-124.
[http://dx.doi.org/10.1016/j.seppur.2016.03.030]
[152]
Vieira, V.; Prieto, M.A.; Barros, L.; Coutinho, J.A.P.; Ferreira, O.; Ferreira, I.C.F.R. Optimization and comparison of maceration and microwave extraction systems for the production of phenolic compounds from Juglans regia L. for the valorization of walnut leaves. Ind. Crops Prod., 2017, 107, 341-352.
[http://dx.doi.org/10.1016/j.indcrop.2017.06.012]
[153]
Jiménez, L.C.; Caleja, C.; Prieto, M.A.; Barreiro, M.F.; Barros, L.; Ferreira, I.C.F.R. Optimization and comparison of heat and ultra-sound assisted extraction techniques to obtain anthocyanin compounds from Arbutus unedo L. Fruits. Food Chem., 2018, 264, 81-91.
[http://dx.doi.org/10.1016/j.foodchem.2018.04.103 ] [PMID: 29853408]
[154]
Newburger, A.E. Cosmeceuticals: myths and misconceptions. Clin. Dermatol., 2009, 27(5), 446-452.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.008] [PMID: 19695475]
[155]
Lintner, K.; Mas-Chamberlin, C.; Mondon, P.; Peschard, O.; Lamy, L. Cosmeceuticals and active ingredients. Clin. Dermatol., 2009, 27(5), 461-468.
[http://dx.doi.org/10.1016/j.clindermatol.2009.05.009] [PMID: 19695477]
[156]
Pauwels, M.; Dejaegher, B.; Vander Heyden, Y.; Rogiers, V. Critical analysis of the SCCNFP/SCCP safety assessment of cosmetic ingredients (2000-2006). Food Chem. Toxicol., 2009, 47(4), 898-905.
[http://dx.doi.org/10.1016/j.fct.2009.01.026] [PMID: 19271324]
[157]
Vinardell, M.P.; Mitjans, M. Alternative methods to animal testing for the safety evaluation of cosmetic ingredients : an overview. Cosmetics, 2017, 4, 1-14.
[http://dx.doi.org/10.3390/cosmetics4030030]
[158]
Baumann, L. Inside cosmeceutical marketing claims. Prat. Dermatology, 2012, 35-39.
[159]
De Souza, J.E.; Casanova, L.M.; Costa, S.S. Bioavailability of phenolic compounds : A major challenge for drug development? Rev. Fitos, 2015, 9, 55-67.
[http://dx.doi.org/10.5935/2446-4775.20150006]
[160]
Taofiq, O.; Heleno, S.A.; Calhelha, R.C.; Fernandes, I.P.; Alves, M.J.; Barros, L.; González-Paramás, A.M.; Ferreira, I.C.F.R.; Bar-reiro, M.F. Mushroom-based cosmeceutical ingredients: microencapsulation and in vitro release profile. Ind. Crops Prod., 2018, 124, 44-52.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.057]
[161]
Massounga Bora, A.F.; Ma, S.; Li, X.; Liu, L. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: review and recent advances. Food Res. Int., 2018, 105, 241-249.
[http://dx.doi.org/10.1016/j.foodres.2017.11.047] [PMID: 29433212]
[162]
Aguiar, J.; Estevinho, B.N.; Santos, L. Microencapsulation of natural antioxidants for food application - the specific case of coffee antioxidants - a review. Trends Food Sci. Technol., 2016, 58, 21-39.
[http://dx.doi.org/10.1016/j.tifs.2016.10.012]
[163]
Dias, M.I.; Ferreira, I.C.F.R.; Barreiro, M.F. Microencapsulation of bioactives for food applications. Food Funct., 2015, 6(4), 1035-1052.
[http://dx.doi.org/10.1039/C4FO01175A] [PMID: 25710906]
[164]
Vincekovi, M.; Viskic, M.; Juric, S.; Giacometti, J.; Bursac Kovacevic, D.; Putnik, P.; Donsì, F.; Barba, J.F.; Jambrak, A.R. innovative technologies for encapsulation of mediterranean plants extracts. Trends Food Sci. Technol., 2017, 69, 1-12.
[http://dx.doi.org/10.1016/j.tifs.2017.08.001]
[165]
Li, Y.; Wu, L.; Weng, M.; Tang, B.; Lai, P.; Chen, J. Effect of different encapsulating agent combinations on physicochemical properties and stability of microcapsules loaded with phenolics of plum ( Prunus salicina lindl.), 2018, 340, 459-464.
[http://dx.doi.org/10.1016/j.powtec.2018.09.049]
[166]
Motilva, M.; Macià, A.; Romero, M. Human bioavailability and metabolism of phenolic compounds from red wine enriched with free or nano-encapsulated phenolic extract. J. Funct. Foods, 2016, 25, 80-93.
[http://dx.doi.org/10.1016/j.jff.2016.05.013]
[167]
Uchida, T.; Kadhum, W.R.; Kanai, S.; Todo, H.; Oshizaka, T.; Sugibayashi, K. Prediction of skin permeation by chemical compounds using the artificial membrane, Strat-M™. Eur. J. Pharm. Sci., 2015, 67, 113-118.
[http://dx.doi.org/10.1016/j.ejps.2014.11.002] [PMID: 25447745]
[168]
Rodrigues, F.; Alves, A.C.; Nunes, C.; Sarmento, B.; Amaral, M.H.; Reis, S.; Oliveira, M.B.P.P. Permeation of topically applied caf-feine from a food by-product in cosmetic formulations: Is nanoscale in vitro approach an option? Int. J. Pharm., 2016, 513(1-2), 496-503.
[http://dx.doi.org/10.1016/j.ijpharm.2016.09.059] [PMID: 27662805]
[169]
Gerstel, D.; Jacques-Jamin, C.; Schepky, A.; Cubberley, R.; Eilstein, J.; Grégoire, S.; Hewitt, N.; Klaric, M.; Rothe, H.; Duplan, H. Comparison of protocols for measuring cosmetic ingredient distribution in human and pig skin. Toxicol. In Vitro, 2016, 34, 153-160.
[http://dx.doi.org/10.1016/j.tiv.2016.03.012] [PMID: 27039122]
[170]
Diembeck, W.; Beck, H.; Benech-Kieffer, F.; Courtellemont, P.; Dupuis, J.; Lovell, W.; Paye, M.; Spengler, J.; Steiling, W. Test guidelines for in vitro assessment of dermal absorption and percutaneous penetration of cosmetic ingredients. European Cosmetic, Toiletry and Perfumery Association. Food Chem. Toxicol., 1999, 37(2-3), 191-205.
[http://dx.doi.org/10.1016/S0278-6915(98)00114-8] [PMID: 10227743]
[171]
Barbero, A.M.; Frasch, H.F. Pig and guinea pig skin as surrogates for human in vitro penetration studies: a quantitative review. Toxicol. In Vitro, 2009, 23(1), 1-13.
[http://dx.doi.org/10.1016/j.tiv.2008.10.008] [PMID: 19013230]
[172]
Praça, F.S.G.; Medina, W.S.G.; Eloy, J.O.; Petrilli, R.; Campos, P.M.; Ascenso, A.; Bentley, M.V.L.B. Evaluation of critical parameters for in vitro skin permeation and penetration studies using animal skin models. Eur. J. Pharm. Sci., 2018, 111, 121-132.
[http://dx.doi.org/10.1016/j.ejps.2017.09.034] [PMID: 28951120]
[173]
Haq, A.; Goodyear, B.; Ameen, D.; Joshi, V.; Michniak-Kohn, B. Strat-M® synthetic membrane: Permeability comparison to human cadaver skin. Int. J. Pharm., 2018, 547(1-2), 432-437.
[http://dx.doi.org/10.1016/j.ijpharm.2018.06.012] [PMID: 29890259]
[174]
Uchida, T.; Yakumaru, M.; Nishioka, K.; Higashi, Y.; Sano, T.; Todo, H.; Sugibayashi, K. Evaluation of a silicone membrane as an alternative to human skin for determining skin permeation parameters of chemical compounds. Chem. Pharm. Bull. (Tokyo), 2016, 64(9), 1338-1346.
[http://dx.doi.org/10.1248/cpb.c16-00322] [PMID: 27581638]
[175]
Flaten, G.E.; Palac, Z.; Engesland, A.; Filipović-Grčić, J.; Vanić, Ž.; Škalko-Basnet, N. In vitro skin models as a tool in optimization of drug formulation. Eur. J. Pharm. Sci., 2015, 75, 10-24.
[http://dx.doi.org/10.1016/j.ejps.2015.02.018] [PMID: 25746955]
[176]
Žilius, M.; Ramanauskiene, K.; Briedis, V. Release of propolis phenolic acids from semisolid formulations and their penetration into the human skin in vitro. evidence-based complement. Altern. Med., 2013, 2013, 1-7.
[http://dx.doi.org/10.1155/2013/958717] [PMID: 23762175]
[177]
Zhang, L.W.; Al-Suwayeh, S.A.; Hsieh, P.W.; Fang, J.Y. A comparison of skin delivery of ferulic acid and its derivatives: evaluation of their efficacy and safety. Int. J. Pharm., 2010, 399(1-2), 44-51.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.054] [PMID: 20692328]
[178]
Wang, S.; Meckling, K.A.; Marcone, M.F.; Kakuda, Y.; Tsao, R. Synergistic, additive, and antagonistic effects of food mixtures on total antioxidant capacities. J. Agric. Food Chem., 2011, 59(3), 960-968.
[http://dx.doi.org/10.1021/jf1040977] [PMID: 21222468]
[179]
Phan, M.A.T.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioac-tivities and bioavailability. Crit. Rev. Food Sci. Nutr., 2018, 58(8), 1310-1329.
[http://dx.doi.org/10.1080/10408398.2016.1254595] [PMID: 27880063]
[180]
Han, R.M.; Li, D.D.; Chen, C.H.; Liang, R.; Tian, Y.X.; Zhang, J.P.; Skibsted, L.H. Phenol acidity and ease of oxidation in isoflavo-noid/β-carotene antioxidant synergism. J. Agric. Food Chem., 2011, 59(18), 10367-10372.
[http://dx.doi.org/10.1021/jf202683n] [PMID: 21863887]
[181]
Panya, A.; Kittipongpittaya, K.; Laguerre, M.; Bayrasy, C.; Lecomte, J.; Villeneuve, P.; McClements, D.J.; Decker, E.A. Interactions between α-tocopherol and rosmarinic acid and its alkyl esters in emulsions: synergistic, additive, or antagonistic effect? J. Agric. Food Chem., 2012, 60(41), 10320-10330.
[http://dx.doi.org/10.1021/jf302673j] [PMID: 22988974]
[182]
Pinelo, M.; Manzocco, L.; Nuñez, M.J.; Nicoli, M.C. Interaction among phenols in food fortification: negative synergism on antioxidant capacity. J. Agric. Food Chem., 2004, 52(5), 1177-1180.
[http://dx.doi.org/10.1021/jf0350515] [PMID: 14995117]
[183]
Freeman, B.L.; Eggett, D.L.; Parker, T.L. Synergistic and antagonistic interactions of phenolic compounds found in navel oranges. J. Food Sci., 2010, 75(6), C570-C576.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01717.x] [PMID: 20722912]
[184]
Kim, S.W.; Hwang, H.J.; Lee, B.C.; Yun, J.W. Submerged Production and Characterization of Grifola Frondosa Polysaccharides - A New Application to Cosmeceuticals. Food Technol. Biotechnol., 2007, 45(3), 295-305.
[185]
Shen, T.; Duan, C.; Chen, B.; Li, M.; Ruan, Y.; Xu, D.; Shi, D.; Yu, D.; Li, J.; Wang, C. Tremella fuciformis polysaccharide suppresses hydrogen peroxide-triggered injury of human skin fibroblasts via upregulation of SIRT1. Mol. Med. Rep., 2017, 16(2), 1340-1346.
[http://dx.doi.org/10.3892/mmr.2017.6754] [PMID: 28627707]
[186]
Kim, S.Y.; Go, K.C.; Song, Y.S.; Jeong, Y.S.; Kim, E.J.; Kim, B.J. Extract of the mycelium of T. matsutake inhibits elastase activity and TPA-induced MMP-1 expression in human fibroblasts. Int. J. Mol. Med., 2014, 34(6), 1613-1621.
[http://dx.doi.org/10.3892/ijmm.2014.1969] [PMID: 25319362]
[187]
Bae, J.Y.; Choi, J.S.; Kang, S.W.; Lee, Y.J.; Park, J.; Kang, Y.H. Dietary compound ellagic acid alleviates skin wrinkle and inflam-mation induced by UV-B irradiation. Exp. Dermatol., 2010, 19(8), e182-e190.
[http://dx.doi.org/10.1111/j.1600-0625.2009.01044.x] [PMID: 20113347]
[188]
Zi, Y.; Zhang, B.; Jiang, B.; Yang, X.; Liang, Z.; Liu, W.; He, C.; Liu, L. Antioxidant action and protective and reparative effects of lentinan on oxidative damage in HaCaT cells. J. Cosmet. Dermatol., 2018, 17(6), 1108-1114.
[http://dx.doi.org/10.1111/jocd.12488] [PMID: 29473282]
[189]
Seok, J.K.; Boo, Y.C. p-Coumaric acid attenuates uvb-induced release of stratifin from keratinocytes and indirectly regulates matrix metalloproteinase 1 release from fibroblasts. Korean J. Physiol. Pharmacol., 2015, 19(3), 241-247.
[http://dx.doi.org/10.4196/kjpp.2015.19.3.241] [PMID: 25954129]
[190]
Kohno, K.; Miyake, M.; Sano, O.; Tanaka-Kataoka, M.; Yamamoto, S.; Koya-Miyata, S.; Arai, N.; Fujii, M.; Watanabe, H.; Ushio, S.; Iwaki, K.; Fukuda, S. Anti-inflammatory and immunomodulatory properties of 2-amino-3H-phenoxazin-3-one. Biol. Pharm. Bull., 2008, 31(10), 1938-1945.
[http://dx.doi.org/10.1248/bpb.31.1938] [PMID: 18827359]
[191]
Gunawardena, D.; Bennett, L.; Shanmugam, K.; King, K.; Williams, R.; Zabaras, D.; Head, R.; Ooi, L.; Gyengesi, E.; Münch, G. Anti-inflammatory effects of five commercially available mushroom species determined in lipopolysaccharide and interferon-γ activated murine macrophages. Food Chem., 2014, 148, 92-96.
[http://dx.doi.org/10.1016/j.foodchem.2013.10.015] [PMID: 24262531]
[192]
Lee, B.R.; Kim, S.Y.; Kim, D.W.; An, J.J.; Song, H.Y.; Yoo, K.Y.; Kang, T.C.; Won, M.H.; Lee, K.J.; Kim, K.H.; Joo, J.H.; Ham, H.J.; Hur, J.H.; Cho, S.W.; Han, K.H.; Lee, K.S.; Park, J.; Choi, S.Y.; Eum, W.S. Agrocybe chaxingu polysaccharide prevent inflammation through the inhibition of COX-2 and NO production. BMB Rep., 2009, 42(12), 794-799.
[http://dx.doi.org/10.5483/BMBRep.2009.42.12.794] [PMID: 20044950]
[193]
Ruthes, A.C.; Carbonero, E.R.; Córdova, M.M.; Baggio, C.H.; Sassaki, G.L.; Gorin, P.A.J.; Santos, A.R.S.; Iacomini, M. Fucoman-nogalactan and glucan from mushroom Amanita muscaria: structure and inflammatory pain inhibition. Carbohydr. Polym., 2013, 98(1), 761-769.
[http://dx.doi.org/10.1016/j.carbpol.2013.06.061] [PMID: 23987410]
[194]
Quang, D.N.; Hashimoto, T.; Arakawa, Y.; Kohchi, C.; Nishizawa, T.; Soma, G.; Asakawa, Y. Grifolin derivatives from Albatrellus caeruleoporus, new inhibitors of nitric oxide production in RAW 264.7 cells. Bioorg. Med. Chem., 2006, 14(1), 164-168.
[http://dx.doi.org/10.1016/j.bmc.2005.08.005] [PMID: 16169234]
[195]
Deng, J.S.; Huang, S.S.; Lin, T.H.; Lee, M.M.; Kuo, C.C.; Sung, P.J.; Hou, W.C.; Huang, G.J.; Kuo, Y.H. Analgesic and anti-inflammatory bioactivities of eburicoic acid and dehydroeburicoic acid isolated from Antrodia camphorata on the inflammatory mediator expression in mice. J. Agric. Food Chem., 2013, 61(21), 5064-5071.
[http://dx.doi.org/10.1021/jf303820k] [PMID: 23495748]
[196]
Hsieh, Y.H.; Chu, F.H.; Wang, Y.S.; Chien, S.C.; Chang, S.T.; Shaw, J.F.U.; Chen, C.Y.; Hsiao, W.W.; Kuo, Y.H.; Wang, S.Y. An-trocamphin A, an anti-inflammatory principal from the fruiting body of Taiwanofungus camphoratus, and its mechanisms. J. Agric. Food Chem., 2010, 58(5), 3153-3158.
[http://dx.doi.org/10.1021/jf903638p] [PMID: 20128588]
[197]
Huang, G.J.; Huang, S.S.; Lin, S.S.; Shao, Y.Y.; Chen, C.C.; Hou, W.C.; Kuo, Y.H. Analgesic effects and the mechanisms of anti-inflammation of ergostatrien-3β-ol from Antrodia camphorata submerged whole broth in mice. J. Agric. Food Chem., 2010, 58(12), 7445-7452.
[http://dx.doi.org/10.1021/jf1013764] [PMID: 20507140]
[198]
Lee, C-L.; Huang, C-H.; Wang, H-C.; Chuang, D-W.; Wu, M-J.; Wang, S-Y.; Hwang, T-L.; Wu, C-C.; Chen, Y-L.; Chang, F-R.; Wu, Y-C. First total synthesis of antrocamphin A and its analogs as anti-inflammatory and anti-platelet aggregation agents. Org. Biomol. Chem., 2011, 9(1), 70-73.
[http://dx.doi.org/10.1039/C0OB00616E] [PMID: 21088769]
[199]
Lin, M.K.; Lee, M.S.; Chang, W.T.; Chen, H.Y.; Chen, J.F.; Li, Y.R.; Lin, C.C.; Wu, T.S. Immunosuppressive effect of zhankuic acid C from Taiwanofungus camphoratus on dendritic cell activation and the contact hypersensitivity response. Bioorg. Med. Chem. Lett., 2015, 25(20), 4637-4641.
[http://dx.doi.org/10.1016/j.bmcl.2015.08.038] [PMID: 26338360]
[200]
Liao, Y-R.; Kuo, P-C.; Liang, J-W.; Shen, Y-C.; Wu, T-S. An efficient total synthesis of a potent anti-inflammatory agent, benzo-camphorin F, and its anti-inflammatory activity. Int. J. Mol. Sci., 2012, 13(8), 10432-10440.
[http://dx.doi.org/10.3390/ijms130810432] [PMID: 22949872]
[201]
Chien, S.C.; Chen, M.L.; Kuo, H.T.; Tsai, Y.C.; Lin, B.F.; Kuo, Y.H. Anti-inflammatory activities of new succinic and maleic deriva-tives from the fruiting body of Antrodia camphorata. J. Agric. Food Chem., 2008, 56(16), 7017-7022.
[http://dx.doi.org/10.1021/jf801171x] [PMID: 18642845]
[202]
Wu, M-D.; Cheng, M-J.; Wang, B-C.; Yech, Y-J.; Lai, J-T.; Kuo, Y.H.; Yuan, G-F.; Chen, I-S. Maleimide and maleic anhydride de-rivatives from the mycelia of Antrodia cinnamomea and their nitric oxide inhibitory activities in macrophages. J. Nat. Prod., 2008, 71(7), 1258-1261.
[http://dx.doi.org/10.1021/np070634k] [PMID: 18522430]
[203]
Wu, M.D.; Cheng, M.J.; Yech, Y.J.; Yuan, G.F.; Chen, J.J. Inhibitory effects of maleimide derivatives from the mycelia of the fungus Antrodia cinnamomea BCRC 36799 on nitric oxide production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. Chem. Biodivers., 2013, 10(3), 434-441.
[http://dx.doi.org/10.1002/cbdv.201200258] [PMID: 23495159]
[204]
Queiroz, L.S.; Nascimento, M.S.; Cruz, A.K.M.; Castro, A.J.G. Moura, Mde.F.; Baseia, I.G.; Araújo, R.M.; Benevides, N.M.; Lima, L.F.; Leite, E.L. Glucans from the Caripia montagnei mushroom present anti-inflammatory activity. Int. Immunopharmacol., 2010, 10(1), 34-42.
[http://dx.doi.org/10.1016/j.intimp.2009.09.015] [PMID: 19804847]
[205]
Rao, Y.K.; Fang, S.H.; Wu, W.S.; Tzeng, Y.M. Constituents isolated from Cordyceps militaris suppress enhanced inflammatory me-diator’s production and human cancer cell proliferation. J. Ethnopharmacol., 2010, 131(2), 363-367.
[http://dx.doi.org/10.1016/j.jep.2010.07.020] [PMID: 20633630]
[206]
Jeong, J.W.; Jin, C.Y.; Kim, G.Y.; Lee, J.D.; Park, C.; Kim, G.D.; Kim, W.J.; Jung, W.K.; Seo, S.K.; Choi, I.W.; Choi, Y.H. Anti-inflammatory effects of cordycepin via suppression of inflammatory mediators in BV2 microglial cells. Int. Immunopharmacol., 2010, 10(12), 1580-1586.
[http://dx.doi.org/10.1016/j.intimp.2010.09.011] [PMID: 20937401]
[207]
Han, E.S.; Oh, J.Y.; Park, H.J. Cordyceps militaris extract suppresses dextran sodium sulfate-induced acute colitis in mice and pro-duction of inflammatory mediators from macrophages and mast cells. J. Ethnopharmacol., 2011, 134(3), 703-710.
[http://dx.doi.org/10.1016/j.jep.2011.01.022] [PMID: 21277968]
[208]
Kim, K.M.; Kwon, Y.G.; Chung, H.T.; Yun, Y.G.; Pae, H.O.; Han, J.A.; Ha, K.S.; Kim, T.W.; Kim, Y.M. Methanol extract of Cordyceps pruinosa inhibits in vitro and in vivo inflammatory mediators by suppressing NF-kappaB activation. Toxicol. Appl. Pharmacol., 2003, 190(1), 1-8.
[http://dx.doi.org/10.1016/S0041-008X(03)00152-2] [PMID: 12831777]
[209]
Rao, Y.K.; Fang, S.H.; Tzeng, Y.M. Evaluation of the anti-inflammatory and anti-proliferation tumoral cells activities of Antrodia camphorata, Cordyceps sinensis, and Cinnamomum osmophloeum bark extracts. J. Ethnopharmacol., 2007, 114(1), 78-85.
[http://dx.doi.org/10.1016/j.jep.2007.07.028] [PMID: 17822865]
[210]
Ho, C.Y.; Lau, C.B.S.; Kim, C.F.; Leung, K.N.; Fung, K.P.; Tse, T.F.; Chan, H.H.L.; Chow, M.S.S. Differential effect of Coriolus versicolor (Yunzhi) extract on cytokine production by murine lymphocytes in vitro. Int. Immunopharmacol., 2004, 4(12), 1549-1557.
[http://dx.doi.org/10.1016/j.intimp.2004.07.021] [PMID: 15351324]
[211]
Han, J.; Chen, Y.; Bao, L.; Yang, X.; Liu, D.; Li, S.; Zhao, F.; Liu, H. Anti-inflammatory and cytotoxic cyathane diterpenoids from the medicinal fungus Cyathus africanus. Fitoterapia, 2013, 84, 22-31.
[http://dx.doi.org/10.1016/j.fitote.2012.10.001] [PMID: 23075884]
[212]
Xu, Z.; Yan, S.; Bi, K.; Han, J.; Chen, Y.; Wu, Z.; Chen, Y.; Liu, H. Isolation and identification of a new anti-inflammatory cyathane diterpenoid from the medicinal fungus Cyathus hookeri Berk. Fitoterapia, 2013, 86, 159-162.
[http://dx.doi.org/10.1016/j.fitote.2013.03.002] [PMID: 23500388]
[213]
Gebhardt, P.; Dornberger, K.; Gollmick, F.A.; Gräfe, U.; Härtl, A.; Görls, H.; Schlegel, B.; Hertweck, C. Quercinol, an anti-inflammatory chromene from the wood-rotting fungus Daedalea quercina (Oak Mazegill). Bioorg. Med. Chem. Lett., 2007, 17(9), 2558-2560.
[http://dx.doi.org/10.1016/j.bmcl.2007.02.008] [PMID: 17346963]
[214]
Quang, D.N.; Harinantenaina, L.; Nishizawa, T.; Hashimoto, T.; Kohchi, C.; Soma, G.I.; Asakawa, Y. Inhibitory activity of nitric oxide production in RAW 264.7 cells of daldinals a-c from the fungus Daldinia childiae and other metabolites isolated from inedible mushrooms. J. Nat. Med., 2006, 60, 303-307.
[http://dx.doi.org/10.1007/s11418-006-0010-1]
[215]
Choe, J.H.; Yi, Y.J.; Lee, M.S.; Seo, D.W.; Yun, B.S.; Lee, S.M. Methyl 9-Oxo-(10E,12E)-octadecadienoate Isolated from Fomes fomentarius attenuates lipopolysaccharide-induced inflammatory response by blocking phosphorylation of STAT3 in murine macro-phages. Mycobiology, 2015, 43(3), 319-326.
[http://dx.doi.org/10.5941/MYCO.2015.43.3.319] [PMID: 26539049]
[216]
Yoshikawa, K.; Koso, K.; Shimomura, M.; Tanaka, M.; Yamamoto, H.; Imagawa, H.; Arihara, S.; Hashimoto, T. Yellow pigments, fomitellanols A and B, and drimane sesquiterpenoids, cryptoporic acids P and Q, from Fomitella fraxinea and their inhibitory activity against COX and 5-LO. Molecules, 2013, 18(4), 4181-4191.
[http://dx.doi.org/10.3390/molecules18044181] [PMID: 23571531]
[217]
Lee, Y.H.; Lee, N.H.; Bhattarai, G.; Kim, G.E.; Lee, I.K.; Yun, B.S.; Hwang, P.H.; Yi, H.K. Anti-inflammatory effect of pachymic acid promotes odontoblastic differentiation via HO-1 in dental pulp cells. Oral Dis., 2013, 19(2), 193-199.
[http://dx.doi.org/10.1111/j.1601-0825.2012.01970.x] [PMID: 22849812]
[218]
Zhou, Y.; Chen, S.; Ding, R.; Yao, W.; Gao, X. Inflammatory modulation effect of glycopeptide from Ganoderma capense (Lloyd). Teng. Teng. Mediators Inflamm., 2014, 2014691285
[http://dx.doi.org/10.1155/2014/691285] [PMID: 24966469]
[219]
Tung, N.T.; Cuong, T.D.; Hung, T.M.; Lee, J.H.; Woo, M.H.; Choi, J.S.; Kim, J.; Ryu, S.H.; Min, B.S. Inhibitory effect on NO pro-duction of triterpenes from the fruiting bodies of Ganoderma lucidum. Bioorg. Med. Chem. Lett., 2013, 23(5), 1428-1432.
[http://dx.doi.org/10.1016/j.bmcl.2012.12.066] [PMID: 23357630]
[220]
Liu, C.; Yang, N.; Song, Y.; Wang, L.; Zi, J.; Zhang, S.; Dunkin, D.; Busse, P.; Weir, D.; Tversky, J.; Miller, R.L.; Goldfarb, J.; Zhan, J.; Li, X.M. Ganoderic acid C1 isolated from the anti-asthma formula, ASHMI™ suppresses TNF-α production by mouse macro-phages and peripheral blood mononuclear cells from asthma patients. Int. Immunopharmacol., 2015, 27(2), 224-231.
[http://dx.doi.org/10.1016/j.intimp.2015.05.018] [PMID: 26004313]
[221]
Han, C.; Cui, B. Pharmacological and pharmacokinetic studies with agaricoglycerides, extracted from Grifola frondosa, in animal models of pain and inflammation. Inflammation, 2012, 35(4), 1269-1275.
[http://dx.doi.org/10.1007/s10753-012-9438-5] [PMID: 22327864]
[222]
Zhang, Y.; Mills, G.L.; Nair, M.G. Cyclooxygenase inhibitory and antioxidant compounds from the mycelia of the edible mushroom Grifola frondosa. J. Agric. Food Chem., 2002, 50(26), 7581-7585.
[http://dx.doi.org/10.1021/jf0257648] [PMID: 12475274]
[223]
Li, W.; Zhou, W.; Lee, D.S.; Shim, S.H.; Kim, Y.C.; Kim, Y.H. Hericirine, a novel anti-inflammatory alkaloid from Hericium erina-ceum. Tetrahedron Lett., 2014, 55, 4086-4090.
[http://dx.doi.org/10.1016/j.tetlet.2014.05.117]
[224]
Lee, D.G.; Kang, H.W.; Park, C.G.; Ahn, Y.S.; Shin, Y. Isolation and identification of phytochemicals and biological activities of Hericium ernaceus and their contents in Hericium strains using HPLC/UV analysis. J. Ethnopharmacol., 2016, 184, 219-225.
[http://dx.doi.org/10.1016/j.jep.2016.02.038] [PMID: 26924563]
[225]
Ma, L.; Chen, H.; Dong, P.; Lu, X. Anti-inflammatory and anticancer activities of extracts and compounds from the mushroom Inonotus obliquus. Food Chem., 2013, 139(1-4), 503-508.
[http://dx.doi.org/10.1016/j.foodchem.2013.01.030] [PMID: 23561137]
[226]
Lee, Y.G.; Lee, W.M.; Kim, J.Y.; Lee, J.Y.; Lee, I.K.; Yun, B.S.; Rhee, M.H.; Cho, J.Y. Src kinase-targeted anti-inflammatory activity of davallialactone from Inonotus xeranticus in lipopolysaccharide-activated RAW 264.7 cells. Br. J. Pharmacol., 2008, 154(4), 852-863.
[http://dx.doi.org/10.1038/bjp.2008.136] [PMID: 18454171]
[227]
Saba, E.; Son, Y.; Jeon, B.R.; Kim, S.E.; Lee, I.K.; Yun, B.S.; Rhee, M.H. Acetyl eburicoic acid from Laetiporus sulphureus var. miniatus suppresses inflammation in murine macrophage RAW 264.7 cells. Mycobiology, 2015, 43(2), 131-136.
[http://dx.doi.org/10.5941/MYCO.2015.43.2.131] [PMID: 26190920]
[228]
Fangkrathok, N.; Junlatat, J.; Sripanidkulchai, B. In vivo and in vitro anti-inflammatory activity of Lentinus polychrous extract. J. Ethnopharmacol., 2013, 147(3), 631-637.
[http://dx.doi.org/10.1016/j.jep.2013.03.055] [PMID: 23542041]
[229]
Lee, S.S.; Tan, N.H.; Fung, S.Y.; Sim, S.M.; Tan, C.S.; Ng, S.T. Anti-inflammatory effect of the sclerotium of Lignosus rhinocerotis (Cooke) Ryvarden, the Tiger Milk mushroom. BMC Complement. Altern. Med., 2014, 14, 359.
[http://dx.doi.org/10.1186/1472-6882-14-359] [PMID: 25256382]
[230]
Li, Y.; Bao, L.; Song, B.; Han, J.; Li, H.; Zhao, F.; Liu, H. A new benzoquinone and a new benzofuran from the edible mushroom Neolentinus lepideus and their inhibitory activity in NO production inhibition assay. Food Chem., 2013, 141(3), 1614-1618.
[http://dx.doi.org/10.1016/j.foodchem.2013.04.133] [PMID: 23870867]
[231]
Huang, G.J.; Huang, S.S.; Deng, J.S. Anti-Inflammatory Activities of inotilone from Phellinus Linteus through the Inhibition of MMP-9, NF-KB, and MAPK Activation in vitro and in vivo. PLoS One, 2012, 7, 1-12.
[http://dx.doi.org/10.1371/journal.pone.0035922 ] [PMID: 22590514]
[232]
Lin, C.J.; Lien, H.M.; Chang, H.Y.; Huang, C.L.; Liu, J.J.; Chang, Y.C.; Chen, C.C.; Lai, C.H. Biological evaluation of Phellinus linteus-fermented broths as anti-inflammatory agents. J. Biosci. Bioeng., 2014, 118(1), 88-93.
[http://dx.doi.org/10.1016/j.jbiosc.2014.01.001] [PMID: 24503424]
[233]
Kim, B.C.; Choi, J.W.; Hong, H.Y.; Lee, S.A.; Hong, S.; Park, E.H.; Kim, S.J.; Lim, C.J. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW 264.7 macrophages. J. Ethnopharmacol., 2006, 106(3), 364-371.
[http://dx.doi.org/10.1016/j.jep.2006.01.009] [PMID: 16488096]
[234]
Lavi, I.; Levinson, D.; Peri, I.; Nimri, L.; Hadar, Y.; Schwartz, B. Orally administered glucans from the edible mushroom Pleurotus pulmonarius reduce acute inflammation in dextran sulfate sodium-induced experimental colitis. Br. J. Nutr., 2010, 103(3), 393-402.
[http://dx.doi.org/10.1017/S0007114509991760] [PMID: 19772681]
[235]
Silveira, M.L.L.; Smiderle, F.R.; Moraes, C.P.; Borato, D.G.; Baggio, C.H.; Ruthes, A.C.; Wisbeck, E.; Sassaki, G.L.; Cipriani, T.R.; Furlan, S.A.; Iacomini, M. Structural characterization and anti-inflammatory activity of a linear β-D-glucan isolated from Pleurotus sajor-caju. Carbohydr. Polym., 2014, 113, 588-596.
[http://dx.doi.org/10.1016/j.carbpol.2014.07.057] [PMID: 25256522]
[236]
Cai, T.G.; Cai, Y. Triterpenes from the fungus Poria cocos and their inhibitory activity on nitric oxide production in mouse macrophages via blockade of activating protein-1 pathway. Chem. Biodivers., 2011, 8(11), 2135-2143.
[http://dx.doi.org/10.1002/cbdv.201100013] [PMID: 22083926]
[237]
Nascimento, M.S.; Magalhães, J.E.M.; Pinheiro, T.S.; da Silva, T.A.; Coutinho, L.G.; Baseia, I.G.; Lima, L.F.A.; Leite, E.L. Polysac-charides from the fungus Scleroderma nitidum with anti-inflammatory potential modulate cytokine levels and the expression of nuclear factor KB. Brazilian J. Pharmacogn., 2011, 22, 60-68.
[http://dx.doi.org/10.1590/S0102-695X2011005000214]
[238]
Lu, Y.Y.; Ao, Z.H.; Lu, Z.M.; Xu, H.Y.; Zhang, X.M.; Dou, W.F.; Xu, Z.H. Analgesic and anti-inflammatory effects of the dry matter of culture broth of Termitomyces albuminosus and its extracts. J. Ethnopharmacol., 2008, 120(3), 432-436.
[http://dx.doi.org/10.1016/j.jep.2008.09.021] [PMID: 18948177]
[239]
Ruan, Y.; Li, H.; Pu, L.; Shen, T.; Jin, Z. Tremella fuciformis polysaccharides attenuate oxidative stress and inflammation in macro-phages through miR-155. Anal. Cell. Pathol. (Amst.), 2018, 20185762371
[http://dx.doi.org/10.1155/2018/5762371] [PMID: 29854576]
[240]
Lee, J.W.; Choi, Y.J.; Park, J.H.; Sim, J.Y.; Kwon, Y.S.; Lee, H.J.; Kim, S.S.; Chun, W. 3,4,5-Trihydroxycinnamic acid inhibits lipo-polysaccharide-induced inflammatory response through the activation of Nrf2 pathway in BV2 microglial cells. Biomol. Ther. (Seoul), 2013, 21(1), 60-65.
[http://dx.doi.org/10.4062/biomolther.2012.091] [PMID: 24009860]
[241]
Liu, M.; Song, S.; Li, H.; Jiang, X.; Yin, P.; Wan, C.; Liu, X.; Liu, F.; Xu, J. The protective effect of caffeic acid against inflammation injury of primary bovine mammary epithelial cells induced by lipopolysaccharide. J. Dairy Sci., 2014, 97(5), 2856-2865.
[http://dx.doi.org/10.3168/jds.2013-7600] [PMID: 24612802]
[242]
Búfalo, M.C.; Ferreira, I.; Costa, G.; Francisco, V.; Liberal, J.; Cruz, M.T.; Lopes, M.C.; Batista, M.T.; Sforcin, J.M. Propolis and its constituent caffeic acid suppress LPS-stimulated pro-inflammatory response by blocking NF-κB and MAPK activation in macrophages. J. Ethnopharmacol., 2013, 149(1), 84-92.
[http://dx.doi.org/10.1016/j.jep.2013.06.004] [PMID: 23770030]
[243]
Nagasaka, R.; Chotimarkorn, C.; Shafiqul, I.M.; Hori, M.; Ozaki, H.; Ushio, H. Anti-inflammatory effects of hydroxycinnamic acid derivatives. Biochem. Biophys. Res. Commun., 2007, 358(2), 615-619.
[http://dx.doi.org/10.1016/j.bbrc.2007.04.178] [PMID: 17499610]
[244]
da Cunha, F.M.; Duma, D.; Assreuy, J.; Buzzi, F.C.; Niero, R.; Campos, M.M.; Calixto, J.B. Caffeic acid derivatives: in vitro and in vivo anti-inflammatory properties. Free Radic. Res., 2004, 38(11), 1241-1253.
[http://dx.doi.org/10.1080/10715760400016139] [PMID: 15621702]
[245]
Lou, L.; Zhou, J.; Liu, Y.; Wei, Y.I.; Zhao, J.; Deng, J.; Dong, B.; Zhu, L.; Wu, A.; Yang, Y.; Chai, L. Chlorogenic acid induces apoptosis to inhibit inflammatory proliferation of IL-6-induced fibroblast-like synoviocytes through modulating the activation of JAK/STAT and NF-κB signaling pathways. Exp. Ther. Med., 2016, 11(5), 2054-2060.
[http://dx.doi.org/10.3892/etm.2016.3136] [PMID: 27168850]
[246]
Ruifeng, G.; Yunhe, F.; Zhengkai, W.; Ershun, Z.; Yimeng, L.; Minjun, Y.; Xiaojing, S.; Zhengtao, Y.; Naisheng, Z. Chlorogenic acid attenuates lipopolysaccharide-induced mice mastitis by suppressing TLR4-mediated NF-κB signaling pathway. Eur. J. Pharmacol., 2014, 729, 54-58.
[http://dx.doi.org/10.1016/j.ejphar.2014.01.015] [PMID: 24457123]
[247]
Hwang, S.J.; Kim, Y-W.; Park, Y.; Lee, H-J.; Kim, K-W. Anti-inflammatory effects of chlorogenic acid in lipopolysaccharide-stimulated RAW 264.7 cells. Inflamm. Res., 2014, 63(1), 81-90.
[http://dx.doi.org/10.1007/s00011-013-0674-4] [PMID: 24127072]
[248]
Chen, W-P.; Wu, L-D. Chlorogenic acid suppresses interleukin-1β-induced inflammatory mediators in human chondrocytes. Int. J. Clin. Exp. Pathol., 2014, 7(12), 8797-8801.
[PMID: 25674248]
[249]
Ambothi, K.; Prasad, N.R.; Balupillai, A. Ferulic acid inhibits UVB-radiation induced photocarcinogenesis through modulating in-flammatory and apoptotic signaling in Swiss albino mice. Food Chem. Toxicol., 2015, 82, 72-78.
[http://dx.doi.org/10.1016/j.fct.2015.04.031] [PMID: 25983265]
[250]
Pragasam, S.J.; Rasool, M. Dietary component p-coumaric acid suppresses monosodium urate crystal-induced inflammation in rats. Inflamm. Res., 2013, 62(5), 489-498.
[http://dx.doi.org/10.1007/s00011-013-0602-7] [PMID: 23420453]
[251]
Lembo, S.; Balato, A.; Di Caprio, R.; Cirillo, T.; Giannini, V.; Gasparri, F.; Monfrecola, G. The modulatory effect of ellagic acid and rosmarinic acid on ultraviolet-B-induced cytokine/chemokine gene expression in skin keratinocyte (HaCaT) cells. BioMed Res. Int., 2014, 2014346793
[http://dx.doi.org/10.1155/2014/346793] [PMID: 25162011]
[252]
Chu, X.; Ci, X.; He, J.; Jiang, L.; Wei, M.; Cao, Q.; Guan, M.; Xie, X.; Deng, X.; He, J. Effects of a natural prolyl oligopeptidase inhibitor, rosmarinic acid, on lipopolysaccharide-induced acute lung injury in mice. Molecules, 2012, 17(3), 3586-3598.
[http://dx.doi.org/10.3390/molecules17033586] [PMID: 22441336]
[253]
Huang, H.; Hsu, T.; Chao, H.; Chen, C.; Chiu, S.; Chang, T. Inhibition of melanogenesis in murine melanoma cells by Agaricus brasiliensis methanol extract and anti-reactive oxygen species (ros) activity. African. J. Microbiol. Res. (Rosemead Calif.), 2014, 8, 519-524.
[http://dx.doi.org/10.5897/AJMR2013.6271]
[254]
Park, K.M.; Kwon, K.M.; Lee, S.H. Evaluation of the antioxidant activities and tyrosinase inhibitory property from mycelium culture extracts. Evidence-based Compl. Altern. Med., 2015, 2015, 1-7.
[http://dx.doi.org/10.1155/2015/616298] [PMID: 26345142]
[255]
Yoon, K.N.; Alam, N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Lee, T.S. Antioxidant and antityrosinase activities of various extracts from the fruiting bodies of Lentinus lepideus. Molecules, 2011, 16(3), 2334-2347.
[http://dx.doi.org/10.3390/molecules16032334] [PMID: 21394078]
[256]
Uchida, R.; Ishikawa, S.; Tomoda, H. Inhibition of tyrosinase activity and melanine pigmentation by 2-hydroxytyrosol. Acta Pharm. Sin. B, 2014, 4(2), 141-145.
[http://dx.doi.org/10.1016/j.apsb.2013.12.008] [PMID: 26579376]
[257]
Alam, N.; Yoon, K.N.; Lee, K.R.; Shin, P.G.; Cheong, J.C.; Yoo, Y.B.; Shim, J.M.; Lee, M.W.; Lee, U.Y.; Lee, T.S. Antioxidant activities and tyrosinase inhibitory effects of different extracts from Pleurotus ostreatus fruiting bodies. Mycobiology, 2010, 38(4), 295-301.
[http://dx.doi.org/10.4489/MYCO.2010.38.4.295] [PMID: 23956669]
[258]
Kaewnarin, K.; Suwannarach, N.; Kumla, J.; Lumyong, S. Phenolic profile of various wild edible mushroom extracts from thailand and their antioxidant properties, anti-tyrosinase and hyperglycaemic inhibitory activities. J. Funct. Foods, 2016, 27, 352-364.
[http://dx.doi.org/10.1016/j.jff.2016.09.008]
[259]
Kang, S.S.; Kim, H.J.; Jin, C.; Lee, Y.S. Synthesis of tyrosinase inhibitory (4-oxo-4H-pyran-2-yl)acrylic acid ester derivatives. Bioorg. Med. Chem. Lett., 2009, 19(1), 188-191.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.119] [PMID: 19022667]
[260]
Jo, H.; Choi, M.; Sim, J.; Viji, M.; Li, S.; Lee, Y.H.; Kim, Y.; Seo, S.Y.; Zhou, Y.; Lee, K.; Kim, W.J.; Hong, J.T.; Lee, H.; Jung, J.K. Synthesis and biological evaluation of caffeic acid derivatives as potent inhibitors of α-MSH-stimulated melanogenesis. Bioorg. Med. Chem. Lett., 2017, 27(15), 3374-3377.
[http://dx.doi.org/10.1016/j.bmcl.2017.06.011] [PMID: 28619537]
[261]
Hu, Y.H.; Liu, X.; Jia, Y.L.; Guo, Y.J.; Wang, Q.; Chen, Q.X. Inhibitory kinetics of chlorocinnamic acids on mushroom tyrosinase. J. Biosci. Bioeng., 2014, 117(2), 142-146.
[http://dx.doi.org/10.1016/j.jbiosc.2013.07.002] [PMID: 23958639]
[262]
Kumar, K.J.S.; Vani, M.G.; Wang, S.Y.; Liao, J.W.; Hsu, L.S.; Yang, H.L.; Hseu, Y.C. In vitro and in vivo studies disclosed the depigmenting effects of gallic acid: a novel skin lightening agent for hyperpigmentary skin diseases. Biofactors, 2013, 39(3), 259-270.
[http://dx.doi.org/10.1002/biof.1064] [PMID: 23322673]
[263]
Su, T.R.; Lin, J.J.; Tsai, C.C.; Huang, T.K.; Yang, Z.Y.; Wu, M.O.; Zheng, Y.Q.; Su, C.C.; Wu, Y.J. Inhibition of melanogenesis by gallic acid: possible involvement of the PI3K/Akt, MEK/ERK and Wnt/β-catenin signaling pathways in B16F10 cells. Int. J. Mol. Sci., 2013, 14(10), 20443-20458.
[http://dx.doi.org/10.3390/ijms141020443] [PMID: 24129178]
[264]
Kim, Y-J. Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull., 2007, 30(6), 1052-1055.
[http://dx.doi.org/10.1248/bpb.30.1052] [PMID: 17541153]
[265]
Chen, Y.S.; Lee, S.M.; Lin, C.C.; Liu, C.Y. Hispolon decreases melanin production and induces apoptosis in melanoma cells through the downregulation of tyrosinase and microphthalmia-associated transcription factor (MITF) expressions and the activation of caspase-3, -8 and -9. Int. J. Mol. Sci., 2014, 15(1), 1201-1215.
[http://dx.doi.org/10.3390/ijms15011201] [PMID: 24445257]
[266]
Jun, H. jin; Lee, J.H.; Cho, B.R.; Seo, W.D.; Kim, D.W.; Cho, K.J.; Lee, S.J. p-Coumaric acid inhibition of CREB phosphorylation reduces cellular melanogenesis. Eur. Food Res. Technol., 2012, 235, 1207-1211.
[http://dx.doi.org/10.1007/s00217-012-1830-8]
[267]
Song, K.; An, S.M.; Kim, M.; Koh, J.S.; Boo, Y.C. Comparison of the antimelanogenic effects of p-Coumaric acid and its methyl ester and their skin permeabilities. J. Dermatol. Sci., 2011, 63(1), 17-22.
[http://dx.doi.org/10.1016/j.jdermsci.2011.03.012] [PMID: 21530181]
[268]
Ashraf, Z.; Rafiq, M.; Seo, S.Y.; Babar, M.M.; Zaidi, N.U.S.S. Synthesis, kinetic mechanism and docking studies of vanillin derivatives as inhibitors of mushroom tyrosinase. Bioorg. Med. Chem., 2015, 23(17), 5870-5880.
[http://dx.doi.org/10.1016/j.bmc.2015.06.068] [PMID: 26204890]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy