Generic placeholder image

Current Reviews in Clinical and Experimental Pharmacology

Editor-in-Chief

ISSN (Print): 2772-4328
ISSN (Online): 2772-4336

Review Article

Experimental Phage Therapies in Companion Animals with A Historical Review

Author(s): Ewelina Pyzik, Radosław P. Radzki and Renata Urban-Chmiel*

Volume 16, Issue 1, 2021

Published on: 30 March, 2020

Page: [17 - 29] Pages: 13

DOI: 10.2174/1574884715666200330105411

Price: $65

Abstract

Background: The aim of the review was to comprehensively characterize the antimicrobial efficacy of bacteriophages in eliminating pathogens occurring in companion animals, as an alternative to antibiotics for controlling infections that pose potential threats to the health and life of people and to the environment.

Methods: The review contains detailed information on the characteristics and classification of bacteriophages and an analysis of their life cycle. The dominant element is a detailed analysis of the experimental use of bacteriophages in combating infections caused by various microorganisms in companion animals with regard to their potential use in therapy.

Results: It seems that in the near future, phage therapies will provide an alternative to antibiotics in the treatment of diseases caused by multi-drug resistant bacteria in people and animals.

Conclusions: The effectiveness of phage therapies depends on many factors and the properties of the bacteriophages themselves, which requires comprehensive knowledge of them.

Keywords: Bacteriophages, therapy, companion animals, bacterial viruses, antibacterial therapy, antibiotic resistance.

Graphical Abstract

[1]
Clokie MRJ, Millard AD, Letarov AV, Heaphy S. Phages in nature. Bacteriophage 2011; 1(1): 31-45.
[http://dx.doi.org/10.4161/bact.1.1.14942] [PMID: 21687533]
[2]
Suttle CA. Marine viruses-major players in the global ecosystem. Nat Rev Microbiol 2007; 5(10): 801-12.
[http://dx.doi.org/10.1038/nrmicro1750] [PMID: 17853907]
[3]
Scarpellini E, Ianiro G, Attili F, Bassanelli C, De Santis A, Gasbarrini A. The human gut microbiota and virome: Potential therapeutic implications. Dig Liver Dis 2015; 47(12): 1007-12.
[http://dx.doi.org/10.1016/j.dld.2015.07.008] [PMID: 26257129]
[4]
Sime-Ngando T. Environmental bacteriophages: Viruses of microbes in aquatic ecosystems. Front Microbiol 2014; 5: 355.
[http://dx.doi.org/10.3389/fmicb.2014.00355] [PMID: 25104950]
[5]
Knowles B, Silveira CB, Bailey BA, et al. Lytic to temperate switching of viral communities. Nature 2016; 531(7595): 466-70.
[http://dx.doi.org/10.1038/nature17193] [PMID: 26982729]
[6]
Navarro F, Muniesa M. Phages in the human body. Front Microbiol 2017; 8: 566.
[http://dx.doi.org/10.3389/fmicb.2017.00566] [PMID: 28421059]
[7]
Mattey M, Spencer J. Bacteriophage therapy-cooked goose or phoenix rising? Curr Opin Biotechnol 2008; 19(6): 608-12.
[http://dx.doi.org/10.1016/j.copbio.2008.09.001] [PMID: 18926909]
[8]
Wittebole X, De Roock S, Opal SM. A historical overview of bacteriophage therapy as an alternative to antibiotics for the treatment of bacterial pathogens. Virulence 2014; 5(1): 226-35.
[http://dx.doi.org/10.4161/viru.25991] [PMID: 23973944]
[9]
Chibani CM, Farr A, Klama S, Dietrich S, Liesegang H. Classifying the unclassified: A phage classification method. Viruses 2019; 11(2): 195.
[http://dx.doi.org/10.3390/v11020195] [PMID: 30813498]
[10]
Shapiro JW, Putonti C. Gene co-occurrence networks reflect bacteriophage ecology and evolution. MBio 2018; 9(2): 1-14.
[http://dx.doi.org/10.1128/mBio.01870-17] [PMID: 29559574]
[11]
Pasolli E, Asnicar F, Manara S, et al. Extensive unexplored human microbiome diversity revealed by over 150,000 genomes from metagenomes spanning age, geography, and lifestyle. Cell 2019; 176(3): 649-62.
[http://dx.doi.org/10.1016/j.cell.2019.01.001] [PMID: 30661755]
[12]
De Sordi L, Lourenço M, Debarbieux L. The battle within: Interactions of bacteriophages and bacteria in the gastrointestinal tract. Cell Host Microbe 2019; 25(2): 210-8.
[http://dx.doi.org/10.1016/j.chom.2019.01.018] [PMID: 30763535]
[13]
Adriaenssens E, Brister JR. How to name and classify your phage: An informal guide. Viruses 2017; 9(4): 70.
[http://dx.doi.org/10.3390/v9040070] [PMID: 28368359]
[14]
Adriaenssens EM, Krupovic M, Knezevic P, et al. Taxonomy of prokaryotic viruses: 2016 update from the ICTV bacterial and archaeal viruses subcommittee. Arch Virol 2017; 162(4): 1153-7.
[http://dx.doi.org/10.1007/s00705-016-3173-4] [PMID: 28040838]
[15]
Wernicki A, Nowaczek A, Urban-Chmiel R. Bacteriophage therapy to combat bacterial infections in poultry. Virol J 2017; 14(1): 179.
[http://dx.doi.org/10.1186/s12985-017-0849-7] [PMID: 28915819]
[17]
Keen EC, Dantas G. Close encounters of three kinds: Bacteriophages, commensal bacteria, and host immunity. Trends Microbiol 2018; 26(11): 943-54.
[http://dx.doi.org/10.1016/j.tim.2018.05.009] [PMID: 29909042]
[18]
Kasman LM, Porter LD. Bacteriophages. [Updated 2019 Aug 12]. StatPearls [Internet] Treasure Island (FL). https://www.ncbi.nlm. nih.gov/books/NBK493185/[Accessed Jan, 2020]
[19]
Howard-Varona C, Hargreaves KR, Abedon ST, Sullivan MB, Sullivan MB. Lysogeny in nature: Mechanisms, impact and ecology of temperate phages. ISME J 2017; 11(7): 1511-20.
[http://dx.doi.org/10.1038/ismej.2017.16] [PMID: 28291233]
[20]
Topley WWC, Wilson J, Lewis ER. The role of the Twort-d’Herelle phenomenon in epidemics of mouse typhoid. J Hyg (Lond) 1925; 24(1): 17-36.
[http://dx.doi.org/10.1017/S0022172400031697] [PMID: 20474852]
[21]
d’Herelle F. Bacteriophage as a treatment in acute medical and surgical infections. Bull N Y Acad Med 1931; 7(5): 329-48.
[PMID: 19311785]
[22]
Twort FW. An investigation on the nature of ultramicroscopic viruses. Lancet 1915; 186: 1241-3.
[http://dx.doi.org/10.1016/S0140-6736(01)20383-3]
[23]
Bruynoghe R, Maisin J. Essais de thérapeutique au moyen du bactériophage du Staphylocoque. J Compt Rend Soc Biol 1921; p. 85.
[24]
Yoshikawa TT. Antimicrobial resistance and aging: Beginning of the end of the antibiotic era? J Am Geriatr Soc 2002; 50(7)(Suppl.): S226-9.
[http://dx.doi.org/10.1046/j.1532-5415.50.7s.2.x] [PMID: 12121517]
[25]
Abedon ST, Kuhl SJ, Blasdel BG, Kutter EM. Phage treatment of human infections. Bacteriophage 2011; 1(2): 66-85.
[http://dx.doi.org/10.4161/bact.1.2.15845] [PMID: 22334863]
[26]
Myelnikov D. An alternative cure: The adoption and survival of bacteriophage therapy in the USSR, 1922-1955. J Hist Med Allied Sci 2018; 73(4): 385-411.
[http://dx.doi.org/10.1093/jhmas/jry024] [PMID: 30312428]
[27]
Weber-Dąbrowska B, Mulczyk M, Górski A. Bacteriophage therapy of bacterial infections: An update of our institute’s experience. Arch Immunol Ther Exp (Warsz) 2000; 48(6): 547-51.
[PMID: 11197610]
[28]
Hicks LA, Bartoces MG, Roberts RM, et al. US outpatient antibiotic prescribing variation according to geography, patient population, and provider specialty in 2011. Clin Infect Dis 2015; 60(9): 1308-16.
[http://dx.doi.org/10.1093/cid/civ076] [PMID: 25747410]
[29]
Laxminarayan R, Duse A, Wattal C, et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis 2013; 13(12): 1057-98.
[http://dx.doi.org/10.1016/S1473-3099(13)70318-9] [PMID: 24252483]
[30]
Biswas B, Adhya S, Washart P, et al. Bacteriophage therapy rescues mice bacteremic from a clinical isolate of vancomycin-resistant Enterococcus faecium. Infect Immun 2002; 70(1): 204-10.
[http://dx.doi.org/10.1128/IAI.70.1.204-210.2002] [PMID: 11748184]
[31]
Chibber S, Kumari S. Application of therapeutic phages in medicine Bacteriophages. Rijeka: InTech 2012; pp. 139-58.
[http://dx.doi.org/10.5772/34296]
[32]
Morozova VV, Vlassov VV, Tikunova NV. Applications of bacteriophages in the treatment of localized infections in humans. Front Microbiol 2018; 9: 1696.
[http://dx.doi.org/10.3389/fmicb.2018.01696] [PMID: 30116226]
[33]
Ackermann HW, DuBow M. General Properties of Bacteriophages.In: Practical Applications of Bacteriophages Chap 7 Boca Raton, Floryda: CRC Press 1987; pp 49-85.
[34]
Ślopek S, Weber-Dąbrowska B, Dąbrowski M, Kucharewicz-Krukowska A. Results of bacteriophage treatment of suppurative bacterial infections in the years 1981-1986. Arch Immunol Ther Exp (Warsz) 1987; 35(5): 569-83.
[PMID: 3455647]
[35]
Loc-Carrillo C, Abedon ST. Pros and cons of phage therapy. Bacteriophage 2011; 1(2): 111-4.
[http://dx.doi.org/10.4161/bact.1.2.14590] [PMID: 22334867]
[36]
Górski A, Międzybrodzki R, Weber-Dąbrowska B, et al. Phage therapy: Combating infections with potential for evolving from merely a treatment for complications to targeting diseases. Front Microbiol 2016; 7: 1515.
[http://dx.doi.org/10.3389/fmicb.2016.01515] [PMID: 27725811]
[37]
Górski A, Dąbrowska K, Międzybrodzki R, et al. Phages and immunomodulation. Future Microbiol 2017; 12: 905-14.
[http://dx.doi.org/10.2217/fmb-2017-0049] [PMID: 28434234]
[38]
Van Belleghem JD, Dąbrowska K, Vaneechoutte M, Barr JJ, Bollyky PL. Interactions between bacteriophage, bacteria, and the mammalian immune system. Viruses 2018; 11(1): 10.
[http://dx.doi.org/10.3390/v11010010] [PMID: 30585199]
[39]
Ichinohe T, Pang IK, Kumamoto Y, et al. Microbiota regulates immune defense against respiratory tract influenza A virus infection. Proc Natl Acad Sci USA 2011; 108(13): 5354-9.
[http://dx.doi.org/10.1073/pnas.1019378108] [PMID: 21402903]
[40]
Dąbrowska K, Miernikiewicz P, Piotrowicz A, et al. Immunogenicity studies of proteins forming the T4 phage head surface. J Virol 2014; 88(21): 12551-7.
[http://dx.doi.org/10.1128/JVI.02043-14] [PMID: 25142581]
[41]
Górski A, Wazna E, Dabrowska BW, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R. Bacteriophage translocation. FEMS Immunol Med Microbiol 2006; 46(3): 313-9.
[http://dx.doi.org/10.1111/j.1574-695X.2006.00044.x] [PMID: 16553803]
[42]
Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol 2012; 33(9): 459-66.
[http://dx.doi.org/10.1016/j.it.2012.05.003] [PMID: 22677185]
[43]
Kim KP, Cha JD, Jang EH, et al. PEGylation of bacteriophages increases blood circulation time and reduces T-helper type 1 immune response. Microb Biotechnol 2008; 1(3): 247-57.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00028.x] [PMID: 21261844]
[44]
Duerkop BA, Hooper LV. Resident viruses and their interactions with the immune system. Nat Immunol 2013; 14(7): 654-9.
[http://dx.doi.org/10.1038/ni.2614] [PMID: 23778792]
[45]
Van Belleghem JD, Clement F, Merabishvili M, Lavigne R, Vaneechoutte M. Pro- and anti-inflammatory responses of peripheral blood mononuclear cells induced by Staphylococcus aureus and Pseudomonas aeruginosa phages. Sci Rep 2017; 7(1): 8004.
[http://dx.doi.org/10.1038/s41598-017-08336-9] [PMID: 28808331]
[46]
Zhang L, Hou X, Sun L, et al. Staphylococcus aureus bacteriophage suppresses LPS-induced inflammation in MAC-T bovine mammary epithelial cells. Front Microbiol 2018; 9: 1-8.
[http://dx.doi.org/10.3389/fmicb.2018.02511]
[47]
Weber-Dabrowska B, Zimecki M, Mulczyk M. Effective phage therapy is associated with normalization of cytokine production by blood cell cultures. Arch Immunol Ther Exp (Warsz) 2000; 48(1): 31-7.
[PMID: 10722229]
[48]
Soothill JS. Bacteriophage prevents destruction of skin grafts by Pseudomonas aeruginosa. Burns 1994; 20(3): 209-11.
[http://dx.doi.org/10.1016/0305-4179(94)90184-8] [PMID: 8054131]
[49]
Eriksson F, Tsagozis P, Lundberg K, et al. Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 2009; 182(5): 3105-11.
[http://dx.doi.org/10.4049/jimmunol.0800224] [PMID: 19234207]
[50]
Górski A, Międzybrodzki R, Borysowski J, et al. Phage as a modulator of immune responses: Practical implications for phage therapy. Adv Virus Res 2012; 83: 41-71.
[http://dx.doi.org/10.1016/B978-0-12-394438-2.00002-5] [PMID: 22748808]
[51]
Keller R, Engley FB Jr. Fate of bacteriophage particles introduced into mice by various routes. Proc Soc Exp Biol Med 1958; 98(3): 577-80.
[http://dx.doi.org/10.3181/00379727-98-24112] [PMID: 13567777]
[52]
Dąbrowska K, Switała-Jelen K, Opolski A, Weber-Dabrowska B, Górski A. Bacteriophage penetration in vertebrates. J Appl Microbiol 2005; 98(1): 7-13.
[http://dx.doi.org/10.1111/j.1365-2672.2004.02422.x] [PMID: 15610412]
[53]
Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages-review. Folia Microbiol (Praha) 2011; 56(3): 191-200.
[http://dx.doi.org/10.1007/s12223-011-0039-8] [PMID: 21625877]
[54]
Jończyk-Matysiak E, Weber-Dąbrowska B, Żaczek M, et al. Prospects of phage application in the treatment of acne caused by Propionibacterium acnes. Front Microbiol 2017; 8: 164.
[http://dx.doi.org/10.3389/fmicb.2017.00164] [PMID: 28228751]
[55]
Hoffmann M. Animal experiments on the mucosal passage and absorption viremia of T3 phages after oral, tracheal and rectal administration. Zentralbl Bakteriol Orig 1965; 198(4): 371-90.
[PMID: 5875403]
[56]
Sechter I, Touitou E, Donbrow M. The influence of a non-ionic surfactant on rectal absorption of virus particles. Arch Virol 1989; 106(1-2): 141-3.
[http://dx.doi.org/10.1007/BF01311045] [PMID: 2764725]
[57]
Brown TL, Petrovski S, Dyson ZA, Seviour R, Tucci J. The formulation of bacteriophage in a semi solid preparation for control of Propionibacterium acnes growth. PLoS One 2016; 11(3)e0151184
[http://dx.doi.org/10.1371/journal.pone.0151184] [PMID: 26964063]
[58]
Bodier-Montagutelli E, Morello E, L’Hostis G, et al. Inhaled phage therapy: A promising and challenging approach to treat bacterial respiratory infections. Expert Opin Drug Deliv 2017; 14(8): 959-72.
[http://dx.doi.org/10.1080/17425247.2017.1252329] [PMID: 27776446]
[59]
Dubos RJ, Straus JH, Pierce C. The multiplication of bacteriophage in vivo and its protective effects against experimental infection with Shigella dysenteria. J Exp Med 1943; 78(3): 161-8.
[http://dx.doi.org/10.1084/jem.78.3.161] [PMID: 19871319]
[60]
Maheshwari RG, Tekade RK, Sharma PA, et al. Ethosomes and ultradeformable liposomes for transdermal delivery of clotrimazole: A comparative assessment. Saudi Pharm J 2012; 20(2): 161-70.
[http://dx.doi.org/10.1016/j.jsps.2011.10.001] [PMID: 23960788]
[61]
Topley WWC, Wilson GS. Principles of bacteriology, virology and immunity7th ed BC London, United Kingdom: Decker Publisher. 1990; p. 236.
[62]
Fisk RT. Protective action of typhoid phage on experimental typhoid infection in Mice. Exp Biol Med 1938; 38: 659-60.
[http://dx.doi.org/10.3181/00379727-38-9973]
[63]
Slanetz LW, Jawetz E. Isolation and characteristics of bacteriophages for Staphylococci of bovine mastitis. J Bacteriol 1941; 41(4): 447-55.
[http://dx.doi.org/10.1128/JB.41.4.447-455.1941] [PMID: 16560414]
[64]
Borie C, Robeson J, Galarce N. Lytic bacteriophages in veterinary medicine; A therapeutic option against bacterial pathogens. Arch Med Vet 2014; 46: 167-79.
[http://dx.doi.org/10.4067/S0301-732X2014000200002]
[65]
Compton A. Immunization in experimental plague by subcutaneous inoculation with bacteriophage. J Infect Dis 1930; 46: 152-60.
[http://dx.doi.org/10.1093/infdis/46.2.152]
[66]
Eaton MD, Bayne-Jones S. Bacteriophage therapy. JAVMA 1934; 103: 1769.
[http://dx.doi.org/10.1001/jama.1934.72750490003007]
[67]
Kolmer JA, Rule AA. Note on the treatment of experimental streptococcus meningitis of rabbits with bacteriophage. J Lab Clin Med 1993; 18: 1001-3.
[68]
Sulakvelidze A, Kutter E. Bacteriophage therapy in humans Bacteriophages: Biology and application. Boca Raton: CRC Press 2005; pp. 381-436.
[69]
Santos TMA, Ledbetter EC, Caixeta LS, Bicalho MLS, Bicalho RC. Isolation and characterization of two bacteriophages with strong in vitro antimicrobial activity against Pseudomonas aeruginosa isolated from dogs with ocular infections. Am J Vet Res 2011; 72(8): 1079-86.
[http://dx.doi.org/10.2460/ajvr.72.8.1079] [PMID: 21801066]
[70]
Soothill JS. Treatment of experimental infections of mice with bacteriophages. J Med Microbiol 1992; 37(4): 258-61.
[http://dx.doi.org/10.1099/00222615-37-4-258] [PMID: 1404324]
[71]
Marza JA, Soothill JS, Boydell P, Collyns TA. Multiplication of therapeutically administered bacteriophages in Pseudomonas aeruginosa infected patients. Burns 2006; 32(5): 644-6.
[http://dx.doi.org/10.1016/j.burns.2006.02.012] [PMID: 16781080]
[72]
Hawkins C, Harper D, Burch D, Anggård E, Soothill J. Topical treatment of Pseudomonas aeruginosa otitis of dogs with a bacteriophage mixture: A before/after clinical trial. Vet Microbiol 2010; 146(3-4): 309-13.
[http://dx.doi.org/10.1016/j.vetmic.2010.05.014] [PMID: 20627620]
[73]
Kishor C, Mishra RR, Saraf SK, Kumar M, Srivastav AK, Nath G. Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Med Res 2016; 143(1): 87-94.
[http://dx.doi.org/10.4103/0971-5916.178615] [PMID: 26997019]
[74]
Wills QF, Kerrigan C, Soothill JS. Experimental bacteriophage protection against Staphylococcus aureus abscesses in a rabbit model. Antimicrob Agents Chemother 2005; 49(3): 1220-1.
[http://dx.doi.org/10.1128/AAC.49.3.1220-1221.2005] [PMID: 15728933]
[75]
Solomon SEB, de Farias MR, Pimpão CT. Use of Staphylococcus aureus phage Lysate Staphage Lysate (SPL)® for the control of recurrent pyoderma eczema in dogs with atopic dermatitis. Acta Sci Vet 2016; 44: 1382.
[76]
Ibrahim OMS, Sarhan SR, Salih SI. Activity of isolated staphylococcal bacteriophage in treatment of experimentally induced chronic osteomyelitis in rabbits. Advances Anim Vet Sci 2016; 4: 593-603.
[http://dx.doi.org/10.14737/journal.aavs/2016/4.11.593.603]
[77]
Wernicki A, Urban-Chmiel R, Balicki I. The method of obtaining compositions for the treatment of bacterial conjunctivitis PL UPRP Patent, Sept 2019; P427798
[78]
Wernicki A, Urban-Chmiel R, Balicki I. The method of obtaining compositions for the treatment of bacterial conjunctivitis PL UPRP Patent 2019; P427797
[79]
Tanji Y, Shimada T, Fukudomi H, Miyanaga K, Nakai Y, Unno H. Therapeutic use of phage cocktail for controlling Escherichia coli O157:H7 in gastrointestinal tract of mice. J Biosci Bioeng 2005; 100(3): 280-7.
[http://dx.doi.org/10.1263/jbb.100.280] [PMID: 16243277]
[80]
Freitag T, Squires RA, Schmid J. Naturally occurring bacteriophages lyse a large proportion of canine and feline uropathogenic Escherichia coli isolates in vitro. Res Vet Sci 2008; 85(1): 1-7.
[http://dx.doi.org/10.1016/j.rvsc.2007.09.004] [PMID: 17959211]
[81]
Soffer N, Abuladze T, Woolston J, et al. Bacteriophages safely reduce Salmonella contamination in pet food and raw pet food ingredients. Bacteriophage 2016; 6(3)e1220347
[http://dx.doi.org/10.1080/21597081.2016.1220347] [PMID: 27738557]
[82]
Ramesh V, Fralick JA, Rolfe RD. Prevention of Clostridium difficile-induced ileocecitis with bacteriophage. Anaerobe 1999; 5: 69-78.
[http://dx.doi.org/10.1006/anae.1999.0192]
[83]
Shivaswamy VC, Kalasuramath SB, Sadanand CK, et al. Ability of bacteriophage in resolving wound infection caused by multidrug-resistant Acinetobacter baumannii in uncontrolled diabetic rats. Microb Drug Resist 2015; 21(2): 171-7.
[http://dx.doi.org/10.1089/mdr.2014.0120] [PMID: 25411824]
[84]
Nale JY, Spencer J, Hargreaves KR, et al. Bacteriophage combinations significantly reduce Clostridium difficile growth in vitro and proliferation in vivo. Antimicrob Agents Chemother 2015; 60(2): 968-81.
[http://dx.doi.org/10.1128/AAC.01774-15] [PMID: 26643348]
[85]
Piacentini GL, Peroni DG, Bodini A, et al. Azithromycin reduces bronchial hyperresponsiveness and neutrophilic airway inflammation in asthmatic children: A preliminary report. Allergy Asthma Proc 2007; 28(2): 194-8.
[http://dx.doi.org/10.2500/aap.2007.28.2958] [PMID: 17479604]
[86]
Eder W, Ege MJ, von Mutius E. The asthma epidemic. N Engl J Med 2006; 355(21): 2226-35.
[http://dx.doi.org/10.1056/NEJMra054308] [PMID: 17124020]
[87]
Górski A, Kniotek M, Perkowska-Ptasińska A, et al. Bacteriophages and transplantation tolerance. Transplant Proc 2006; 38(1): 331-3.
[http://dx.doi.org/10.1016/j.transproceed.2005.12.073] [PMID: 16504739]
[88]
Lin DM, Koskella B, Lin HC. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J Gastrointest Pharmacol Ther 2017; 8(3): 162-73.
[http://dx.doi.org/10.4292/wjgpt.v8.i3.162] [PMID: 28828194]
[89]
Granowitz EV, Brown RB. Antibiotic adverse reactions and drug interactions. Crit Care Clin 2008; 24(2): 421-42.xi.
[http://dx.doi.org/10.1016/j.ccc.2007.12.011] [PMID: 18361954]
[90]
Górski A, Weber-Dąbrowska B. The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 2005; 62(5): 511-9.
[http://dx.doi.org/10.1007/s00018-004-4403-6] [PMID: 15747058]
[91]
Jaiswal A, Koley H, Ghosh A, Palit A, Sarkar B. Efficacy of cocktail phage therapy in treating Vibrio cholerae infection in rabbit model. Microbes Infect 2013; 15(2): 152-6.
[http://dx.doi.org/10.1016/j.micinf.2012.11.002] [PMID: 23159467]
[92]
Tetz G, Tetz V. Bacteriophage infections of microbiota can lead to leaky gut in an experimental rodent model. Gut Pathog 2016; 8: 33.
[http://dx.doi.org/10.1186/s13099-016-0109-1] [PMID: 27340433]
[93]
Włodarska M, Willing B, Keeney KM, et al. Antibiotic treatment alters the colonic mucus layer and predisposes the host to exacerbated Citrobacter rodentium-induced colitis. Infect Immun 2011; 79(4): 1536-45.
[http://dx.doi.org/10.1128/IAI.01104-10] [PMID: 21321077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy