Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

General Research Article

Novel and Predictive QSAR Model for Steroidal and Nonsteroidal 5α- Reductase Type II Inhibitors

Author(s): Huda Mando, Ahmad Hassan* and Sajjad Gharaghani*

Volume 18, Issue 2, 2021

Published on: 24 March, 2020

Page: [317 - 332] Pages: 16

DOI: 10.2174/1570163817666200324170457

Price: $65

Abstract

Aims and Objective: In this study, a novel quantitative structure activity relationship (QSAR) model has been developed for inhibitors of human 5-alpha reductase type II, which are used to treat benign prostate hypertrophy (BPH).

Methods: The dataset consisted of 113 compounds-mainly nonsteroidal-with known inhibitory concentration. Then 3D structures of compounds were optimized and molecular structure descriptors were calculated. The stepwise multiple linear regression was used to select descriptors encoding the inhibitory activity of the compounds. Multiple linear regression (MLR) was used to build up the linear QSAR model.

Results: The results obtained revealed that the descriptors which best describe the activity were atom type electropological state, carbon type, radial distribution function (RDF), barysz matrix and molecular linear free energy relation. The suggested model could achieve satisfied square correlation coefficient of R2 = 0.72, higher than of many previous studies, indicating its superiority. Rigid validation criteria were met using external data with Q2 ˃ 0.5 and R2 = 0.75, reflecting the predictive power of the model.

Conclusion: The QSAR model was applied for screening botanical components of herbal preparations used to treat BPH, and could predict the activity of some, among others, making reasonable attribution to the proposed effect of these preparations. Gamma tocopherol was found to be an active inhibitor, in consistence with many previous studies, anticipating the power of this model in the prediction of new candidate molecules and suggesting further investigations.

Keywords: QSAR, 5α-Reductase, BHP, inhibitor, prostate, 5α-reductase isozymes.

Graphical Abstract

[1]
Aggarwal S, Thareja S, Verma A, Bhardwaj TR, Kumar M. QSAR studies on human 5α-reductase inhibitors: unsaturated 3-carboxysteroids. Acta Pol Pharm 2011; 68(3): 447-52.
[PMID: 21648201]
[2]
Akanshka MV, Dhingra RM, Dhingra N. In silico identification of potential 5α-reductase inhibitors for prostatic disease: QSAR modelling, molecular docking, and pre ADME prediction. MOJ D D D T 2018; 2(3): 136-45.
[3]
Cohen SA, Parsons JK. Combination pharmacological therapies for the management of benign prostatic hyperplasia. Drugs Aging 2012; 29(4): 275-84.
[http://dx.doi.org/10.2165/11598600-000000000-00000] [PMID: 22428659]
[4]
Lee KS, Lee HW, Han DH. Does anticholinergic medication have a role in treating men with overactive bladder and benign prostatic hyperplasia? Naunyn Schmiedebergs Arch Pharmacol 2008; 377(4-6): 491-501.
[http://dx.doi.org/10.1007/s00210-007-0242-y] [PMID: 18172610]
[5]
Governa P, Giachetti D, Biagi M, Manetti F, De Vico L. Hypothesis on Serenoa repens (Bartram) small extract inhibition of prostatic 5α-reductase through an in silico approach on 5β-reductase x-ray structure. Peer J PrePrints San Diegos 2016; 4e 2698
[6]
Kumar R, Malla P, Kumar M. Advances in the design and discovery of drugs for the treatment of prostatic hyperplasia. Expert Opin Drug Discov 2013; 8(8): 1013-27.
[http://dx.doi.org/10.1517/17460441.2013.797960] [PMID: 23662859]
[7]
Marberger M. Drug insight: 5[alpha]-reductase inhibitors for the treatment of benign prostatic hyperplasia. Nat. Clin Pract Uro 2006; 3(90): 495-503.
[8]
Kulig K, Malawska B. Trends in the development of new drugs for treatment of benign prostatic hyperplasia. Curr Med Chem 2006; 13(28): 3395-416.
[http://dx.doi.org/10.2174/092986706779010315] [PMID: 17168713]
[9]
Azzouni F, Gody A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: review article, a review of basic biology and their role in human diseases. Adv Uorol 2013; 18 Article ID530121
[10]
Occhiato EG, Guarna A, Danza G, Serio M. Selective none-steroidal inhibitors of 5 alpha-reductase type I. J Biochem Mol Biol 2004; 88(1): 1-16.
[PMID: 14761298]
[11]
Faragalla J, Bremner J, Brown D, Griffith R, Heaton A. Comparative pharmacophore development for inhibitors of human and rat 5-α-reductase. J Mol Graph Model 2003; 22(1): 83-92.
[http://dx.doi.org/10.1016/S1093-3263(03)00138-4] [PMID: 12798393]
[12]
Sujeong K, Yong UK, Eunsook M. Synthesis and 5 α-reductase inhibitory activity of C21 steroids having 1,4 diene or 4,6- diene 20-ones and 4-azasteroid 20-oximes. Molecules 2012; 17: 335-68.
[13]
Thareja S. Steroidal 5α-reductase inhibitors: a comparative 3D-QSAR study review. Chem Rev 2015; 115(8): 2883-94.
[http://dx.doi.org/10.1021/cr5005953] [PMID: 25785489]
[14]
Kumar R, Kumar M. 3D-QSAR CoMFA and CoMSIA studies for design of potent human steroid 5 alpha-reductase inhibitors. Med Chem Res 2013; 22(1): 105-14.
[http://dx.doi.org/10.1007/s00044-012-0006-1]
[15]
Kumar R, Malla P, Verma A, Kumar M. Design o potent human steroid 5α-reductase inhibitors: 3D-QSAR CoMFA, CoMSIA and docking studies. Med Chem Res 2013; 22: 4568-80.
[http://dx.doi.org/10.1007/s00044-012-0456-5]
[16]
Sánchez-Márquez A, Arellano Y, Bratoeff E, et al. Synthesis and biological evaluation of esters of 16-formyl-17-methoxy-dehydroepiandrosterone derivatives as inhibitors of 5α-reductase type 2. J Enzyme Inhib Med Chem 2016; 31(6): 1170-6.
[http://dx.doi.org/10.3109/14756366.2015.1103235] [PMID: 26526826]
[17]
Aggarwal S, Thareja S, Bhardwaj TR, Kumar M. 3D-QSAR studies on unsaturated 4-azasteroids as human 5α-reductase inhibitors: a self-organizing molecular field analysis approach. Eur J Med Chem 2010; 45(2): 476-81.
[http://dx.doi.org/10.1016/j.ejmech.2009.10.030] [PMID: 19906465]
[18]
Nickel JC, Gilling P, Tammela TL, Morrill B, Wilson TH, Rittmaster RS. Comparison of dutasteride and finasteride for treating benign prostatic hyperplasia: The enlarged prostate international comparator study (EPICS). BJU Int 2011; 108(3): 388-94.
[http://dx.doi.org/10.1111/j.1464-410X.2011.10195.x] [PMID: 21631695]
[19]
Shamsara J. Homology modeling of 5-alpha-reductase 2 using available experimental data. Interdiscip Sci 2019; 11(3): 475-84.
[http://dx.doi.org/10.1007/s12539-017-0280-1] [PMID: 29383563]
[20]
Vats C, Dhanjal JK, Goyal S, Bhardjava N, Grover A. computational design of novel flavonoid analogues as potential AchE inhibitors: analysis using group-based QSAR, molecular docking and molecular dynamics simulations. J Struct Chem 2015; 26(2): 467-76.
[http://dx.doi.org/10.1007/s11224-014-0494-3]
[21]
Hecht D, Cheung M, Fogel GB. Docking scores and QSAR using evolved neural networks for the pan-inhibition of wild-type and mutant PfDHFR by cycloguanil derivatives IEEE Congress on Evolutionary Computation. Trondheim, Norway In: 2009; pp. 262-9.
[http://dx.doi.org/10.1109/CEC.2009.4982957]
[22]
Kitchen DB, Decornez H, Furr JR, Bajorath J. Docking and scoring in virtual screening for drug discovery: methods and applications. Nat Rev Drug Discov 2004; 3(11): 935-49.
[http://dx.doi.org/10.1038/nrd1549] [PMID: 15520816]
[23]
Hutter MC, Hartmann RW. QSAR of human steroid 5α-reductase inhibitors: What are the differences between isoenzyme type 1 and 2? QSAR Amp Comb Sci 2004; 23: 406-15.
[24]
Lill MA. Multi-dimensional QSAR in drug discovery. Drug Discov Today 2007; 12(23-24): 1013-7.
[http://dx.doi.org/10.1016/j.drudis.2007.08.004] [PMID: 18061879]
[25]
Salem OI, Frotscher M, Scherer C, et al. Novel 5α-reductase inhibitors: synthesis, structure-activity studies, and pharmacokinetic profile of phenoxybenzoylphenyl acetic acids. J Med Chem 2006; 49(2): 748-59.
[http://dx.doi.org/10.1021/jm050728w] [PMID: 16420060]
[26]
Aggarwal S, Mahapatra MK, Kumar R, et al. Synthesis and biological evaluation of 3-tetrazolo steroidal analogs: Novel class of 5α-reductase inhibitors. Bioorg Med Chem 2016; 24(4): 779-88.
[http://dx.doi.org/10.1016/j.bmc.2015.12.048] [PMID: 26780831]
[27]
Aggarwal S, Thareja S, Bhardwaj TR, Haupenthal J, Hartmann RW, Kumar M. Synthesis and biological evaluation of novel unsaturated carboxysteroids as human 5α-reductase inhibitors: a legitimate approach. Eur J Med Chem 2012; 54: 728-39.
[http://dx.doi.org/10.1016/j.ejmech.2012.06.026] [PMID: 22776417]
[28]
Streiber M. picard F, Scherer C, Seidel S, Hartmann R.W. Methyl esters of N-(Dicyclohexyl)acetyl-piperidine-4-(benzylidiene-4-carboxilic acids) as drugs and prodrugs: A new strategy for dual inhibition of 5α-reductase Type 1 and Type 2. J Pharm Sci 2005; 94(3): 473-80.
[http://dx.doi.org/10.1002/jps.20265] [PMID: 15627259]
[29]
Dewae , et al. Development and use of quantum mechanical molecular models.76. AM: a new general purpose quantum mechanical molecular model. J Am Chem Soc 1985; 107(13): 3902-9.
[http://dx.doi.org/10.1021/ja00299a024]
[30]
Tropsha A, Gramatica P, Gombar VK. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR Comb Sci 2003; 22: 69-77.
[http://dx.doi.org/10.1002/qsar.200390007]
[31]
Golbraikh A, Tropsha A. Beware of q2! J Mol Graph Model 2002; 20(4): 269-76.
[http://dx.doi.org/10.1016/S1093-3263(01)00123-1] [PMID: 11858635]
[32]
Roy P, Roy K. On some aspects of variable selection for partial least squares regression models. QSAR Comb Sci 2008; 27: 302-13.
[http://dx.doi.org/10.1002/qsar.200710043]
[33]
Jaworska J, Nikolova-Jeliazkova N, Aldenberg T. QSAR applicabilty domain estimation by projection of the training set descriptor space: a review. Altern Lab Anim 2005; 33(5): 445-59.
[http://dx.doi.org/10.1177/026119290503300508] [PMID: 16268757]
[34]
Dimitrov S, Dimitrova G, Pavlov T, et al. A stepwise approach for defining the applicability domain of SAR and QSAR models. J Chem Inf Model 2005; 45(4): 839-49.
[http://dx.doi.org/10.1021/ci0500381] [PMID: 16045276]
[35]
Worth AP, Van Leeuwen CJ, Hartung T. The prospects for using (Q)SARs in a changing political environment--high expectations and a key role for the European Commission’s joint research centre. SAR QSAR Environ Res 2004; 15(5-6): 331-43.
[http://dx.doi.org/10.1080/10629360412331297371] [PMID: 15669693]
[36]
Nikolova-Jeliazkova N, Jaworska J. An approach to determining applicability domains for QSAR group contribution models: an analysis of SRC KOWWIN. Altern Lab Anim 2005; 33(5): 461-70.
[http://dx.doi.org/10.1177/026119290503300510] [PMID: 16268758]
[37]
Sheridan RP, Feuston BP, Maiorov VN, Kearsley SK. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. J Chem Inf Comput Sci 2004; 44(6): 1912-28.
[http://dx.doi.org/10.1021/ci049782w] [PMID: 15554660]
[38]
Atkinson AC. Plots, transformations and regression: An Introduction to Graphical Methods of Diagnostic Regression Analysis. New York: Clarendon Press 1985.
[39]
Gramatica P. Principles of QSAR models validation: internal and external. QSAR Comb Sci 2007; 26(5): 694-701.
[http://dx.doi.org/10.1002/qsar.200610151]
[40]
Tropsha A, Golbraikh A. Predictive QSAR modeling workflow, model applicability domains, and virtual screening. Curr Pharm Des 2007; 13(34): 3494-504.
[http://dx.doi.org/10.2174/138161207782794257] [PMID: 18220786]
[41]
Muegge I, Oloff S. Advances in virtual screening. Drug Discov Today Technol 2006; 3: 405-11.
[http://dx.doi.org/10.1016/j.ddtec.2006.12.002]
[42]
Joanebarnez, Anderson L A, Filipson D Herbal Medicines. 3rd ed. Pharmaceutical Press 2007.
[43]
Gruenwald J, Brendler T, Jaenicke C. PDR for Herbal Medicines. published by Medical Economics Company 2007.
[44]
Adeniji SE, Arthur DA, Oluwaseye A. Computational modeling of 4-phenoxynicotinamide and 4-phenoxypyrimidine-5-carbox-amide derivatives as potent anti-diabetic agent against tgr5 receptor. J King Saud Univ 2018; p. 23.
[45]
Hall LH, Kier LB. Electrotopological state indices for atom types: A novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 1995; 35: 1039-45.
[http://dx.doi.org/10.1021/ci00028a014]
[46]
Liu R, Sun H, So SS. Development of quantitative structure-property relationship models for early ADME evaluation in drug discovery. 2. Blood-brain barrier penetration. J Chem Inf Comput Sci 2001; 41(6): 1623-32.
[http://dx.doi.org/10.1021/ci010290i] [PMID: 11749589]
[47]
Todeschini R, Consonni V. Molecular descriptors for chemoinformatics. In: 2009; pp. 27-37.
[http://dx.doi.org/10.1002/9783527628766]
[48]
Todeschini R. Consonni Molecular descriptors for chemoinformatics. 2009; pp. 714-26.
[49]
Hemmer MC, Steinhauer V. Gasteiger. Deriving the 3D structure of organic molecules from their infrared spectra. VIB SPECTROSC 2009; 19: 151-64.
[50]
Platts JA, Butina D, Abraham MH, Hersey A. Estimation of molecular free energy relation descriptors using a group contribution approach. J Chem Inf Comput Sci 1999; 39(5): 835-45.
[http://dx.doi.org/10.1021/ci980339t]
[51]
Price K, Krishnan K. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. SAR QSAR Environ Res 2011; 22(1-2): 107-28.
[http://dx.doi.org/10.1080/1062936X.2010.548350] [PMID: 21391144]
[52]
Bombardelli E, Morazzoni P. Serenoa repens (Bartram) J.K. Small. Fitoterapia 1997; 68: 99-113.
[53]
Weisser H, Tunn S, Behnke B, Krieg M. Effects of the sabal serrulata extract IDS 89 and its subfractions on 5 alpha-reductase activity in human benign prostatic hyperplasia. Prostate 1996; 28(5): 300-6.
[http://dx.doi.org/10.1002/(SICI)1097-0045(199605)28:5<300:AID-PROS5>3.0.CO;2-F] [PMID: 8610056]
[54]
Palin M-F, Faguy M, LeHoux JG, Pelletier G. Inhibitory effects of Serenoa repens on the kinetic of pig prostatic microsomal 5alphareductase activity. Endocrine 1998; 9(1): 65-9.
[http://dx.doi.org/10.1385/ENDO:9:1:65] [PMID: 9798732]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy