Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Mini-Review Article

Protein Histidine Methylation

Author(s): Sebastian Kwiatkowski and Jakub Drozak *

Volume 21, Issue 7, 2020

Page: [675 - 689] Pages: 15

DOI: 10.2174/1389203721666200318161330

Price: $65

Abstract

Protein histidine methylation is a rarely studied posttranslational modification in eukaryotes. Although the presence of N-methylhistidine was demonstrated in actin in the early 1960s, so far, only a limited number of proteins containing N-methylhistidine have been reported, including S100A9, myosin, skeletal muscle myosin light chain kinase (MLCK 2), and ribosomal protein Rpl3. Furthermore, the role of histidine methylation in the functioning of the protein and in cell physiology remains unclear due to a shortage of studies focusing on this topic. However, the molecular identification of the first two distinct histidine-specific protein methyltransferases has been established in yeast (Hpm1) and in metazoan species (actin-histidine N-methyltransferase), giving new insights into the phenomenon of protein methylation at histidine sites. As a result, we are now beginning to recognize protein histidine methylation as an important regulatory mechanism of protein functioning whose loss may have deleterious consequences in both cells and in organisms. In this review, we aim to summarize the recent advances in the understanding of the chemical, enzymological, and physiological aspects of protein histidine methylation.

Keywords: Posttranslational modifications, protein methylation, histidine methylation, actin, SETD3, Hpm1.

Graphical Abstract

[1]
Xin, F.; Radivojac, P. Post-translational modifications induce significant yet not extreme changes to protein structure. Bioinformatics, 2012, 28(22), 2905-2913.
[http://dx.doi.org/10.1093/bioinformatics/bts541] [PMID: 22947645]
[2]
Prabakaran, S.; Lippens, G.; Steen, H.; Gunawardena, J. Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip. Rev. Syst. Biol. Med., 2012, 4(6), 565-583.
[http://dx.doi.org/10.1002/wsbm.1185] [PMID: 22899623]
[3]
Deribe, Y.L.; Pawson, T.; Dikic, I. Post-translational modifications in signal integration. Nat. Struct. Mol. Biol., 2010, 17(6), 666-672.
[http://dx.doi.org/10.1038/nsmb.1842] [PMID: 20495563]
[4]
Walsh, C.T.; Garneau-Tsodikova, S.; Gatto, G.J. Jr Protein posttranslational modifications: the chemistry of proteome diversifications. Angew. Chem. Int. Ed. Engl., 2005, 44(45), 7342-7372.
[http://dx.doi.org/10.1002/anie.200501023] [PMID: 16267872]
[5]
Duan, G.; Walther, D. The roles of post-translational modifications in the context of protein interaction networks. PLOS Comput. Biol., 2015, 11(2)e1004049
[http://dx.doi.org/10.1371/journal.pcbi.1004049] [PMID: 25692714]
[6]
Clarke, S.G. Protein methylation at the surface and buried deep: thinking outside the histone box. Trends Biochem. Sci., 2013, 38(5), 243-252.
[http://dx.doi.org/10.1016/j.tibs.2013.02.004] [PMID: 23490039]
[7]
Paik, W.K.; Paik, D.C.; Kim, S. Historical review: the field of protein methylation. Trends Biochem. Sci., 2007, 32(3), 146-152.
[http://dx.doi.org/10.1016/j.tibs.2007.01.006] [PMID: 17291768]
[8]
Greer, E.L.; Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet., 2012, 13(5), 343-357.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[9]
Lorton, B.M.; Shechter, D. Cellular consequences of arginine methylation. Cell. Mol. Life Sci., 2019, 76(15), 2933-2956.
[http://dx.doi.org/10.1007/s00018-019-03140-2] [PMID: 31101937]
[10]
Wu, Z.; Connolly, J.; Biggar, K.K. Beyond histones - the expanding roles of protein lysine methylation. FEBS J., 2017, 284(17), 2732-2744.
[http://dx.doi.org/10.1111/febs.14056] [PMID: 28294537]
[11]
Ryttersgaard, C.; Griffith, S.C.; Sawaya, M.R.; MacLaren, D.C.; Clarke, S.; Yeates, T.O. Crystal structure of human L-isoaspartyl methyltransferase. J. Biol. Chem., 2002, 277(12), 10642-10646.
[http://dx.doi.org/10.1074/jbc.M200229200] [PMID: 11792715]
[12]
Simms, S.A.; Stock, A.M.; Stock, J.B. Purification and characterization of the S-adenosylmethionine:glutamyl methyltransferase that modifies membrane chemoreceptor proteins in bacteria. J. Biol. Chem., 1987, 262(18), 8537-8543.
[PMID: 3298235]
[13]
Kusevic, D.; Kudithipudi, S.; Jeltsch, A. Substrate Specificity of the HEMK2 Protein Glutamine Methyltransferase and Identification of Novel Substrates. J. Biol. Chem., 2016, 291(12), 6124-6133.
[http://dx.doi.org/10.1074/jbc.M115.711952] [PMID: 26797129]
[14]
Kwiatkowski, S.; Seliga, A.K.; Vertommen, D.; Terreri, M.; Ishikawa, T.; Grabowska, I.; Tiebe, M.; Teleman, A.A.; Jagielski, A.K.; Veiga-da-Cunha, M.; Drozak, J. SETD3 protein is the actin-specific histidine N-methyltransferase. eLife, 2018, 7e, 37921.
[http://dx.doi.org/10.7554/eLife.37921] [PMID: 30526847]
[15]
Wilkinson, A.W.; Diep, J.; Dai, S.; Liu, S.; Ooi, Y.S.; Song, D.; Li, T-M.; Horton, J.R.; Zhang, X.; Liu, C.; Trivedi, D.V.; Ruppel, K.M.; Vilches-Moure, J.G.; Casey, K.M.; Mak, J.; Cowan, T.; Elias, J.E.; Nagamine, C.M.; Spudich, J.A.; Cheng, X.; Carette, J.E.; Gozani, O. SETD3 is an actin histidine methyltransferase that prevents primary dystocia. Nature, 2019, 565(7739), 372-376.
[http://dx.doi.org/10.1038/s41586-018-0821-8] [PMID: 30626964]
[16]
Webb, K.J.; Lipson, R.S.; Al-Hadid, Q.; Whitelegge, J.P.; Clarke, S.G. Identification of protein N-terminal methyltransferases in yeast and humans. Biochemistry, 2010, 49(25), 5225-5235.
[http://dx.doi.org/10.1021/bi100428x] [PMID: 20481588]
[17]
Stephenson, R.C.; Clarke, S. Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate. J. Biol. Chem., 1990, 265(27), 16248-16254.
[PMID: 2398053]
[18]
Johnson, P.; Harris, C.I.; Perry, S.V. 3-methylhistidine in actin and other muscle proteins. Biochem. J., 1967, 105(1), 361-370.
[http://dx.doi.org/10.1042/bj1050361] [PMID: 6056634]
[19]
Raftery, M.J.; Harrison, C.A.; Alewood, P.; Jones, A.; Geczy, C.L. Isolation of the murine S100 protein MRP14 (14 kDa migration-inhibitory-factor-related protein) from activated spleen cells: characterization of post-translational modifications and zinc binding. Biochem. J., 1996, 316(Pt 1), 285-293.
[http://dx.doi.org/10.1042/bj3160285] [PMID: 8645219]
[20]
Elzinga, M.; Collins, J.H. Amino acid sequence of a myosin fragment that contains SH-1, SH-2, and Ntau-methylhistidine. Proc. Natl. Acad. Sci. USA, 1977, 74(10), 4281-4284.
[http://dx.doi.org/10.1073/pnas.74.10.4281] [PMID: 270672]
[21]
Meyer, H.E.; Mayr, G.W. N pi-methylhistidine in myosin-light-chain kinase. Biol. Chem. Hoppe Seyler, 1987, 368(12), 1607-1611.
[http://dx.doi.org/10.1515/bchm3.1987.368.2.1607] [PMID: 3442604]
[22]
Webb, K.J.; Zurita-Lopez, C.I.; Al-Hadid, Q.; Laganowsky, A.; Young, B.D.; Lipson, R.S.; Souda, P.; Faull, K.F.; Whitelegge, J.P.; Clarke, S.G. A novel 3-methylhistidine modification of yeast ribosomal protein Rpl3 is dependent upon the YIL110W methyltransferase. J. Biol. Chem., 2010, 285(48), 37598-37606.
[http://dx.doi.org/10.1074/jbc.M110.170787] [PMID: 20864530]
[23]
Ning, Z.; Star, A.T.; Mierzwa, A.; Lanouette, S.; Mayne, J.; Couture, J.F.; Figeys, D. A charge-suppressing strategy for probing protein methylation. Chem. Commun. (Camb.), 2016, 52(31), 5474-5477.
[http://dx.doi.org/10.1039/C6CC00814C] [PMID: 27021271]
[24]
Kopple, J.D.; Swendseid, M.E. Evidence that histidine is an essential amino acid in normal and chronically uremic man. J. Clin. Invest., 1975, 55(5), 881-891.
[http://dx.doi.org/10.1172/JCI108016] [PMID: 1123426]
[25]
Parsons, M.E.; Ganellin, C.R. Histamine and its receptors. Br. J. Pharmacol., 2006, 147(Suppl. 1), S127-S135.
[http://dx.doi.org/10.1038/sj.bjp.0706440] [PMID: 16402096]
[26]
Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev., 2013, 93(4), 1803-1845.
[http://dx.doi.org/10.1152/physrev.00039.2012] [PMID: 24137022]
[27]
Kwiatkowski, S.; Kiersztan, A.; Drozak, J. Biosynthesis of Carnosine and Related Dipeptides in Vertebrates. Curr. Protein Pept. Sci., 2018, 19(8), 771-789.
[http://dx.doi.org/10.2174/1389203719666180226155657] [PMID: 29484990]
[28]
Hecel, A.; Wątły, J.; Rowińska-Żyrek, M.; Świątek-Kozłowska, J.; Kozłowski, H. Histidine tracts in human transcription factors: insight into metal ion coordination ability. J. Biol. Inorg. Chem., 2018, 23(1), 81-90.
[http://dx.doi.org/10.1007/s00775-017-1512-x] [PMID: 29218639]
[29]
Holliday, G.L.; Mitchell, J.B.; Thornton, J.M. Understanding the functional roles of amino acid residues in enzyme catalysis. J. Mol. Biol., 2009, 390(3), 560-577.
[http://dx.doi.org/10.1016/j.jmb.2009.05.015] [PMID: 19447117]
[30]
Bischoff, R.; Schlüter, H. Amino acids: chemistry, functionality and selected non-enzymatic post-translational modifications. J. Proteomics, 2012, 75(8), 2275-2296.
[http://dx.doi.org/10.1016/j.jprot.2012.01.041] [PMID: 22387128]
[31]
Dewick, P.M. Essentials of Organic Chemistry: For Students of Pharmacy, Medicinal Chemistry and Biological Chemistry; John Wiley & Sons: Chichester, 2006.
[32]
Reynolds, W.F.; Peat, I.R.; Freedman, M.H.; Lyerla, J.R., Jr Determination of the tautomeric form of the imidazole ring of L-histidine in basic solution by carbon-13 magnetic resonance spectroscopy. J. Am. Chem. Soc., 1973, 95(2), 328-331.
[http://dx.doi.org/10.1021/ja00783a006] [PMID: 4687673]
[33]
Bachovchin, W.W.; Roberts, J.D. Nitrogen-15 nuclear magnetic resonance spectroscopy. The state of histidine in the catalytic triad of. alpha.-lytic protease. Implications for the charge-relay mechanism of peptide-bond cleavage by serine proteases. J. Am. Chem. Soc., 1978, 100(26), 8041-8047.
[http://dx.doi.org/10.1021/ja00494a001]
[34]
Polgár, L. The catalytic triad of serine peptidases. Cell. Mol. Life Sci., 2005, 62(19-20), 2161-2172.
[http://dx.doi.org/10.1007/s00018-005-5160-x] [PMID: 16003488]
[35]
Fisher, Z.; Hernandez Prada, J.A.; Tu, C.; Duda, D.; Yoshioka, C.; An, H.; Govindasamy, L.; Silverman, D.N.; McKenna, R. Structural and kinetic characterization of active-site histidine as a proton shuttle in catalysis by human carbonic anhydrase II. Biochemistry, 2005, 44(4), 1097-1105.
[http://dx.doi.org/10.1021/bi0480279] [PMID: 15667203]
[36]
Liao, S.M.; Du, Q.S.; Meng, J.Z.; Pang, Z.W.; Huang, R.B. The multiple roles of histidine in protein interactions. Chem. Cent. J., 2013, 7(1), 44.
[http://dx.doi.org/10.1186/1752-153X-7-44] [PMID: 23452343]
[37]
Su, X.; Lin, Z.; Lin, H. The biosynthesis and biological function of diphthamide. Crit. Rev. Biochem. Mol. Biol., 2013, 48(6), 515-521.
[http://dx.doi.org/10.3109/10409238.2013.831023] [PMID: 23971743]
[38]
Uchida, K. Histidine and lysine as targets of oxidative modification. Amino Acids, 2003, 25(3-4), 249-257.
[http://dx.doi.org/10.1007/s00726-003-0015-y] [PMID: 14661088]
[39]
Uchida, K.; Stadtman, E.R. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal. Proc. Natl. Acad. Sci. USA, 1992, 89(10), 4544-4548.
[http://dx.doi.org/10.1073/pnas.89.10.4544] [PMID: 1584790]
[40]
Uchida, K.; Kawakishi, S. 2-Oxo-histidine as a novel biological marker for oxidatively modified proteins. FEBS Lett., 1993, 332(3), 208-210.
[http://dx.doi.org/10.1016/0014-5793(93)80632-5] [PMID: 8405458]
[41]
Puttick, J.; Baker, E.N.; Delbaere, L.T. Histidine phosphorylation in biological systems. Biochim. Biophys. Acta, 2008, 1784(1), 100-105.
[http://dx.doi.org/10.1016/j.bbapap.2007.07.008] [PMID: 17728195]
[42]
Attwood, P.V.; Muimo, R. The actions of NME1/NDPK-A and NME2/NDPK-B as protein kinases. Lab. Invest., 2018, 98(3), 283-290.
[http://dx.doi.org/10.1038/labinvest.2017.125] [PMID: 29200201]
[43]
Casino, P.; Miguel-Romero, L.; Marina, A. Visualizing autophosphorylation in histidine kinases. Nat. Commun., 2014, 5, 3258.
[http://dx.doi.org/10.1038/ncomms4258] [PMID: 24500224]
[44]
Hultquist, D.E.; Moyer, R.W.; Boyer, P.D. The preparation and characterization of 1-phosphohistidine and 3-phosphohistidine. Biochemistry, 1966, 5(1), 322-331.
[http://dx.doi.org/10.1021/bi00865a041] [PMID: 5938947]
[45]
Fuhs, S.R.; Meisenhelder, J.; Aslanian, A.; Ma, L.; Zagorska, A.; Stankova, M.; Binnie, A.; Al-Obeidi, F.; Mauger, J.; Lemke, G.; Yates, J.R., III; Hunter, T. Monoclonal 1- and 3-Phosphohistidine Antibodies: New Tools to Study Histidine Phosphorylation. Cell, 2015, 162(1), 198-210.
[http://dx.doi.org/10.1016/j.cell.2015.05.046] [PMID: 26140597]
[46]
Zschiedrich, C.P.; Keidel, V.; Szurmant, H. Molecular Mechanisms of Two-Component Signal Transduction. J. Mol. Biol., 2016, 428(19), 3752-3775.
[http://dx.doi.org/10.1016/j.jmb.2016.08.003] [PMID: 27519796]
[47]
Attwood, P.V. P-N bond protein phosphatases. Biochim. Biophys. Acta, 2013, 1834(1), 470-478.
[http://dx.doi.org/10.1016/j.bbapap.2012.03.001] [PMID: 22450136]
[48]
Fuhs, S.R.; Hunter, T. pHisphorylation: the emergence of histidine phosphorylation as a reversible regulatory modification. Curr. Opin. Cell Biol., 2017, 45, 8-16.
[http://dx.doi.org/10.1016/j.ceb.2016.12.010] [PMID: 28129587]
[49]
Fawaz, M.V.; Topper, M.E.; Firestine, S.M. The ATP-grasp enzymes. Bioorg. Chem., 2011, 39(5-6), 185-191.
[http://dx.doi.org/10.1016/j.bioorg.2011.08.004] [PMID: 21920581]
[50]
Dai, S.; Horton, J.R.; Woodcock, C.B.; Wilkinson, A.W.; Zhang, X.; Gozani, O.; Cheng, X. Structural basis for the target specificity of actin histidine methyltransferase SETD3. Nat. Commun., 2019, 10(1), 3541.
[http://dx.doi.org/10.1038/s41467-019-11554-6] [PMID: 31388018]
[51]
Guo, Q.; Liao, S.; Kwiatkowski, S.; Tomaka, W.; Yu, H.; Wu, G.; Tu, X.; Min, J.; Drozak, J.; Xu, C. Structural insights into SETD3-mediated histidine methylation on β-actin. eLife, 2019, 8e, 43676.
[http://dx.doi.org/10.7554/eLife.43676] [PMID: 30785395]
[52]
Cao, R.; Zhang, X.; Liu, X.; Li, Y.; Li, H. Molecular basis for histidine N1 position-specific methylation by CARNMT1. Cell Res., 2018, 28(4), 494-496.
[http://dx.doi.org/10.1038/s41422-018-0003-0] [PMID: 29463897]
[53]
Hofmann, K. The Chemistry of Heterocyclic Compounds. Imidazole and Its Derivatives, Part 1; Interscience publisher: New York, 1953.
[http://dx.doi.org/10.1002/9780470186541]
[54]
Paiva, A.C.; Juliano, L.; Boschcov, P. Ionization of methyl derivatives of imidazole, histidine, thyreotropin releasing factor, and related compounds. J. Am. Chem. Soc., 1976, 98(24), 7645-7648.
[http://dx.doi.org/10.1021/ja00440a033] [PMID: 825547]
[55]
Clarke, S.G. The ribosome: A hot spot for the identification of new types of protein methyltransferases. J. Biol. Chem., 2018, 293(27), 10438-10446.
[http://dx.doi.org/10.1074/jbc.AW118.003235] [PMID: 29743234]
[56]
Drozak, J.; Piecuch, M.; Poleszak, O.; Kozlowski, P.; Chrobok, L.; Baelde, H.J.; de Heer, E. UPF0586 Protein C9orf41 Homolog Is Anserine-producing Methyltransferase. J. Biol. Chem., 2015, 290(28), 17190-17205.
[http://dx.doi.org/10.1074/jbc.M115.640037] [PMID: 26001783]
[57]
Drozak, J.; Chrobok, L.; Poleszak, O.; Jagielski, A.K.; Derlacz, R. Molecular identification of carnosine N-methyltransferase as chicken histamine N-methyltransferase-like protein (hnmt-like). PLoS One, 2013, 8(5)e64805
[http://dx.doi.org/10.1371/journal.pone.0064805] [PMID: 23705015]
[58]
Ackerman, D.; Timpe, O.; Poller, K. Über das anserin, einen-neuen bestandteil der vogelmuskulatur. Hoppe Seylers Z. Physiol. Chem., 1929, 183, 1-10.
[http://dx.doi.org/10.1515/bchm2.1929.183.1-2.1]
[59]
Imamura, H. Chemie der schlangen: I. über die N-haltigen extraktivstoffe der schlangenmuskeln. J. Biochem., 1939, 30(3), 479-490.
[60]
Gershey, E.L.; Haslett, G.W.; Vidali, G.; Allfrey, V.G. Chemical studies of histone methylation. Evidence for the occurrence of 3-methylhistidine in avian erythrocyte histone fractions. J. Biol. Chem., 1969, 244(18), 4871-4877.
[PMID: 5824561]
[61]
Searle, J.M.; Westall, R.G. The occurrence of free methylhistidine in urine. Biochem. J., 1951, 48(4), 1.
[62]
Tallan, H.H.; Stein, W.H.; Moore, S. 3-Methylhistidine, a new amino acid from human urine. J. Biol. Chem., 1954, 206(2), 825-834.
[PMID: 13143045]
[63]
Laki, K.; Maruyama, K.; Kominz, D.R. Evidence for the interaction between tropomyosin and actin. Arch. Biochem. Biophys., 1962, 98, 323-330.
[http://dx.doi.org/10.1016/0003-9861(62)90190-X] [PMID: 14461659]
[64]
Asatoor, A.M.; Armstrong, M.D.; Armstrong, D. 3-methylhistidine, a component of actin. Biochem. Biophys. Res. Commun., 1967, 26(2), 168-174.
[http://dx.doi.org/10.1016/0006-291X(67)90229-X] [PMID: 6067661]
[65]
Johnson, P.; Perry, S.V. Biological activity and the 3-methylhistidine content of actin and myosin. Biochem. J., 1970, 119(2), 293-298.
[http://dx.doi.org/10.1042/bj1190293] [PMID: 4249861]
[66]
Huszar, G.; Elzinga, M. Homologous methylated and nonmethylated histidine peptides in skeletal and cardiac myosins. J. Biol. Chem., 1972, 247(3), 745-753.
[PMID: 5058224]
[67]
Raftery, M.J.; Geczy, C.L. Identification of posttranslational modifications and cDNA sequencing errors in the rat S100 proteins MRP8 and 14 using electrospray ionization mass spectrometry. Anal. Biochem., 1998, 258(2), 285-292.
[http://dx.doi.org/10.1006/abio.1997.2601] [PMID: 9570842]
[68]
Grabarse, W.; Mahlert, F.; Shima, S.; Thauer, R.K.; Ermler, U. Comparison of three methyl-coenzyme M reductases from phylogenetically distant organisms: unusual amino acid modification, conservation and adaptation. J. Mol. Biol., 2000, 303(2), 329-344.
[http://dx.doi.org/10.1006/jmbi.2000.4136] [PMID: 11023796]
[69]
Vijayasarathy, C.; Rao, B.S. Partial purification and characterisation of S-adenosylmethionine:protein-histidine N-methyltransferase from rabbit skeletal muscle. Biochim. Biophys. Acta, 1987, 923(1), 156-165.
[http://dx.doi.org/10.1016/0304-4165(87)90139-5] [PMID: 3801515]
[70]
Kalhor, H.R.; Niewmierzycka, A.; Faull, K.F.; Yao, X.; Grade, S.; Clarke, S.; Rubenstein, P.A. A highly conserved 3-methylhistidine modification is absent in yeast actin. Arch. Biochem. Biophys., 1999, 370(1), 105-111.
[http://dx.doi.org/10.1006/abbi.1999.1370] [PMID: 10496983]
[71]
Arnold, R.J.; Polevoda, B.; Reilly, J.P.; Sherman, F. The action of N-terminal acetyltransferases on yeast ribosomal proteins. J. Biol. Chem., 1999, 274(52), 37035-37040.
[http://dx.doi.org/10.1074/jbc.274.52.37035] [PMID: 10601260]
[72]
Lee, S.W.; Berger, S.J.; Martinović, S.; Pasa-Tolić, L.; Anderson, G.A.; Shen, Y.; Zhao, R.; Smith, R.D. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. Proc. Natl. Acad. Sci. USA, 2002, 99(9), 5942-5947.
[http://dx.doi.org/10.1073/pnas.082119899] [PMID: 11983894]
[73]
Cloutier, P.; Lavallée-Adam, M.; Faubert, D.; Blanchette, M.; Coulombe, B. A newly uncovered group of distantly related lysine methyltransferases preferentially interact with molecular chaperones to regulate their activity. PLoS Genet., 2013, 9(1)e1003210
[http://dx.doi.org/10.1371/journal.pgen.1003210] [PMID: 23349634]
[74]
Al-Hadid, Q.; Roy, K.; Munroe, W.; Dzialo, M.C.; Chanfreau, G.F.; Clarke, S.G. Histidine methylation of yeast ribosomal protein Rpl3p is required for proper 60S subunit assembly. Mol. Cell. Biol., 2014, 34(15), 2903-2916.
[http://dx.doi.org/10.1128/MCB.01634-13] [PMID: 24865971]
[75]
Al-Hadid, Q.; Roy, K.; Chanfreau, G.; Clarke, S.G. Methylation of yeast ribosomal protein Rpl3 promotes translational elongation fidelity. RNA, 2016, 22(4), 489-498.
[http://dx.doi.org/10.1261/rna.054569.115] [PMID: 26826131]
[76]
Dominguez, R.; Holmes, K.C. Actin structure and function. Annu. Rev. Biophys., 2011, 40, 169-186.
[http://dx.doi.org/10.1146/annurev-biophys-042910-155359] [PMID: 21314430]
[77]
Sussman, D.J.; Sellers, J.R.; Flicker, P.; Lai, E.Y.; Cannon, L.E.; Szent-Györgyi, A.G.; Fulton, C. Actin of Naegleria gruberi. Absence of N tau-methylhistidine. J. Biol. Chem., 1984, 259(11), 7349-7354.
[PMID: 6233284]
[78]
Schmitz, S.; Grainger, M.; Howell, S.; Calder, L.J.; Gaeb, M.; Pinder, J.C.; Holder, A.A.; Veigel, C. Malaria parasite actin filaments are very short. J. Mol. Biol., 2005, 349(1), 113-125.
[http://dx.doi.org/10.1016/j.jmb.2005.03.056] [PMID: 15876372]
[79]
Solomon, L.R.; Rubenstein, P.A. Studies on the role of actin’s N tau-methylhistidine using oligodeoxynucleotide-directed site-specific mutagenesis. J. Biol. Chem., 1987, 262(23), 11382-11388.
[PMID: 3301854]
[80]
Nyman, T.; Schüler, H.; Korenbaum, E.; Schutt, C.E.; Karlsson, R.; Lindberg, U. The role of MeH73 in actin polymerization and ATP hydrolysis. J. Mol. Biol., 2002, 317(4), 577-589.
[http://dx.doi.org/10.1006/jmbi.2002.5436] [PMID: 11955010]
[81]
Raghavan, M.; Lindberg, U.; Schutt, C. The use of alternative substrates in the characterization of actin-methylating and carnosine-methylating enzymes. Eur. J. Biochem., 1992, 210(1), 311-318.
[http://dx.doi.org/10.1111/j.1432-1033.1992.tb17423.x] [PMID: 1446680]
[82]
Herz, H.M.; Garruss, A.; Shilatifard, A. SET for life: biochemical activities and biological functions of SET domain-containing proteins. Trends Biochem. Sci., 2013, 38(12), 621-639.
[http://dx.doi.org/10.1016/j.tibs.2013.09.004] [PMID: 24148750]
[83]
Kim, D.W.; Kim, K.B.; Kim, J.Y.; Seo, S.B. Characterization of a novel histone H3K36 methyltransferase setd3 in zebrafish. Biosci. Biotechnol. Biochem., 2011, 75(2), 289-294.
[http://dx.doi.org/10.1271/bbb.100648] [PMID: 21307598]
[84]
Eom, G.H.; Kim, K.B.; Kim, J.H.; Kim, J.Y.; Kim, J.R.; Kee, H.J.; Kim, D.W.; Choe, N.; Park, H.J.; Son, H.J.; Choi, S.Y.; Kook, H.; Seo, S.B. Histone methyltransferase SETD3 regulates muscle differentiation. J. Biol. Chem., 2011, 286(40), 34733-34742.
[http://dx.doi.org/10.1074/jbc.M110.203307] [PMID: 21832073]
[85]
Chen, Z.; Yan, C.T.; Dou, Y.; Viboolsittiseri, S.S.; Wang, J.H. The role of a newly identified SET domain-containing protein, SETD3, in oncogenesis. Haematologica, 2013, 98(5), 739-743.
[http://dx.doi.org/10.3324/haematol.2012.066977] [PMID: 23065515]
[86]
Cheng, X.; Hao, Y.; Shu, W.; Zhao, M.; Zhao, C.; Wu, Y.; Peng, X.; Yao, P.; Xiao, D.; Qing, G.; Pan, Z.; Yin, L.; Hu, D.; Du, H.N. Cell cycle-dependent degradation of the methyltransferase SETD3 attenuates cell proliferation and liver tumorigenesis. J. Biol. Chem., 2017, 292(22), 9022-9033.
[http://dx.doi.org/10.1074/jbc.M117.778001] [PMID: 28442573]
[87]
Cooper, S.E.; Hodimont, E.; Green, C.M. A fluorescent bimolecular complementation screen reveals MAF1, RNF7 and SETD3 as PCNA-associated proteins in human cells. Cell Cycle, 2015, 14(15), 2509-2519.
[http://dx.doi.org/10.1080/15384101.2015.1053667] [PMID: 26030842]
[88]
Cohn, O.; Feldman, M.; Weil, L.; Kublanovsky, M.; Levy, D. Chromatin associated SETD3 negatively regulates VEGF expression. Sci. Rep., 2016, 6, 37115.
[http://dx.doi.org/10.1038/srep37115] [PMID: 27845446]
[89]
Dai, S.; Horton, J.R.; Wilkinson, A.W.; Gozani, O.; Zhang, X.; Cheng, X. An engineered variant of SETD3 methyltransferase alters target specificity from histidine to lysine methylation. J. Biol. Chem., 2020, 295(9), 2582-2589.
[http://dx.doi.org/10.1074/jbc.RA119.012319]]
[90]
Pires-Luís, A.S.; Vieira-Coimbra, M.; Vieira, F.Q.; Costa-Pinheiro, P.; Silva-Santos, R.; Dias, P.C.; Antunes, L.; Lobo, F.; Oliveira, J.; Gonçalves, C.S.; Costa, B.M.; Henrique, R.; Jerónimo, C. Expression of histone methyltransferases as novel biomarkers for renal cell tumor diagnosis and prognostication. Epigenetics, 2015, 10(11), 1033-1043.
[http://dx.doi.org/10.1080/15592294.2015.1103578] [PMID: 26488939]
[91]
Chiou, Y.Y.; Fu, S.L.; Lin, W.J.; Lin, C.H.; Lin, C.H. Proteomics analysis of in vitro protein methylation during Src-induced transformation. Electrophoresis, 2012, 33(3), 451-461.
[http://dx.doi.org/10.1002/elps.201100280] [PMID: 22228245]
[92]
Petrossian, T.C.; Clarke, S.G. Uncovering the human methyltransferasome. . Mol. Cell. Proteomics, 2011, 10(1), M110.000976..
[http://dx.doi.org/10.1074/mcp.M110.000976]
[93]
Trinkle-Mulcahy, L. Recent advances in proximity-based labeling methods for interactome mapping. F1000 Res., 2019, 8, F1000.
[http://dx.doi.org/10.12688/f1000research.16903.1]
[94]
Diep, J.; Ooi, Y.S.; Wilkinson, A.W.; Peters, C.E.; Foy, E.; Johnson, J.R.; Zengel, J.; Ding, S.; Weng, K.F.; Laufman, O.; Jang, G.; Xu, J.; Young, T.; Verschueren, E.; Kobluk, K.J.; Elias, J.E.; Sarnow, P.; Greenberg, H.B.; Hüttenhain, R.; Nagamine, C.M.; Andino, R.; Krogan, N.J.; Gozani, O.; Carette, J.E. Enterovirus pathogenesis requires the host methyltransferase SETD3. Nat. Microbiol., 2019, 4(12), 2523-2537.
[http://dx.doi.org/10.1038/s41564-019-0551-1] [PMID: 31527793]
[95]
Krzysik, B.; Vergnes, J.P.; McManus, I. Enzymatic methylation of skeletal muscle contractile proteins. Arch. Biochem. Biophys., 1971, 146(1), 34-45.
[http://dx.doi.org/10.1016/S0003-9861(71)80038-3] [PMID: 5144035]
[96]
Cass, K.A.; Clark, E.B.; Rubenstein, P.A. Is the onset of actin histidine methylation under development control in the chick embryo. Arch. Biochem. Biophys., 1983, 225(2), 731-739.
[http://dx.doi.org/10.1016/0003-9861(83)90084-X] [PMID: 6625608]
[97]
Biggar, K.K.; Li, S.S. Non-histone protein methylation as a regulator of cellular signalling and function. Nat. Rev. Mol. Cell Biol., 2015, 16(1), 5-17.
[http://dx.doi.org/10.1038/nrm3915] [PMID: 25491103]
[98]
Schutt, C.E.; Myslik, J.C.; Rozycki, M.D.; Goonesekere, N.C.; Lindberg, U. The structure of crystalline profilin-beta-actin. Nature, 1993, 365(6449), 810-816.
[http://dx.doi.org/10.1038/365810a0] [PMID: 8413665]
[99]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[100]
Cedervall, P.E.; Dey, M.; Li, X.; Sarangi, R.; Hedman, B.; Ragsdale, S.W.; Wilmot, C.M. Structural analysis of a Ni-methyl species in methyl-coenzyme M reductase from Methanothermobacter marburgensis. J. Am. Chem. Soc., 2011, 133(15), 5626-5628.
[http://dx.doi.org/10.1021/ja110492p] [PMID: 21438550]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy