Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

General Research Article

Rapid Determining Contents of the Rhubarb Anthraquinones Compounds by Support Vector Machine Modeling based on Near Infrared Spectra

Author(s): Linqi Liu, JInhua Luo, Chenxi Zhao*, Bingxue Zhang, Wei Fan and Fuyou Du

Volume 17, Issue 3, 2021

Published on: 17 March, 2020

Page: [396 - 407] Pages: 12

DOI: 10.2174/1573411016666200317111412

Price: $65

Abstract

Background: Measuring medicinal compounds to evaluate their quality and efficacy has been recognized as a useful approach in treatment. Rhubarb anthraquinones compounds (mainly including aloe-emodin, rhein, emodin, chrysophanol, and physcion) are the main effective components in purgating drug. In the current Chinese Pharmacopoeia, the total anthraquinones content is designated as its quantitative quality and control index, while the content of each compound has not been specified.

Methods: On the basis of forty rhubarb samples, the correlation models between the near infrared spectra and UPLC analysis data were constructed using support vector machine (SVM) and partial least square (PLS) methods, according to the Kennard and Stone algorithm for dividing the calibration/ prediction datasets. Good models mean they have high correlation coefficients (R2) and low root mean squared error of prediction (RMSEP) values.

Results: The models constructed by SVM have much better performance than those by PLS methods. The SVM models have high R2 of 0.8951, 0.9738, 0.9849, 0.9779, 0.9411, and 0.9862 that correspond to aloe-emodin, rhein, emodin, chrysophanol, physcion and total anthraquinones contents, respectively. The corresponding RMSEPs are 0.3592, 0.4182, 0.4508, 0.7121, 0.8365, and 1.7910, respectively. 75% of the predicted results have relative differences being lower than 10%. As for rhein and total anthraquinones, all of the predicted results have relative differences being lower than 10%.

Conclusion: The non-linear models constructed by SVM showed good performances with predicted values close to the experimental values. This can perform the rapid determination of the main medicinal ingredients in rhubarb medicinal materials.

Keywords: Near infrared spectroscopy, partial least square, rapid determining, rhubarb anthraquinones compounds, support vector machine, ultra performance liquid chromatography.

Graphical Abstract

[1]
Tartaglia, A.; Locatelli, M.; Samanidou, V. Trends in the analysis of biopharmaceuticals by HPLC. Curr. Anal. Chem., 2020, 16, 52-58.
[http://dx.doi.org/10.2174/1573411015666181205114810]
[2]
Karimi-Maleh, H.; Arotiba, O.A. Simultaneous determination of cholesterol, ascorbic acid and uric acid as three essential biological compounds at a carbon paste electrode modified with copper oxide decorated reduced graphene oxide nanocomposite and ionic liquid. J. Colloid Interface Sci., 2020, 560, 208-212.
[http://dx.doi.org/10.1016/j.jcis.2019.10.007] [PMID: 31670018]
[3]
Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China 2015; China Medical Science and Technology Press: Beijing, 2015, Vol. I, p. 1.
[4]
Ahmad, B.S.; Mir, M.R.; Parrah, J.D.; Tiwari, B.K. Rhubarb: The wondrous drug. A review. Int. J. Pharma Bio Sci., 2013, 3, 228-238.
[5]
Liu, L.Q.; Tan, X.Y.; Zhao, C.X.; Wu, H.J. Impact of compatibility ratios of rhubarb-gardenia herbal pair and extraction techniques on anthraquinone dissolution. Chin. Tradit. Herbal Drugs, 2017, 48(2), 283-287.
[6]
Zheng, Q.X.; Wu, H.F.; Guo, J.; Nan, H.J.; Chen, S.L.; Yang, J.S.; Xu, X.D. Review of rhubarbs: Chemistry and pharmacology. Chin. Herb. Med., 2013, 5(1), 9-32.
[7]
Kuo, Y.C.; Sun, C.M.; Ou, J.C.; Tsai, W.J. A tumor cell growth inhibitor from Polygonum hypoleucum Ohwi. Life Sci., 1997, 61(23), 2335-2344.
[http://dx.doi.org/10.1016/S0024-3205(97)00937-5] [PMID: 9408056]
[8]
Chen, Y.C.; Shen, S.C.; Lee, W.R.; Hsu, F.L.; Lin, H.Y.; Ko, C.H.; Tseng, S.W.; Shi-WenTseng, S.W. Emodin induces apoptosis in human promyeloleukemic HL-60 cells accompanied by activation of caspase 3 cascade but independent of reactive oxygen species production. Biochem. Pharmacol., 2002, 64(12), 1713-1724.
[http://dx.doi.org/10.1016/S0006-2952(02)01386-2 PMID: 12445860]
[9]
Ding, L.; Zou, Y.; Li, Z.Y. Pharmacology and clinical application of rhubarb. Chin. J. Mod. Drug Appl., 2011, 5, 165-166.
[10]
Zhao, Y.L.; Wang, J.B.; Zhou, G.D.; Shan, L.M.; Xiao, X.H. Investigations of free anthraquinones from rhubarb against alpha-naphthylisothiocyanate-induced cholestatic liver injury in rats. Basic Clin. Pharmacol. Toxicol., 2009, 104(6), 463-469.
[http://dx.doi.org/10.1111/j.1742-7843.2009.00389.x PMID: 19389047]
[11]
Liu, Q.; Zhang, X.L.; Tao, R.Y.; Niu, Y.J.; Chen, X.G.; Tian, J.Y.; Ye, F. Rhein, an inhibitor of adipocyte differentiation and adipogenesis. J. Asian Nat. Prod. Res., 2011, 13(8), 714-723.
[http://dx.doi.org/10.1080/10286020.2011.586341] [PMID: 21751839]
[12]
Ge, J.H.; Liu, X.H.; Xu, H.; Xu, D.Y.; Bai, F.P. Identification of different varieties of Rhei Radix et Rhizoma based on chemical analysis. Zhongguo Zhongyao Zazhi, 2015, 40(12), 2309-2313.
[PMID: 26591515]
[13]
Wang, J.; Zhang, X.; Xiao, X.; Chu, X.; Zhou, C.; Jin, C.; Yan, D. Rationality of commercial specification of rhubarb based on chemical analysis. Zhongguo Zhongyao Zazhi, 2010, 35(4), 470-476.
[PMID: 20450046]
[14]
Lv, H.Y.; Zhao, C.X.; Wu, H.; Liang, Y.Z.; Li, Q. Investigation of relationship between the antioxidant capacity and free anthraquinone compounds of rhubarb. Chin. Tradit. Herbal Drugs, 2010, 41(3), 412-415.
[15]
Dong, J.W.; Cai, L.; Fang, Y.S.; Duan, W.H. Simultaneous, simple and rapid determination of five bioactive free anthraquinones in Radix et Rhizoma Rhei by quantitative 1H NMR. J. Braz. Chem. Soc., 2016, 27(11), 2120-2126.
[16]
Dai, H.; Chen, Z.; Shang, B.; Chen, Q. Identification and quantification of four anthraquinones in rhubarb and its preparations by gas chromatography-mass spectrometry. J. Chromatogr. Sci., 2018, 56(3), 195-201.
[http://dx.doi.org/10.1093/chromsci/bmx103] [PMID: 29206919]
[17]
United States Food Drug Administration (FDA). Guidance for industry PAT-A framework for innovative pharmaceutical manufacturing and quality assurance; FDA, 2004.
[18]
Moros, J.; Garrigues, S.De; la Guardia, M. Vibrational spectroscopy provides a green tool for multi-component analysis. TRAC Trend. Anal. Chem., 2010, 29, 578-591.
[19]
Roggo, Y.; Chalus, P.; Maurer, L.; Lema-Martinez, C.; Edmond, A.; Jent, N. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal., 2007, 44(3), 683-700.
[http://dx.doi.org/10.1016/j.jpba.2007.03.023] [PMID: 17482417]
[20]
da Silva, N.C.; Honorato, R.S.; Pimentel, M.F.; Garrigues, S.; Cervera, M.L.; de la Guardia, M. Guardia. Near infrared spectroscopy detection and quantification of herbal medicines adulterated with sibutramine. J. Forensic Sci., 2015, 60(5), 1199-1205.
[http://dx.doi.org/10.1111/1556-4029.12884] [PMID: 26260573]
[21]
Guo, Y.; Ni, Y.; Kokot, S. Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2016, 153, 79-86.
[http://dx.doi.org/10.1016/j.saa.2015.08.006] [PMID: 26296251]
[22]
Yun, Y.H.; Wang, W.T.; Deng, B.C.; Lai, G.B.; Liu, X.B.; Ren, D.B.; Liang, Y.Z.; Fan, W.; Xu, Q.S. Using variable combination population analysis for variable selection in multivariate calibration. Anal. Chim. Acta, 2015, 862, 14-23.
[http://dx.doi.org/10.1016/j.aca.2014.12.048] [PMID: 25682424]
[23]
Yun, Y.H.; Liang, Y.Z.; Xie, G.X.; Li, H.D.; Cao, D.S.; Xu, Q.S. A perspective demonstration on the importance of variable selection in inverse calibration for complex analytical systems. Analyst (Lond.), 2013, 138(21), 6412-6421.
[http://dx.doi.org/10.1039/c3an00714f] [PMID: 24003437]
[24]
Li, H.; Liang, Y.; Xu, Q.; Cao, D. Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. Anal. Chim. Acta, 2009, 648(1), 77-84.
[http://dx.doi.org/10.1016/j.aca.2009.06.046] [PMID: 19616692]
[25]
Wang, W.T.; Yun, Y.H.; Deng, B.C.; Fan, W.; Liang, Y.Z. Iteratively variable subset optimization for multivariate calibration. RSC Advances, 2015, 5, 95771-98780.
[http://dx.doi.org/10.1039/C5RA08455E]
[26]
Li, H.D.; Liang, Y.Z.; Long, X.X.; Yun, Y.H.; Xu, Q.S. The continuity of sample complexity and its relationship to multivariate calibration: A general perspective on first-order calibration of spectral data in analytical chemistry. Chemom. Intell. Lab., 2013, 122, 23-30.
[http://dx.doi.org/10.1016/j.chemolab.2013.01.003]
[27]
Zhang, C.H.; Yun, Y.H.; Fan, W.; Liang, Y.Z.; Yu, Y.; Tang, W.X. Rapid analysis of polysaccharides contents in Glycyrrhiza by near infrared spectroscopy and chemometrics. Int. J. Biol. Macromol., 2015, 79, 983-987.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.06.025] [PMID: 26093314]
[28]
Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Verlag: New York, 1995.
[http://dx.doi.org/10.1007/978-1-4757-2440-0]
[29]
Chang, C.C.; Lin, C.J. LIBSVM: A library for support vector machines. ACM Trans. Intell. Syst. Technol., 2011, 2, 1-27.
[http://dx.doi.org/10.1145/1961189.1961199]
[30]
Kennard, R.W.; Stone, L.A. Computer aided design of experiments. Technometrics, 1969, 11, 137-148.
[http://dx.doi.org/10.1080/00401706.1969.10490666]
[31]
Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst., 1987, 2, 37-52.
[http://dx.doi.org/10.1016/0169-7439(87)80084-9]
[32]
Cortes, C.; Vapnik, V. Support-Vector networks. Mach. Learn., 1995, 20, 273-297.
[http://dx.doi.org/10.1007/BF00994018]
[33]
Jerry Workman, J.; Weyer, L. Practical guide to interpretive near-infrared spectroscopy; CRC Press, 2007.
[http://dx.doi.org/10.1201/9781420018318]
[34]
Karimi-Maleh, H.; Karimi, F.; Alizadeh, M.; Sanati, A.L. Electrochemical sensors, a bright future in the fabrication of portable kits in analytical systems. Chem. Rec., 2019, 20, 1-12.
[http://dx.doi.org/10.1002/tcr.201900092] [PMID: 31845511]
[35]
Zhan, H.; Fang, J.; Wu, H.W.; Yang, H.J.; Li, H.; Wang, Z.J.; Yang, B.; Tang, L.Y.; Fu, M.H. Rapid determination of total content of five major anthraquinones in Rhei Radix et Rhizoma by NIR spectroscopy. Chin. Herb. Med., 2017, 9(3), 250-257.
[http://dx.doi.org/10.1016/S1674-6384(17)60101-1]
[36]
Sun, W.; Zhang, X.; Zhang, Z.; Zhu, R. Data fusion of near-infrared and mid-infrared spectra for identification of rhubarb. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2017, 171, 72-79.
[http://dx.doi.org/10.1016/j.saa.2016.07.039] [PMID: 27487576]
[37]
Chen, Q.; Zhao, J.; Fang, C.H.; Wang, D. Feasibility study on identification of green, black and Oolong teas using near-infrared reflectance spectroscopy based on support vector machine (SVM). Spectrochim. Acta A Mol. Biomol. Spectrosc., 2007, 66(3), 568-574.
[http://dx.doi.org/10.1016/j.saa.2006.03.038] [PMID: 16859975]
[38]
Yu, H.Y.; Niu, X.Y.; Lin, H.J.; Ying, Y.B.; Li, B.B.; Pan, X.X. A feasibility study on on-line determination of rice wine composition by Vis-NIR spectroscopy and least squares support vector machines. Food Chem., 2009, 113(1), 291-296.
[http://dx.doi.org/10.1016/j.foodchem.2008.06.083]
[39]
Zhang, J.Y.; Liu, S.L.; Wang, Y. Gene association study with SVM, MLP and cross-validation for the diagnosis of diseases. Prog. Nat. Sci., 2008, 18(6), 741-750.
[http://dx.doi.org/10.1016/j.pnsc.2007.11.022]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy