Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Visual Target Tracking via Online Reliability Evaluation and Feature Selection in the Framework of Correlation Filtering

Author(s): Li Wei, Meng Ding*, Yun-Feng Cao and Xu Zhang

Volume 13, Issue 7, 2020

Page: [1068 - 1077] Pages: 10

DOI: 10.2174/2352096513666200316151351

Price: $65

Abstract

Background: Although correlation filtering is one of the most successful visual tracking frameworks, it is prone to drift caused by several factors such as occlusion, deformation and rotation.

Objective: In order to improve the performance of correlation filter-based trackers, this paper proposes a visual tracking method via online reliability evaluation and feature selection.

Methods: The main contribution of this paper is to introduce three schemes in the framework of correlation filtering. Firstly, we present an online reliability evaluation to assess the current tracking result by using the method of adaptive threshold segmentation of response map. Secondly, the proposed tracker updates the regression model of correlation filter according to the assessment result. Thirdly, when the tracking result based on a handcrafted feature is not reliable enough, we propose a feature selection scheme that autonomously replaces a handcrafted feature used in the traditional correlation filter-based trackers with a deep convolutional feature that can re-capture the target by its powerful discriminant ability.

Results: On OTB-2013datasets, the Precision rate and Success rate of the proposed tracking algorithm can reach 84.8% and 62.5%, respectively. Moreover, the tracking speed of proposed algorithm is 19 frame per second.

Conclusion: The quantitative and qualitative experimental results both demonstrate that the proposed algorithm performed favorably against nine state-of-the-art algorithms.

Keywords: Visual tracking, correlation filtering, reliability assessment, feature selection, appearance model, generative trackers.

Graphical Abstract

[1]
K. Zhang, L. Zhang, and M.H. Yang, "Fast compressive tracking", IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 10, pp. 2002-2015, 2014.
[http://dx.doi.org/10.1109/TPAMI.2014.2315808 ] [PMID: 26352631]
[2]
B. Babenko, M.H. Yang, and S. Belongie, "visual tracking with online multiple instance learning", In: IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 983-990.
[http://dx.doi.org/10.1109/CVPR.2009.5206737]
[3]
Z. Kalal, K. Mikolajczyk, and J. Matas, "Tracking-Learning-Detection", IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 7, pp. 1409-1422, 2012.
[http://dx.doi.org/10.1109/TPAMI.2011.239 ] [PMID: 22156098]
[4]
Y. Fang, C. Wang, and W. Yao, "On-road vehicle tracking using part-based particle filter", IEEE Trans. Intell. Transp. Syst., vol. 20, no. 12, pp. 4538-4552, 2019.
[http://dx.doi.org/10.1109/TITS.2018.2888500]
[5]
D.A. Ross, J. Lim, R.S. Lin, and M.H. Yang, "Incremental learning for robust visual tracking", Int. J. Comput. Vis., vol. 77, no. 1-3, pp. 125-141, 2008.
[http://dx.doi.org/10.1007/s11263-007-0075-7]
[6]
C.L. Bao, Y. Wu, and H.B. Ling, "Real time robust L1 tracker using accelerated proximal gradient approach", In: IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 1830-1837.
[7]
L. Sevilla-Lara, and E. Learned-Miller, "Distribution fields for tracking", In: IEEE Conference on Computer Vision and Pattern Recognition, Providence, USA, 2012, pp. 1910-1917.
[http://dx.doi.org/10.1109/CVPR.2012.6247891]
[8]
Z. Ji, K. Feng, and Y. Qian, "Part-based visual tracking via structural support correlation filter", J. Vis. Commun. Image Represent., vol. 64, no. 102602, 2019.
[9]
F. Mustansar, M. Arif, and J. Sajid, "Handcrafted and deep trackers: Recent visual object tracking approaches and trends", ACM Comput. Surv., vol. 52, no. 2, pp. 1-44, 2019.
[http://dx.doi.org/10.1145/3309665]
[10]
P.X. Li, D. Wang, and L.J. Wang, "Deep visual tracking: Review and experimental comparison", Pattern Recognit., vol. 76, pp. 323-338, 2018.
[http://dx.doi.org/10.1016/j.patcog.2017.11.007]
[11]
M. Danelljan, G. Häger, and F.S. Khan, "Convolutional features for correlation filter based visual tracking", In: IEEE International Conference on Computer Vision Workshop (ICCVW), Santiago, Chile, 2015, pp. 621-629.
[http://dx.doi.org/10.1109/ICCVW.2015.84]
[12]
I. Matthews, T. Ishikawa, and S. Baker, "The template update problem", IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 6, pp. 810-815, 2004.
[http://dx.doi.org/10.1109/TPAMI.2004.16 ] [PMID: 18579941]
[13]
D.S. Bolme, J.R. Beveridge, and B.A. Draper, "Visual object tracking using adaptive correlation filters", In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 2010, pp. 2544-2550.
[http://dx.doi.org/10.1109/CVPR.2010.5539960 ]
[14]
J.F. Henriques, R. Caseiro, P. Martins, and J. Batista, "High-speed tracking with kernelized correlation filters", IEEE Trans. Pattern Anal. Mach. Intell., vol. 37, no. 3, pp. 583-596, 2015.
[http://dx.doi.org/10.1109/TPAMI.2014.2345390 ] [PMID: 26353263]
[15]
M. Danelljan, F.S. Khan, and M. Felsberg, "adaptive color attributes for real-time visual tracking In:", IEEE Conference on Computer Vision and Pattern Recognition, Columbus, USA, 2014pp. 1090-1097
[http://dx.doi.org/10.1109/CVPR.2014.143]
[16]
M. Danelljan, G. Hager, F.S. Khan, and M. Felsberg, "Discriminative scale space tracking", IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 8, pp. 1561-1575, 2017.
[http://dx.doi.org/10.1109/TPAMI.2016.2609928 ] [PMID: 27654137]
[17]
Y. Li, and J. Zhu, "A scale adaptive kernel correlation filter tracker with feature integration", In: European Conference on Computer Vision, Zurich, Switzerland , 2014, pp. 254-265.
[18]
N. Dalal, and B. Triggs, "Histograms of oriented gradients for human detection", In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, USA, 2005, pp. 886-893.
[http://dx.doi.org/10.1109/CVPR.2005.177]
[19]
K. Zhang, Q. Liu, Y. Wu, and M-H. Yang, "Robust visual tracking via convolutional networks without training, IEEE Trans. Image Process", vol. 25, no. 4, pp. 1779-1792, 2016,
[PMID: 26890870]
[20]
X. Wang, Z. Hou, and W. Yu, "Robust visual tracking via multiscale deep sparse networks", Opt. Eng., vol. 56, no. 4, 2017.
[http://dx.doi.org/10.1117/1.OE.56.4.043107]
[21]
C. Ma, J.B. Huang, and X.K. Yang, "Hierarchical convolutional features for visual tracking", In: IEEE Int. Conf. Comput. Vis., Santiago, Chile, USA, 2015, pp. 3074-3082.
[http://dx.doi.org/10.1109/ICCV.2015.352]
[22]
J. Zhang, S. Ma, and S. Sclaroff, "Meem: Robust tracking via multiple experts using entropy minimization", In: European Conference on Computer Vision, Zurich, Switzerland, 2014, pp. 188-203.
[http://dx.doi.org/10.1007/978-3-319-10599-4_13]
[23]
W. Zhong, H. Lu, and M.H. Yang, "Robust object tracking via sparsity-based collaborative model", In: IEEE Conference on Computer Vision and Pattern Recognition, 2012 Providence, USA, pp. 1838-1845.
[http://dx.doi.org/10.1109/CVPR.2012.6247882]
[24]
N. Otsu, "A threshold selection method from gray-level histograms", IEEE Trans. Syst. Man Cybern., vol. 9, no. 1, pp. 62-66, 1979.
[http://dx.doi.org/10.1109/TSMC.1979.4310076]
[25]
A. Krizhevsky, I. Sutskever, and G.E. Hinton, "Image net classification with deep convolutional neural networks", Commun. ACM, vol. 60, no. 6, pp. 84-90, 2017.
[http://dx.doi.org/10.1145/3065386]
[26]
K. Simonyan, and A. Zisserman, Very deep convolutional networks for large-scale image recognition, 2014.https://arxiv.org/abs/1409.1556
[27]
P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan, "Object detection with discriminatively trained part-based models", IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, no. 9, pp. 1627-1645, 2010.
[http://dx.doi.org/10.1109/TPAMI.2009.167 ] [PMID: 20634557]
[28]
J. Deng, W. Dong, and R. Socher, "ImageNet: A large-scale hierarchical image database", 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, USA, 2009, pp. 248-255.
[http://dx.doi.org/10.1109/CVPR.2009.5206848]
[29]
A. Vedaldi, and K. Lenc, "MatConvNet: Convolutional Neural Networks for MATLAB", In: MM ’15: Proceedings of the 23rd ACM international conference on Multimedia, 2015, pp. 689-692.
[http://dx.doi.org/10.1145/2733373.2807412]
[30]
Y. Wu, J. Lim, and M.H. Yang, "Online object tracking: A benchmark", In: IEEE Conference on Computer Vision and Pattern Recognition Portland, OR, USA, 2013, pp. 2411-2418.
[http://dx.doi.org/10.1109/CVPR.2013.312 ]
[31]
L. Bertinetto, J. Valmadre, and S. Golodetz, "Staple: complementary learners for real-time tracking", In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016, pp. 1401-1409.
[http://dx.doi.org/10.1109/CVPR.2016.156]
[32]
L. Bertinetto, J. Valmadre, and J.F. Henriques, "Fully-convolutional siamese networks for object tracking", In: The European Conference on Computer Vision Workshops, Amsterdam, The Netherlands, 2016, pp. 850-865.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy