Mini-Review Article

一氧化氮和硫化氢:呼吸系统中的配对

卷 27, 期 42, 2020

页: [7136 - 7148] 页: 13

弟呕挨: 10.2174/0929867327666200310120550

价格: $65

摘要

一氧化氮(NO)在国际上被认为是在生理和致病条件下参与呼吸道多种功能的信号分子。硫化氢(H2S)最近也被认为是一种新型的气体传输器,其功能类似于NO。 取决于它们各自的浓度,这两种分子都协同或拮抗作为信号或破坏促进剂。 然而,现有证据表明,NO和H2S之间复杂的生物学联系涉及多种途径,并取决于呼吸道的作用部位以及实验条件。 这项审查将提供生理和病理过程中这两种气体递质的最新情况。

关键词: 一氧化氮,H2S,生物标志物,残疾,结果,病理过程。

[1]
Mir, J.M.; Maurya, R.C. A gentle introduction to gasotransmitters with special reference to nitric oxide: biological and chemical im-plications. Rev. Inorg. Chem., 2018, 38(4), 193-220.
[http://dx.doi.org/10.1515/revic-2018-0011]
[2]
Yang, G.; Sener, A.; Ji, Y.; Pei, Y.; Pluth, M.D. Gasotransmitters in biology and medicine: molecular mechanisms and drug targets. Oxid. Med. Cell. Longev., 2016, 20164627308
[http://dx.doi.org/10.1155/2016/4627308] [PMID: 27777644]
[3]
Polhemus, D.J.; Lefer, D.J. Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ. Res., 2014, 114(4), 730-737.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.300505] [PMID: 24526678]
[4]
Bryan, N.S. Functional nitric oxide nutrition to combat cardiovascular disease. Curr. Atheroscler. Rep., 2018, 20(5), 21.
[http://dx.doi.org/10.1007/s11883-018-0723-0] [PMID: 29550903]
[5]
Bryan, N.S.; Lefer, D.J. Update on gaseous signaling molecules nitric oxide and hydrogen sulfide: strategies to capture their functional activity for human therapeutics. Mol. Pharmacol., 2019, 96(2), 127-127.
[http://dx.doi.org/10.1124/mol.118.113910err] [PMID: 31235636]
[6]
Wu, D.; Hu, Q.; Zhu, D. An update on hydrogen sulfide and nitric oxide interactions in the cardiovascular system. Oxid. Med. Cell. Longev., 2018, 20184579140
[http://dx.doi.org/10.1155/2018/4579140] [PMID: 30271527]
[7]
Li, L.; Hsu, A.; Moore, P.K. Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation--a tale of three gases! Pharmacol. Ther., 2009, 123(3), 386-400.
[http://dx.doi.org/10.1016/j.pharmthera.2009.05.005] [PMID: 19486912]
[8]
Lo Faro, M.L.; Fox, B.; Whatmore, J.L.; Winyard, P.G.; Whiteman, M. Hydrogen sulfide and nitric oxide interactions in inflammation. Nitric Oxide, 2014, 41, 38-47.
[http://dx.doi.org/10.1016/j.niox.2014.05.014] [PMID: 24929214]
[9]
Maniscalco, M.; Sofia, M.; Pelaia, G. Nitric oxide in upper airways inflammatory diseases. Inflamm. Res., 2007, 56(2), 58-69.
[http://dx.doi.org/10.1007/s00011-006-6111-1] [PMID: 17431742]
[10]
Hibbs, J.B. Jr.; Taintor, R.R.; Vavrin, Z. Macrophage cytotoxicity: role for L-arginine deiminase and imino nitrogen oxidation to nitrite. Science, 1987, 235(4787), 473-476.
[http://dx.doi.org/10.1126/science.2432665] [PMID: 2432665]
[11]
Duncan, C.; Dougall, H.; Johnston, P.; Green, S.; Brogan, R.; Leifert, C.; Smith, L.; Golden, M.; Benjamin, N. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med., 1995, 1(6), 546-551.
[http://dx.doi.org/10.1038/nm0695-546] [PMID: 7585121]
[12]
Moncada, S.; Palmer, R.M.; Higgs, E.A. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev., 1991, 43(2), 109-142.
[PMID: 1852778]
[13]
Choate, J.K.; Danson, E.J.; Morris, J.F.; Paterson, D.J. Peripheral vagal control of heart rate is impaired in neuronal NOS knockout mice. Am. J. Physiol. Heart Circ. Physiol., 2001, 281(6), H2310-H2317.
[http://dx.doi.org/10.1152/ajpheart.2001.281.6.H2310] [PMID: 11709397]
[14]
Xu, K.Y.; Huso, D.L.; Dawson, T.M.; Bredt, D.S.; Becker, L.C. Nitric oxide synthase in cardiac sarcoplasmic reticulum. Proc. Natl. Acad. Sci. USA, 1999, 96(2), 657-662.
[http://dx.doi.org/10.1073/pnas.96.2.657] [PMID: 9892689]
[15]
Wilcox, J.N.; Subramanian, R.R.; Sundell, C.L.; Tracey, W.R.; Pollock, J.S.; Harrison, D.G.; Marsden, P.A. Expression of multiple isoforms of nitric oxide synthase in normal and atherosclerotic vessels. Arterioscler. Thromb. Vasc. Biol., 1997, 17(11), 2479-2488.
[http://dx.doi.org/10.1161/01.ATV.17.11.2479] [PMID: 9409218]
[16]
Rocha, B.S.; Gago, B.; Pereira, C.; Barbosa, R.M.; Bartesaghi, S.; Lundberg, J.O.; Radi, R.; Laranjinha, J. Dietary nitrite in nitric oxide biology: a redox interplay with implications for pathophysiology and therapeutics. Curr. Drug Targets, 2011, 12(9), 1351-1363.
[http://dx.doi.org/10.2174/138945011796150334] [PMID: 21443473]
[17]
Lundberg, J.O.; Weitzberg, E.; Cole, J.A.; Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol., 2004, 2(8), 681-681.
[http://dx.doi.org/10.1038/nrmicro982]
[18]
Morse, J.W.; Millero, F.J.; Cornwell, J.C.; Rickard, D. The chemistry of the hydrogen-sulfide and iron sulfide systems in natural-waters. Earth Sci. Rev., 1987, 24(1), 1-42.
[http://dx.doi.org/10.1016/0012-8252(87)90046-8]
[19]
Nagy, P.; Pálinkás, Z.; Nagy, A.; Budai, B.; Tóth, I.; Vasas, A. Chemical aspects of hydrogen sulfide measurements in physiological samples. Biochim. Biophys. Acta, 2014, 1840(2), 876-891.
[http://dx.doi.org/10.1016/j.bbagen.2013.05.037] [PMID: 23769856]
[20]
Benchoam, D.; Cuevasanta, E.; Möller, M.N.; Alvarez, B. Hydrogen sulfide and persulfides oxidation by biologically relevant oxidizing species. Antioxidants, 2019, 8(2)E48
[http://dx.doi.org/10.3390/antiox8020048] [PMID: 30813248]
[21]
Łowicka, E.; Bełtowski, J. Hydrogen sulfide (H2S) - the third gas of interest for pharmacologists. Pharmacol. Rep., 2007, 59(1), 4-24.
[PMID: 17377202]
[22]
Oh, G.S.; Pae, H.O.; Lee, B.S.; Kim, B.N.; Kim, J.M.; Kim, H.R.; Jeon, S.B.; Jeon, W.K.; Chae, H.J.; Chung, H.T. Hydrogen sulfide inhibits nitric oxide production and nuclear factor-kappaB via heme oxygenase-1 expression in RAW264.7 macrophages stimulated with lipopolysaccharide. Free Radic. Biol. Med., 2006, 41(1), 106-119.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.03.021] [PMID: 16781459]
[23]
Du, J.; Hui, Y.; Cheung, Y.; Bin, G.; Jiang, H.; Chen, X.; Tang, C. The possible role of hydrogen sulfide as a smooth muscle cell pro-liferation inhibitor in rat cultured cells. Heart Vessels, 2004, 19(2), 75-80.
[http://dx.doi.org/10.1007/s00380-003-0743-7] [PMID: 15042391]
[24]
Calvert, J.W.; Coetzee, W.A.; Lefer, D.J. Novel insights into hydrogen sulfide--mediated cytoprotection. Antioxid. Redox Signal., 2010, 12(10), 1203-1217.
[http://dx.doi.org/10.1089/ars.2009.2882] [PMID: 19769484]
[25]
Abe, K.; Kimura, H. The possible role of hydrogen sulfide as an endogenous neuromodulator. J. Neurosci., 1996, 16(3), 1066-1071.
[http://dx.doi.org/10.1523/JNEUROSCI.16-03-01066.1996] [PMID: 8558235]
[26]
Nagahara, N.; Ito, T.; Kitamura, H.; Nishino, T. Tissue and subcellular distribution of mercaptopyruvate sulfurtransferase in the rat: confocal laser fluorescence and immunoelectron microscopic studies combined with biochemical analysis. Histochem. Cell Biol., 1998, 110(3), 243-250.
[http://dx.doi.org/10.1007/s004180050286] [PMID: 9749958]
[27]
Kabil, O.; Banerjee, R. Enzymology of H2S biogenesis, decay and signaling. Antioxid. Redox Signal., 2014, 20(5), 770-782.
[http://dx.doi.org/10.1089/ars.2013.5339] [PMID: 23600844]
[28]
Wang, X-B.; Du, J-B.; Cui, H. Signal pathways involved in the biological effects of sulfur dioxide. Eur. J. Pharmacol., 2015, 764, 94-99.
[http://dx.doi.org/10.1016/j.ejphar.2015.06.044] [PMID: 26123845]
[29]
Kubo, S.; Doe, I.; Kurokawa, Y.; Nishikawa, H.; Kawabata, A. Direct inhibition of endothelial nitric oxide synthase by hydrogen sulfide: contribution to dual modulation of vascular tension. Toxicology, 2007, 232(1-2), 138-146.
[http://dx.doi.org/10.1016/j.tox.2006.12.023] [PMID: 17276573]
[30]
Wang, T.; Wang, L.; Zaidi, S.R.; Sammani, S.; Siegler, J.; Moreno-Vinasco, L.; Mathew, B.; Natarajan, V.; Garcia, J.G.N. Hydrogen sulfide attenuates particulate matter-induced human lung endothelial barrier disruption via combined reactive oxygen species scavenging and Akt activation. Am. J. Respir. Cell Mol. Biol., 2012, 47(4), 491-496.
[http://dx.doi.org/10.1165/rcmb.2011-0248OC] [PMID: 22592920]
[31]
Spassov, S.G.; Donus, R.; Ihle, P.M.; Engelstaedter, H.; Hoetzel, A.; Faller, S. Hydrogen sulfide prevents formation of reactive oxygen species through PI3K/Akt signaling and limits ventilator-induced lung injury. Oxid. Med. Cell. Longev., 2017, 20173715037
[http://dx.doi.org/10.1155/2017/3715037] [PMID: 28250891]
[32]
Trevisani, M.; Patacchini, R.; Nicoletti, P.; Gatti, R.; Gazzieri, D.; Lissi, N.; Zagli, G.; Creminon, C.; Geppetti, P.; Harrison, S. Hydrogen sulfide causes vanilloid receptor 1-mediated neurogenic inflammation in the airways. Br. J. Pharmacol., 2005, 145(8), 1123-1131.
[http://dx.doi.org/10.1038/sj.bjp.0706277] [PMID: 15937520]
[33]
Pietri, R.; Román-Morales, E.; López-Garriga, J. Hydrogen sulfide and hemeproteins: knowledge and mysteries. Antioxid. Redox Signal., 2011, 15(2), 393-404.
[http://dx.doi.org/10.1089/ars.2010.3698] [PMID: 21050142]
[34]
Ríos-González, B.B.; Román-Morales, E.M.; Pietri, R.; López-Garriga, J. Hydrogen sulfide activation in hemeproteins: the sulfheme scenario. J. Inorg. Biochem., 2014, 133, 78-86.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.01.013] [PMID: 24513534]
[35]
Giuffrè, A.; Vicente, J.B. Hydrogen sulfide biochemistry and interplay with other gaseous mediators in mammalian physiology. Oxid. Med. Cell. Longev., 2018, 20186290931
[http://dx.doi.org/10.1155/2018/6290931] [PMID: 30050658]
[36]
Taoka, S.; Banerjee, R. Characterization of NO binding to human cystathionine beta-synthase: possible implications of the effects of CO and NO binding to the human enzyme. J. Inorg. Biochem., 2001, 87(4), 245-251.
[http://dx.doi.org/10.1016/S0162-0134(01)00335-X] [PMID: 11744062]
[37]
Kabil, O.; Yadav, V.; Banerjee, R. Heme-dependent metabolite switching regulates H2S synthesis in response to endoplasmic reticulum (ER) stress. J. Biol. Chem., 2016, 291(32), 16418-16423.
[http://dx.doi.org/10.1074/jbc.C116.742213] [PMID: 27365395]
[38]
Wang, Y.F.; Mainali, P.; Tang, C.S.; Shi, L.; Zhang, C.Y.; Yan, H.; Liu, X.Q.; Du, J.B. Effects of nitric oxide and hydrogen sulfide on the relaxation of pulmonary arteries in rats. Chin. Med. J. (Engl.), 2008, 121(5), 420-423.
[http://dx.doi.org/10.1097/00029330-200803010-00010] [PMID: 18364114]
[39]
Predmore, B.L.; Julian, D.; Cardounel, A.J. Hydrogen sulfide increases nitric oxide production from endothelial cells by an akt-dependent mechanism. Front. Physiol., 2011, 2, 104.
[http://dx.doi.org/10.3389/fphys.2011.00104] [PMID: 22194727]
[40]
Lei, Y-P.; Liu, C-T.; Sheen, L-Y.; Chen, H-W.; Lii, C-K. Diallyl disulfide and diallyl trisulfide protect endothelial nitric oxide synthase against damage by oxidized low-density lipoprotein. Mol. Nutr. Food Res., 2010, 54(Suppl. 1), S42-S52.
[http://dx.doi.org/10.1002/mnfr.200900278] [PMID: 20229525]
[41]
Yong, Q.C.; Lee, S.W.; Foo, C.S.; Neo, K.L.; Chen, X.; Bian, J.S. Endogenous hydrogen sulphide mediates the cardioprotection induced by ischemic postconditioning. Am. J. Physiol. Heart Circ. Physiol., 2008, 295(3), H1330-H1340.
[http://dx.doi.org/10.1152/ajpheart.00244.2008] [PMID: 18660450]
[42]
Yusof, M.; Kamada, K.; Kalogeris, T.; Gaskin, F.S.; Korthuis, R.J. Hydrogen sulfide triggers late-phase preconditioning in postischemic small intestine by an NO- and p38 MAPK-dependent mechanism. Am. J. Physiol. Heart Circ. Physiol., 2009, 296(3), H868-H876.
[http://dx.doi.org/10.1152/ajpheart.01111.2007] [PMID: 19168723]
[43]
Kubo, S.; Kurokawa, Y.; Doe, I.; Masuko, T.; Sekiguchi, F.; Kawabata, A. Hydrogen sulfide inhibits activity of three isoforms of recombinant nitric oxide synthase. Toxicology, 2007, 241(1-2), 92-97.
[http://dx.doi.org/10.1016/j.tox.2007.08.087] [PMID: 17888559]
[44]
Li, X-H.; Du, J-B.; Bu, D-F.; Tang, X-Y.; Tang, C-S. Sodium hydrosulfide alleviated pulmonary vascular structural remodeling induced by high pulmonary blood flow in rats. Acta Pharmacol. Sin., 2006, 27(8), 971-980.
[http://dx.doi.org/10.1111/j.1745-7254.2006.00353.x] [PMID: 16867247]
[45]
Whiteman, M.; Li, L.; Kostetski, I.; Chu, S.H.; Siau, J.L.; Bhatia, M.; Moore, P.K. Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem. Biophys. Res. Commun., 2006, 343(1), 303-310.
[http://dx.doi.org/10.1016/j.bbrc.2006.02.154] [PMID: 16540095]
[46]
Filipovic, M.R.; Miljkovic, J.Lj.; Nauser, T.; Royzen, M.; Klos, K.; Shubina, T.; Koppenol, W.H.; Lippard, S.J.; Ivanović-Burmazović, I. Chemical characterization of the smallest S-nitrosothiol, HSNO; cellular cross-talk of H2S and S-nitrosothiols. J. Am. Chem. Soc., 2012, 134(29), 12016-12027.
[http://dx.doi.org/10.1021/ja3009693] [PMID: 22741609]
[47]
Fukuto, J.M.; Jackson, M.I.; Kaludercic, N.; Paolocci, N. Examining nitroxyl in biological systems. Methods Enzymol., 2008, 440, 411-431.
[http://dx.doi.org/10.1016/S0076-6879(07)00826-9] [PMID: 18423233]
[48]
Yong, Q.C.; Hu, L.F.; Wang, S.; Huang, D.; Bian, J.S. Hydrogen sulfide interacts with nitric oxide in the heart: possible involvement of nitroxyl. Cardiovasc. Res., 2010, 88(3), 482-491.
[http://dx.doi.org/10.1093/cvr/cvq248] [PMID: 20660605]
[49]
Cortese-Krott, M.M.; Koning, A.; Kuhnle, G.G.C.; Nagy, P.; Bianco, C.L.; Pasch, A.; Wink, D.A.; Fukuto, J.M.; Jackson, A.A.; van Goor, H.; Olson, K.R.; Feelisch, M. The reactive species interactome: evolutionary emergence, biological significance, and opportunities for redox metabolomics and personalized medicine. Antioxid. Redox Signal., 2017, 27(10), 684-712.
[http://dx.doi.org/10.1089/ars.2017.7083] [PMID: 28398072]
[50]
Munro, A.P.; Williams, D.L.H. Reactivity of sulfur nucleophiles towards S-nitrosothiols. J. Chem. Soc. Perk T2 2000, 1(9), 1794-1797.
[http://dx.doi.org/10.1039/B004415F]
[51]
Cortese-Krott, M.M.; Fernandez, B.O.; Santos, J.L.T.; Mergia, E.; Grman, M.; Nagy, P.; Kelm, M.; Butler, A.; Feelisch, M. Nitro-sopersulfide (SSNO(-)) accounts for sustained NO bioactivity of S-nitrosothiols following reaction with sulfide. Redox Biol., 2014, 2, 234-244.
[http://dx.doi.org/10.1016/j.redox.2013.12.031] [PMID: 24494198]
[52]
Filipovic, M.R.; Miljkovic, J.; Allgäuer, A.; Chaurio, R.; Shubina, T.; Herrmann, M.; Ivanovic-Burmazovic, I. Biochemical insight into physiological effects of H2S: reaction with peroxynitrite and formation of a new nitric oxide donor, sulfinyl nitrite. Biochem. J., 2012, 441(2), 609-621.
[http://dx.doi.org/10.1042/BJ20111389] [PMID: 21950347]
[53]
Hosoki, R.; Matsuki, N.; Kimura, H. The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem. Biophys. Res. Commun., 1997, 237(3), 527-531.
[http://dx.doi.org/10.1006/bbrc.1997.6878] [PMID: 9299397]
[54]
Coletta, C.; Papapetropoulos, A.; Erdelyi, K.; Olah, G.; Módis, K.; Panopoulos, P.; Asimakopoulou, A.; Gerö, D.; Sharina, I.; Martin, E.; Szabo, C. Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc. Natl. Acad. Sci. USA, 2012, 109(23), 9161-9166.
[http://dx.doi.org/10.1073/pnas.1202916109] [PMID: 22570497]
[55]
Sojitra, B.; Bulani, Y.; Putcha, U.K.; Kanwal, A.; Gupta, P.; Kuncha, M.; Banerjee, S.K. Nitric oxide synthase inhibition abrogates hydrogen sulfide-induced cardioprotection in mice. Mol. Cell. Biochem., 2012, 360(1-2), 61-69.
[http://dx.doi.org/10.1007/s11010-011-1044-6] [PMID: 21879311]
[56]
Ricciardolo, F.L.M. Multiple roles of nitric oxide in the airways. Thorax, 2003, 58(2), 175-182.
[http://dx.doi.org/10.1136/thorax.58.2.175] [PMID: 12554905]
[57]
Kacmarek, R.M.; Ripple, R.; Cockrill, B.A.; Bloch, K.J.; Zapol, W.M.; Johnson, D.C. Inhaled nitric oxide. A bronchodilator in mild asthmatics with methacholine-induced bronchospasm. Am. J. Respir. Crit. Care Med., 1996, 153(1), 128-135.
[http://dx.doi.org/10.1164/ajrccm.153.1.8542105] [PMID: 8542105]
[58]
Brown, R.H.; Zerhouni, E.A.; Hirshman, C.A. Reversal of bronchoconstriction by inhaled nitric oxide. Histamine versus methacholine. Am. J. Respir. Crit. Care Med., 1994, 150(1), 233-237.
[http://dx.doi.org/10.1164/ajrccm.150.1.8025755] [PMID: 8025755]
[59]
Persson, M.G.; Friberg, S.G.; Hedqvist, P.; Gustafsson, L.E. Endogenous nitric oxide counteracts antigen-induced bronchoconstriction. Eur. J. Pharmacol., 1993, 249(3), R7-R8.
[http://dx.doi.org/10.1016/0014-2999(93)90532-M] [PMID: 8287910]
[60]
Belvisi, M.G.; Stretton, C.D.; Yacoub, M.; Barnes, P.J. Nitric oxide is the endogenous neurotransmitter of bronchodilator nerves in humans. Eur. J. Pharmacol., 1992, 210(2), 221-222.
[http://dx.doi.org/10.1016/0014-2999(92)90676-U] [PMID: 1350993]
[61]
Zhang, G.; Wang, P.; Yang, G.; Cao, Q.; Wang, R. The inhibitory role of hydrogen sulfide in airway hyperresponsiveness and in-flammation in a mouse model of asthma. Am. J. Pathol., 2013, 182(4), 1188-1195.
[http://dx.doi.org/10.1016/j.ajpath.2012.12.008] [PMID: 23395089]
[62]
Rashid, S.; Heer, J.K.; Garle, M.J.; Alexander, S.P.H.; Roberts, R.E. Hydrogen sulphide-induced relaxation of porcine peripheral bronchioles. Br. J. Pharmacol., 2013, 168(8), 1902-1910.
[http://dx.doi.org/10.1111/bph.12084] [PMID: 23215842]
[63]
Castro-Piedras, I.; Perez-Zoghbi, J.F. Hydrogen sulphide inhibits Ca2+ release through InsP3 receptors and relaxes airway smooth muscle. J. Physiol., 2013, 591(23), 5999-6015.
[http://dx.doi.org/10.1113/jphysiol.2013.257790] [PMID: 24144878]
[64]
Huang, J.; Luo, Y.L.; Hao, Y.; Zhang, Y.L.; Chen, P.X.; Xu, J.W.; Chen, M.H.; Luo, Y.F.; Zhong, N.S.; Xu, J.; Zhou, W.L. Cellular mechanism underlying hydrogen sulfide induced mouse tracheal smooth muscle relaxation: role of BKCa. Eur. J. Pharmacol., 2014, 741, 55-63.
[http://dx.doi.org/10.1016/j.ejphar.2014.07.004] [PMID: 25034810]
[65]
Fitzgerald, R.; DeSantiago, B.; Lee, D.Y.; Yang, G.; Kim, J.Y.; Foster, D.B.; Chan-Li, Y.; Horton, M.R.; Panettieri, R.A.; Wang, R.; An, S.S. H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel. Biochem. Biophys. Res. Commun., 2014, 446(1), 393-398.
[http://dx.doi.org/10.1016/j.bbrc.2014.02.129] [PMID: 24613832]
[66]
Perry, M.M.; Hui, C.K.; Whiteman, M.; Wood, M.E.; Adcock, I.; Kirkham, P.; Michaeloudes, C.; Chung, K.F. Hydrogen sulfide inhibits proliferation and release of IL-8 from human airway smooth muscle cells. Am. J. Respir. Cell Mol. Biol., 2011, 45(4), 746-752.
[http://dx.doi.org/10.1165/rcmb.2010-0304OC] [PMID: 21297080]
[67]
Roberts, J.D.; Polaner, D.M.; Lang, P.; Zapol, W.M. Inhaled nitric oxide in persistent pulmonary hypertension of the newborn. Lancet, 1992, 340(8823), 818-819.
[http://dx.doi.org/10.1016/0140-6736(92)92686-A] [PMID: 1357245]
[68]
Pickerodt, P.A.; Emery, M.J.; Zarndt, R.; Martin, W.; Francis, R.C.E.; Boemke, W.; Swenson, E.R. Sodium nitrite mitigates ventilator-induced lung injury in rats. Anesthesiology, 2012, 117(3), 592-601.
[http://dx.doi.org/10.1097/ALN.0b013e3182655f80] [PMID: 22820847]
[69]
Yadav, A.K.; Doran, S.F.; Samal, A.A.; Sharma, R.; Vedagiri, K.; Postlethwait, E.M.; Squadrito, G.L.; Fanucchi, M.V.; Roberts, L.J. II.; Patel, R.P.; Matalon, S. Mitigation of chlorine gas lung injury in rats by postexposure administration of sodium nitrite. Am. J. Physiol. Lung Cell. Mol. Physiol., 2011, 300(3), L362-L369.
[http://dx.doi.org/10.1152/ajplung.00278.2010] [PMID: 21148791]
[70]
Szabo, C. Hydrogen sulfide, an enhancer of vascular nitric oxide signaling: mechanisms and implications. Am. J. Physiol. Cell Physiol., 2017, 312(1), C3-C15.
[http://dx.doi.org/10.1152/ajpcell.00282.2016] [PMID: 27784679]
[71]
Laroux, F.S.; Pavlick, K.P.; Hines, I.N.; Kawachi, S.; Harada, H.; Bharwani, S.; Hoffman, J.M.; Grisham, M.B. Role of nitric oxide in inflammation. Acta Physiol. Scand., 2001, 173(1), 113-118.
[http://dx.doi.org/10.1046/j.1365-201X.2001.00891.x] [PMID: 11678733]
[72]
Nagy, G.; Clark, J.M.; Buzás, E.I.; Gorman, C.L.; Cope, A.P. Nitric oxide, chronic inflammation and autoimmunity. Immunol. Lett., 2007, 111(1), 1-5.
[http://dx.doi.org/10.1016/j.imlet.2007.04.013] [PMID: 17568690]
[73]
Ialenti, A.; Ianaro, A.; Moncada, S.; Di Rosa, M. Modulation of acute inflammation by endogenous nitric oxide. Eur. J. Pharmacol., 1992, 211(2), 177-182.
[http://dx.doi.org/10.1016/0014-2999(92)90526-A] [PMID: 1612108]
[74]
Zamora, R.; Vodovotz, Y.; Billiar, T.R. Inducible nitric oxide synthase and inflammatory diseases. Mol. Med., 2000, 6(5), 347-373.
[http://dx.doi.org/10.1007/BF03401781] [PMID: 10952018]
[75]
Anuar, F.; Whiteman, M.; Siau, J.L.; Kwong, S.E.; Bhatia, M.; Moore, P.K. Nitric oxide-releasing flurbiprofen reduces formation of proinflammatory hydrogen sulfide in lipopolysaccharide-treated rat. Br. J. Pharmacol., 2006, 147(8), 966-974.
[http://dx.doi.org/10.1038/sj.bjp.0706696] [PMID: 16491094]
[76]
Schuiling, M.; Meurs, H.; Zuidhof, A.B.; Venema, N.; Zaagsma, J. Dual action of iNOS-derived nitric oxide in allergen-induced airway hyperreactivity in conscious, unrestrained guinea pigs. Am. J. Respir. Crit. Care Med., 1998, 158(5 Pt 1), 1442-1449.
[http://dx.doi.org/10.1164/ajrccm.158.5.9803027] [PMID: 9817691]
[77]
Sadeghi-Hashjin, G.; Folkerts, G.; Henricks, P.A.J.; Muijsers, R.B.R.; Nijkamp, F.P. Peroxynitrite in airway diseases. Clin. Exp. Allergy, 1998, 28(12), 1464-1473.
[http://dx.doi.org/10.1046/j.1365-2222.1998.00428.x] [PMID: 10024216]
[78]
Caldwell, R.W.; Rodriguez, P.C.; Toque, H.A.; Narayanan, S.P.; Caldwell, R.B. Arginase: a multifaceted enzyme important in health and disease. Physiol. Rev., 2018, 98(2), 641-665.
[http://dx.doi.org/10.1152/physrev.00037.2016] [PMID: 29412048]
[79]
Viegas, J.; Esteves, A.F.; Cardoso, E.M.; Arosa, F.A.; Vitale, M.; Taborda-Barata, L. Biological effects of thermal water-associated hydrogen sulfide on human airways and associated immune cells: implications for respiratory diseases. Front. Public Health, 2019, 7, 128.
[http://dx.doi.org/10.3389/fpubh.2019.00128] [PMID: 31231626]
[80]
Whiteman, M.; Winyard, P.G. Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev. Clin. Pharmacol., 2011, 4(1), 13-32.
[http://dx.doi.org/10.1586/ecp.10.134] [PMID: 22115346]
[81]
Li, T.; Zhao, B.; Wang, C.; Wang, H.; Liu, Z.; Li, W.; Jin, H.; Tang, C.; Du, J. Regulatory effects of hydrogen sulfide on IL-6, IL-8 and IL-10 levels in the plasma and pulmonary tissue of rats with acute lung injury. Exp. Biol. Med. (Maywood), 2008, 233(9), 1081-1087.
[http://dx.doi.org/10.3181/0712-RM-354] [PMID: 18535161]
[82]
Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med., 2011, 17(3-4), 293-307.
[http://dx.doi.org/10.2119/molmed.2010.00138] [PMID: 21046059]
[83]
Esechie, A.; Kiss, L.; Olah, G.; Horváth, E.M.; Hawkins, H.; Szabo, C.; Traber, D.L. Protective effect of hydrogen sulfide in a murine model of acute lung injury induced by combined burn and smoke inhalation. Clin. Sci. (Lond.), 2008, 115(3), 91-97.
[http://dx.doi.org/10.1042/CS20080021] [PMID: 18315525]
[84]
Rose, P.; Moore, P.K.; Zhu, Y.Z.H. H2S biosynthesis and catabolism: new insights from molecular studies. Cell. Mol. Life Sci., 2017, 74(8), 1391-1412.
[http://dx.doi.org/10.1007/s00018-016-2406-8] [PMID: 27844098]
[85]
Chen, Y.H.; Wang, P.P.; Wang, X.M.; He, Y.J.; Yao, W.Z.; Qi, Y.F.; Tang, C.S. Involvement of endogenous hydrogen sulfide in ciga-rette smoke-induced changes in airway responsiveness and inflammation of rat lung. Cytokine, 2011, 53(3), 334-341.
[http://dx.doi.org/10.1016/j.cyto.2010.12.006] [PMID: 21190866]
[86]
Han, W.; Dong, Z.; Dimitropoulou, C.; Su, Y. Hydrogen sulfide ameliorates tobacco smoke-induced oxidative stress and emphysema in mice. Antioxid. Redox Signal., 2011, 15(8), 2121-2134.
[http://dx.doi.org/10.1089/ars.2010.3821] [PMID: 21504365]
[87]
Chen, Y.H.; Yao, W.Z.; Geng, B.; Ding, Y.L.; Lu, M.; Zhao, M.W.; Tang, C.S. Endogenous hydrogen sulfide in patients with COPD. Chest, 2005, 128(5), 3205-3211.
[http://dx.doi.org/10.1378/chest.128.5.3205] [PMID: 16304263]
[88]
Saito, J.; Mackay, A.J.; Rossios, C.; Gibeon, D.; Macedo, P.; Sinharay, R.; Bhavsar, P.K.; Wedzicha, J.A.; Chung, K.F. Sputum-to-serum hydrogen sulfide ratio in COPD. Thorax, 2014, 69(10), 903-909.
[http://dx.doi.org/10.1136/thoraxjnl-2013-204868] [PMID: 25035127]
[89]
Seimetz, M.; Parajuli, N.; Pichl, A.; Veit, F.; Kwapiszewska, G.; Weisel, F.C.; Milger, K.; Egemnazarov, B.; Turowska, A.; Fuchs, B.; Nikam, S.; Roth, M.; Sydykov, A.; Medebach, T.; Klepetko, W.; Jaksch, P.; Dumitrascu, R.; Garn, H.; Voswinckel, R.; Kostin, S.; Seeger, W.; Schermuly, R.T.; Grimminger, F.; Ghofrani, H.A.; Weissmann, N. Inducible NOS inhibition reverses tobacco-smoke-induced emphysema and pulmonary hypertension in mice. Cell, 2011, 147(2), 293-305.
[http://dx.doi.org/10.1016/j.cell.2011.08.035] [PMID: 22000010]
[90]
Jiang, W.T.; Liu, X.S.; Xu, Y.J.; Ni, W.; Chen, S.X. Expression of nitric oxide synthase isoenzyme in lung tissue of smokers with and without chronic obstructive pulmonary disease. Chin. Med. J. (Engl.), 2015, 128(12), 1584-1589.
[http://dx.doi.org/10.4103/0366-6999.158309] [PMID: 26063358]
[91]
Dinh-Xuan, A.T.; Pepke-Zaba, J.; Butt, A.Y.; Cremona, G.; Higenbottam, T.W. Impairment of pulmonary-artery endothelium-dependent relaxation in chronic obstructive lung disease is not due to dysfunction of endothelial cell membrane receptors nor to L-arginine deficiency. Br. J. Pharmacol., 1993, 109(2), 587-591.
[http://dx.doi.org/10.1111/j.1476-5381.1993.tb13611.x] [PMID: 7689396]
[92]
Csoma, B.; Bikov, A.; Nagy, L.; Tóth, B.; Tábi, T.; Szűcs, G.; Komlósi, Z.I.; Müller, V.; Losonczy, G.; Lázár, Z. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respir. Res., 2019, 20(1), 156.
[http://dx.doi.org/10.1186/s12931-019-1133-8] [PMID: 31311549]
[93]
Agustí, A.G.; Villaverde, J.M.; Togores, B.; Bosch, M. Serial measurements of exhaled nitric oxide during exacerbations of chronic obstructive pulmonary disease. Eur. Respir. J., 1999, 14(3), 523-528.
[http://dx.doi.org/10.1034/j.1399-3003.1999.14c08.x] [PMID: 10543270]
[94]
Chen, Y.H.; Wu, R.; Geng, B.; Qi, Y.F.; Wang, P.P.; Yao, W.Z.; Tang, C.S. Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine, 2009, 45(2), 117-123.
[http://dx.doi.org/10.1016/j.cyto.2008.11.009] [PMID: 19117767]
[95]
Wang, P.; Zhang, G.; Wondimu, T.; Ross, B.; Wang, R. Hydrogen sulfide and asthma. Exp. Physiol., 2011, 96(9), 847-852.
[http://dx.doi.org/10.1113/expphysiol.2011.057448] [PMID: 21666034]
[96]
Zhang, P.; Li, F.; Wiegman, C.H.; Zhang, M.; Hong, Y.; Gong, J.; Chang, Y.; Zhang, J.J.; Adcock, I.; Chung, K.F.; Zhou, X. Inhibitory effect of hydrogen sulfide on ozone-induced airway inflammation, oxidative stress, and bronchial hyperresponsiveness. Am. J. Respir. Cell Mol. Biol., 2015, 52(1), 129-137.
[http://dx.doi.org/10.1165/rcmb.2013-0415OC] [PMID: 25010831]
[97]
Zhang, J.; Wang, X.; Chen, Y.; Yao, W. Correlation between levels of exhaled hydrogen sulfide and airway inflammatory phenotype in patients with chronic persistent asthma. Respirology, 2014, 19(8), 1165-1169.
[http://dx.doi.org/10.1111/resp.12372] [PMID: 25168466]
[98]
Tian, M.; Wang, Y.; Lu, Y.Q.; Yan, M.; Jiang, Y.H.; Zhao, D.Y. Correlation between serum H2S and pulmonary function in children with bronchial asthma. Mol. Med. Rep., 2012, 6(2), 335-338.
[http://dx.doi.org/10.3892/mmr.2012.904] [PMID: 22562181]
[99]
Racke, K.; Brunn, G.; Wessler, I. Nitric oxide and asthmatic inflammation. Immunol. Today, 1996, 17(3), 147-148.
[http://dx.doi.org/10.1016/0167-5699(96)80608-6] [PMID: 8820274]
[100]
Gaston, B.; Sears, S.; Woods, J.; Hunt, J.; Ponaman, M.; McMahon, T.; Stamler, J.S. Bronchodilator S-nitrosothiol deficiency in asthmatic respiratory failure. Lancet, 1998, 351(9112), 1317-1319.
[http://dx.doi.org/10.1016/S0140-6736(97)07485-0] [PMID: 9643794]
[101]
Bazhanov, N.; Ansar, M.; Ivanciuc, T.; Garofalo, R.P.; Casola, A. Hydrogen sulfide: a novel player in airway development, patho-physiology of respiratory diseases, and antiviral defenses. Am. J. Respir. Cell Mol. Biol., 2017, 57(4), 403-410.
[http://dx.doi.org/10.1165/rcmb.2017-0114TR] [PMID: 28481637]
[102]
Singh, D.; Richards, D.; Knowles, R.G.; Schwartz, S.; Woodcock, A.; Langley, S.; O’Connor, B.J. Selective inducible nitric oxide synthase inhibition has no effect on allergen challenge in asthma. Am. J. Respir. Crit. Care Med., 2007, 176(10), 988-993.
[http://dx.doi.org/10.1164/rccm.200704-588OC] [PMID: 17717202]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy