Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

General Review Article

Mesenchymal Stem Cell Therapy for Patients with Ischemic Heart Failure- Past, Present, and Future

Author(s): Peng Liang , Fang Ye, Cong-Cong Hou, Lin Pi and Fang Chen*

Volume 16, Issue 5, 2021

Published on: 09 March, 2020

Page: [608 - 621] Pages: 14

DOI: 10.2174/1574888X15666200309144906

Price: $65

Abstract

The prevalence of Heart Failure (HF) has increased over time. Ischemic heart failure accounts for 50% of HF, which results from ischemic coronary heart diseases such as Myocardial Infarction (MI). Conventionally, reduction of cardiac load and revascularization partially increase cardiomyocyte survival and preserve cardiac functions. Nevertheless, how to improve cardiomyocyte rescue and prevent HF progression remain as challenges. Mesenchymal Stem Cells (MSCs) are multipotent stem cells that give rise to various lineages. The administration of MSCs promotes cardiomyocyte survival and improves cardiac functions in animal models of MI and patients with ischemic cardiomyopathy. However, after injection, MSCs persist for a very short time, indicating that the prolonged protective effects of MSCs on cardiomyocytes may be mediated by paracrine functions of MSCs, such as exosomes. In this review, we focus on MSC-derived exosomes in cardiomyocyte protection to facilitate future applications of exosomes in HF treatment.

Keywords: Heart failure, ischemic cardiomyopathy, mesenchymal stem cells, exosomes, cardiomyocytes, myocardial infarction.

[1]
Benjamin EJ, Muntner P, Alonso A, et al. Heart disease and stroke statistics-2019 update: A report from the American Heart Association. Circulation 2019; 139(10): e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[2]
Sweitzer NK, Lopatin M, Yancy CW, Mills RM, Stevenson LW. Comparison of clinical features and outcomes of patients hospitalized with heart failure and normal ejection fraction (> or =55%) versus those with mildly reduced (40% to 55%) and moderately to severely reduced (<40%) fractions. Am J Cardiol 2008; 101(8): 1151-6.
[http://dx.doi.org/10.1016/j.amjcard.2007.12.014] [PMID: 18394450]
[3]
Ho JE, Gona P, Pencina MJ, et al. Discriminating clinical features of heart failure with preserved vs. reduced ejection fraction in the community. Eur Heart J 2012; 33(14): 1734-41.
[http://dx.doi.org/10.1093/eurheartj/ehs070] [PMID: 22507977]
[4]
Huusko J, Kurki S, Toppila I, et al. Heart failure in Finland: Clinical characteristics, mortality, and healthcare resource use. ESC Heart Fail 2019; 6(4): 603-12.
[http://dx.doi.org/10.1002/ehf2.12443] [PMID: 31054212]
[5]
Mozaffarian D, Benjamin EJ, Go AS, et al. Heart disease and stroke statistics-2016 update: A report from the American Heart Association. Circulation 2016; 133(4): e38-e360.
[http://dx.doi.org/10.1161/CIR.0000000000000350] [PMID: 26673558]
[6]
Ahmad FS, Ning H, Rich JD, Yancy CW, Lloyd-Jones DM, Wilkins JT. Hypertension, obesity, diabetes, and heart failure-free survival: The cardiovascular disease lifetime risk pooling project. JACC Heart Fail 2016; 4(12): 911-9.
[http://dx.doi.org/10.1016/j.jchf.2016.08.001] [PMID: 27908389]
[7]
Barquera S, Pedroza-Tobías A, Medina C, et al. Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res 2015; 46(5): 328-38.
[http://dx.doi.org/10.1016/j.arcmed.2015.06.006] [PMID: 26135634]
[8]
Yancy CW, Jessup M, Bozkurt B, et al. 2013 ACCF/AHA Guideline for the management of Heart Failure: Executive Summary: A Report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2013; 62(16): 1495-539.
[http://dx.doi.org/10.1016/j.jacc.2013.05.020] [PMID: 23747642]
[9]
Barzegar M, Kaur G, Gavins FNE, Wang Y, Boyer CJ, Alexander JS. Potential therapeutic roles of stem cells in ischemia-reperfusion injury. Stem Cell Res 2019; 37: 101421.
[http://dx.doi.org/10.1016/j.scr.2019.101421] [PMID: 30933723]
[10]
Hamilton S, Terentyev D. Altered intracellular calcium homeostasis and arrhythmogenesis in the aged heart. Int J Mol Sci 2019; 20(10): E2386.
[http://dx.doi.org/10.3390/ijms20102386] [PMID: 31091723]
[11]
Hulsurkar M, Quick AP, Wehrens XH. STAT3: A link between CaMKII-βIV-spectrin and maladaptive remodeling? J Clin Invest 2018; 128(12): 5219-21.
[http://dx.doi.org/10.1172/JCI124778] [PMID: 30418170]
[12]
Zhao L, Cheng G, Jin R, et al. Deletion of Interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ Res 2016; 118(12): 1918-29.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308688] [PMID: 27126808]
[13]
Ismahil MA, Hamid T, Bansal SS, Patel B, Kingery JR, Prabhu SD. Remodeling of the mononuclear phagocyte network underlies chronic inflammation and disease progression in heart failure: Critical importance of the cardiosplenic axis. Circ Res 2014; 114(2): 266-82.
[http://dx.doi.org/10.1161/CIRCRESAHA.113.301720] [PMID: 24186967]
[14]
Carrillo-Salinas FJ, Ngwenyama N, Anastasiou M, Kaur K, Alcaide P. Heart Inflammation: Immune Cell Roles and Roads to the Heart. Am J Pathol 2019; 189(8): 1482-94.
[http://dx.doi.org/10.1016/j.ajpath.2019.04.009] [PMID: 31108102]
[15]
Frangogiannis NG. The extracellular matrix in ischemic and nonischemic heart failure. Circ Res 2019; 125(1): 117-46.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.311148] [PMID: 31219741]
[16]
Pitt B, Zannad F, Remme WJ, et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med 1999; 341(10): 709-17.
[http://dx.doi.org/10.1056/NEJM199909023411001] [PMID: 10471456]
[17]
Garg R, Yusuf S. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995; 273(18): 1450-6.
[http://dx.doi.org/10.1001/jama.1995.03520420066040] [PMID: 7654275]
[18]
Packer M, Poole-Wilson PA, Armstrong PW, et al. Comparative effects of low and high doses of the angiotensin-converting enzyme inhibitor, lisinopril, on morbidity and mortality in chronic heart failure. Circulation 1999; 100(23): 2312-8.
[http://dx.doi.org/10.1161/01.CIR.100.23.2312] [PMID: 10587334]
[19]
Hjalmarson A, Goldstein S, Fagerberg B, et al. Effects of controlled-release metoprolol on total mortality, hospitalizations, and well-being in patients with heart failure: The Metoprolol CR/XL Randomized Intervention Trial in congestive heart failure (MERIT-HF). JAMA 2000; 283(10): 1295-302.
[http://dx.doi.org/10.1001/jama.283.10.1295] [PMID: 10714728]
[20]
Willenheimer R, van Veldhuisen DJ, Silke B, et al. Effect on survival and hospitalization of initiating treatment for chronic heart failure with bisoprolol followed by enalapril, as compared with the opposite sequence: Results of the randomized Cardiac Insufficiency Bisoprolol Study (CIBIS) III. Circulation 2005; 112(16): 2426-35.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.582320] [PMID: 16143696]
[21]
Yusuf S, Pitt B, Davis CE, Hood WB, Cohn JN. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1991; 325(5): 293-302.
[http://dx.doi.org/10.1056/NEJM199108013250501] [PMID: 2057034]
[22]
Kotecha D, Holmes J, Krum H, et al. Efficacy of β blockers in patients with heart failure plus atrial fibrillation: an individual-patient data meta-analysis. Lancet 2014; 384(9961): 2235-43.
[http://dx.doi.org/10.1016/S0140-6736(14)61373-8] [PMID: 25193873]
[23]
Faris RF, Flather M, Purcell H, Poole-Wilson PA, Coats AJ. Diuretics for heart failure. Cochrane Database Syst Rev 2012; 15(2): CD003838.
[PMID: 22336795]
[24]
McMurray JJ, Packer M, Desai AS, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med 2014; 371(11): 993-1004.
[http://dx.doi.org/10.1056/NEJMoa1409077] [PMID: 25176015]
[25]
King JB, Bress AP, Reese AD, Munger MA. Neprilysin inhibition in heart failure with reduced ejection fraction: A clinical review. Pharmacotherapy 2015; 35(9): 823-37.
[http://dx.doi.org/10.1002/phar.1629] [PMID: 26406774]
[26]
Swedberg K, Komajda M, Böhm M, et al. Ivabradine and outcomes in chronic heart failure (SHIFT): A randomised placebo-controlled study. Lancet 2010; 376(9744): 875-85.
[http://dx.doi.org/10.1016/S0140-6736(10)61198-1] [PMID: 20801500]
[27]
Böhm M, Borer J, Ford I, et al. Heart rate at baseline influences the effect of ivabradine on cardiovascular outcomes in chronic heart failure: Analysis from the SHIFT study. Clin Res Cardiol 2013; 102(1): 11-22.
[http://dx.doi.org/10.1007/s00392-012-0467-8] [PMID: 22575988]
[28]
The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med 1997; 336(8): 525-33.
[http://dx.doi.org/10.1056/NEJM199702203360801] [PMID: 9036306]
[29]
Ouyang AJ, Lv YN, Zhong HL, et al. Meta-analysis of digoxin use and risk of mortality in patients with atrial fibrillation. Am J Cardiol 2015; 115(7): 901-6.
[http://dx.doi.org/10.1016/j.amjcard.2015.01.013] [PMID: 25660972]
[30]
Vitale C, Wajngaten M, Sposato B, et al. Trimetazidine improves left ventricular function and quality of life in elderly patients with coronary artery disease. Eur Heart J 2004; 25(20): 1814-21.
[http://dx.doi.org/10.1016/j.ehj.2004.06.034] [PMID: 15474696]
[31]
Gao D, Ning N, Niu X, Hao G, Meng Z. Trimetazidine: a meta-analysis of randomised controlled trials in heart failure. Heart 2011; 97(4): 278-86.
[http://dx.doi.org/10.1136/hrt.2010.208751] [PMID: 21134903]
[32]
Windecker S, Kolh P, Alfonso F, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization: The Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS)Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 2014; 35(37): 2541-619.
[http://dx.doi.org/10.1093/eurheartj/ehu278] [PMID: 25173339]
[33]
Theuns DAMJ, Smith T, Hunink MGM, Bardy GH, Jordaens L. Effectiveness of prophylactic implantation of cardioverter-defibrillators without cardiac resynchronization therapy in patients with ischaemic or non-ischaemic heart disease: A systematic review and meta-analysis. Europace 2010; 12(11): 1564-70.
[http://dx.doi.org/10.1093/europace/euq329] [PMID: 20974768]
[34]
Yokoshiki H, Mitsuyama H, Watanabe M, Mitsuhashi T, Shimizu A. Cardiac resynchronization therapy in ischemic and non-ischemic cardiomyopathy. J Arrhythm 2017; 33(5): 410-6.
[http://dx.doi.org/10.1016/j.joa.2017.03.002] [PMID: 29021842]
[35]
Stewart GC, Givertz MM. Mechanical circulatory support for advanced heart failure: Patients and technology in evolution. Circulation 2012; 125(10): 1304-15.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.060830] [PMID: 22412091]
[36]
Riebandt J, Haberl T, Mahr S, et al. Preoperative patient optimization using extracorporeal life support improves outcomes of INTERMACS Level I patients receiving a permanent ventricular assist device. Eur J Cardiothorac Surg 2014; 46(3): 486-92.
[http://dx.doi.org/10.1093/ejcts/ezu093] [PMID: 24648428]
[37]
Trivedi JR, Cheng A, Singh R, Williams ML, Slaughter MS. Survival on the heart transplant waiting list: Impact of continuous flow left ventricular assist device as bridge to transplant. Ann Thorac Surg 2014; 98(3): 830-4.
[http://dx.doi.org/10.1016/j.athoracsur.2014.05.019] [PMID: 25087934]
[38]
Westaby S. Cardiac transplant or rotary blood pump: Contemporary evidence. J Thorac Cardiovasc Surg 2013; 145(1): 24-31.
[http://dx.doi.org/10.1016/j.jtcvs.2012.08.048] [PMID: 23244251]
[39]
Maggioni AP, Dahlström U, Filippatos G, et al. EURObservational Research Programme: Regional differences and 1-year follow-up results of the Heart Failure Pilot Survey (ESC-HF Pilot). Eur J Heart Fail 2013; 15(7): 808-17.
[http://dx.doi.org/10.1093/eurjhf/hft050] [PMID: 23537547]
[40]
Friedenstein AJ, Chailakhyan RK, Latsinik NV, Panasyuk AF, Keiliss-Borok IV. Stromal cells responsible for transferring the microenvironment of the hemopoietic tissues. Cloning in vitro and retransplantation in vivo. Transplantation 1974; 17(4): 331-40.
[http://dx.doi.org/10.1097/00007890-197404000-00001] [PMID: 4150881]
[41]
Elahi KC, Klein G, Avci-Adali M, Sievert KD, MacNeil S, Aicher WK. Human mesenchymal stromal cells from different sources diverge in their expression of cell surface proteins and display distinct differentiation patterns. Stem Cells Int 2016; 2016: 5646384.
[http://dx.doi.org/10.1155/2016/5646384] [PMID: 26770208]
[42]
Bourzac C, Smith LC, Vincent P, Beauchamp G, Lavoie JP, Laverty S. Isolation of equine bone marrow-derived mesenchymal stem cells: A comparison between three protocols. Equine Vet J 2010; 42(6): 519-27.
[http://dx.doi.org/10.1111/j.2042-3306.2010.00098.x] [PMID: 20716192]
[43]
In ’t Anker PS, Scherjon SA, Kleijburg-van der Keur C, et al. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102(4): 1548-9.
[http://dx.doi.org/10.1182/blood-2003-04-1291] [PMID: 12900350]
[44]
Fukuchi Y, Nakajima H, Sugiyama D, Hirose I, Kitamura T, Tsuji K. Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells 2004; 22(5): 649-58.
[http://dx.doi.org/10.1634/stemcells.22-5-649] [PMID: 15342929]
[45]
Erices AA, Allers CI, Conget PA, Rojas CV, Minguell JJ. Human cord blood-derived mesenchymal stem cells home and survive in the marrow of immunodeficient mice after systemic infusion. Cell Transplant 2003; 12(6): 555-61.
[http://dx.doi.org/10.3727/000000003108747154] [PMID: 14579923]
[46]
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7(2): 211-28.
[http://dx.doi.org/10.1089/107632701300062859] [PMID: 11304456]
[47]
Levac K, Menendez P, Bhatia M. Intra-bone marrow transplantation facilitates pauci-clonal human hematopoietic repopulation of NOD/SCID/beta2m(-/-) mice. Exp Hematol 2005; 33(11): 1417-26.
[http://dx.doi.org/10.1016/j.exphem.2005.07.007] [PMID: 16263425]
[48]
Estes BT, Wu AW, Storms RW, Guilak F. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell Physiol 2006; 209(3): 987-95.
[http://dx.doi.org/10.1002/jcp.20808] [PMID: 16972251]
[49]
Mohr S, Portmann-Lanz CB, Schoeberlein A, Sager R, Surbek DV. Generation of an osteogenic graft from human placenta and placenta-derived mesenchymal stem cells. Reprod Sci 2010; 17(11): 1006-15.
[http://dx.doi.org/10.1177/1933719110377471] [PMID: 20940246]
[50]
Zheng L, Fan HS, Sun J, et al. Chondrogenic differentiation of mesenchymal stem cells induced by collagen-based hydrogel: An in vivo study. J Biomed Mater Res A 2010; 93(2): 783-92.
[PMID: 19653302]
[51]
Biver G, Wang N, Gartland A, et al. Role of the P2Y13 receptor in the differentiation of bone marrow stromal cells into osteoblasts and adipocytes. Stem Cells 2013; 31(12): 2747-58.
[http://dx.doi.org/10.1002/stem.1411] [PMID: 23629754]
[52]
Nakamura Y, Miyaki S, Ishitobi H, et al. Mesenchymal-stem-cell-derived exosomes accelerate skeletal muscle regeneration. FEBS Lett 2015; 589(11): 1257-65.
[http://dx.doi.org/10.1016/j.febslet.2015.03.031] [PMID: 25862500]
[53]
Perasso L, Cogo CE, Giunti D, et al. Systemic administration of mesenchymal stem cells increases neuron survival after global cerebral ischemia in vivo (2VO). Neural Plast 2010; 2010: 534925.
[http://dx.doi.org/10.1155/2010/534925] [PMID: 21331297]
[54]
Figeac F, Lesault PF, Le Coz O, et al. Nanotubular crosstalk with distressed cardiomyocytes stimulates the paracrine repair function of mesenchymal stem cells. Stem Cells 2014; 32(1): 216-30.
[http://dx.doi.org/10.1002/stem.1560] [PMID: 24115309]
[55]
Crisan M. Transition of mesenchymal stem/stromal cells to endothelial cells. Stem Cell Res Ther 2013; 4(4): 95.
[http://dx.doi.org/10.1186/scrt306] [PMID: 23953698]
[56]
Brockmeier K, Khalil M, Sreeram N, Ulmer HE. Repolarization analysis in children with the long QT syndrome. J Electrocardiol 2003; 36(Suppl.): 209-12.
[http://dx.doi.org/10.1016/j.jelectrocard.2003.09.061] [PMID: 14716636]
[57]
Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002; 30(1): 42-8.
[http://dx.doi.org/10.1016/S0301-472X(01)00769-X] [PMID: 11823036]
[58]
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006; 8(4): 315-7.
[http://dx.doi.org/10.1080/14653240600855905] [PMID: 16923606]
[59]
Yen BL, Huang HI, Chien CC, et al. Isolation of multipotent cells from human term placenta. Stem Cells 2005; 23(1): 3-9.
[http://dx.doi.org/10.1634/stemcells.2004-0098] [PMID: 15625118]
[60]
Bailo M, Soncini M, Vertua E, et al. Engraftment potential of human amnion and chorion cells derived from term placenta. Transplantation 2004; 78(10): 1439-48.
[http://dx.doi.org/10.1097/01.TP.0000144606.84234.49] [PMID: 15599307]
[61]
Gang EJ, Hong SH, Jeong JA, et al. In vitro mesengenic potential of human umbilical cord blood-derived mesenchymal stem cells. Biochem Biophys Res Commun 2004; 321(1): 102-8.
[http://dx.doi.org/10.1016/j.bbrc.2004.06.111] [PMID: 15358221]
[62]
Qiu X, Zhang Y, Zhao X, et al. Enhancement of endothelial differentiation of adipose derived mesenchymal stem cells by a three-dimensional culture system of microwell. Biomaterials 2015; 53: 600-8.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.115] [PMID: 25890756]
[63]
Heo JS, Choi Y, Kim HS, Kim HO. Comparison of molecular profiles of human mesenchymal stem cells derived from bone marrow, umbilical cord blood, placenta and adipose tissue. Int J Mol Med 2016; 37(1): 115-25.
[http://dx.doi.org/10.3892/ijmm.2015.2413] [PMID: 26719857]
[64]
Amable PR, Teixeira MV, Carias RB, Granjeiro JM, Borojevic R. Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton’s jelly. Stem Cell Res Ther 2014; 5(2): 53.
[http://dx.doi.org/10.1186/scrt442] [PMID: 24739658]
[65]
Huang Q, Yu Y, Wang Q, Luo Z, Jiang R, Li H. Uptake kinetics and translocation of selenite and selenate as affected by iron plaque on root surfaces of rice seedlings. Planta 2015; 241(4): 907-16.
[http://dx.doi.org/10.1007/s00425-014-2227-7] [PMID: 25526963]
[66]
Németh K, Leelahavanichkul A, Yuen PS, et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat Med 2009; 15(1): 42-9.
[http://dx.doi.org/10.1038/nm.1905] [PMID: 19098906]
[67]
Prockop DJ, Oh JY. Mesenchymal stem/stromal cells (MSCs): Role as guardians of inflammation. Mol Ther 2012; 20(1): 14-20.
[http://dx.doi.org/10.1038/mt.2011.211] [PMID: 22008910]
[68]
Makino S, Fukuda K, Miyoshi S, et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J Clin Invest 1999; 103(5): 697-705.
[http://dx.doi.org/10.1172/JCI5298] [PMID: 10074487]
[69]
Xaymardan M, Tang L, Zagreda L, et al. Platelet-derived growth factor-AB promotes the generation of adult bone marrow-derived cardiac myocytes. Circ Res 2004; 94(5): E39-45.
[http://dx.doi.org/10.1161/01.RES.0000122042.51161.B6] [PMID: 14963008]
[70]
Liu Y, Song J, Liu W, Wan Y, Chen X, Hu C. Growth and differentiation of rat bone marrow stromal cells: Does 5-azacytidine trigger their cardiomyogenic differentiation? Cardiovasc Res 2003; 58(2): 460-8.
[http://dx.doi.org/10.1016/S0008-6363(03)00265-7] [PMID: 12757880]
[71]
Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 2003; 425(6961): 968-73.
[http://dx.doi.org/10.1038/nature02069] [PMID: 14555960]
[72]
Gang EJ, Bosnakovski D, Simsek T, To K, Perlingeiro RC. Pax3 activation promotes the differentiation of mesenchymal stem cells toward the myogenic lineage. Exp Cell Res 2008; 314(8): 1721-33.
[http://dx.doi.org/10.1016/j.yexcr.2008.02.016] [PMID: 18395202]
[73]
Yamada Y, Sakurada K, Takeda Y, Gojo S, Umezawa A. Single-cell-derived mesenchymal stem cells overexpressing Csx/Nkx2.5 and GATA4 undergo the stochastic cardiomyogenic fate and behave like transient amplifying cells. Exp Cell Res 2007; 313(4): 698-706.
[http://dx.doi.org/10.1016/j.yexcr.2006.11.012] [PMID: 17208226]
[74]
Deng B, Wang JX, Hu XX, et al. Nkx2.5 enhances the efficacy of mesenchymal stem cells transplantation in treatment heart failure in rats. Life Sci 2017; 182: 65-72.
[http://dx.doi.org/10.1016/j.lfs.2017.06.014] [PMID: 28624390]
[75]
Lv Y, Liu B, Wang HP, Zhang L. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats. Braz J Med Biol Res 2016; 49(6): e5273.
[http://dx.doi.org/10.1590/1414-431x20165273] [PMID: 27254663]
[76]
Shen H, Wang Y, Zhang Z, Yang J, Hu S, Shen Z. Mesenchymal stem cells for cardiac regenerative therapy: Optimization of cell differentiation strategy. Stem Cells Int 2015; 2015: 524756.
[http://dx.doi.org/10.1155/2015/524756] [PMID: 26339251]
[77]
Shake JG, Gruber PJ, Baumgartner WA, et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: Engraftment and functional effects. Ann Thorac Surg 2002; 73(6): 1919-25.
[http://dx.doi.org/10.1016/S0003-4975(02)03517-8] [PMID: 12078791]
[78]
Quevedo HC, Hatzistergos KE, Oskouei BN, et al. Allogeneic mesenchymal stem cells restore cardiac function in chronic ischemic cardiomyopathy via trilineage differentiating capacity. Proc Natl Acad Sci USA 2009; 106(33): 14022-7.
[http://dx.doi.org/10.1073/pnas.0903201106] [PMID: 19666564]
[79]
Suresh SC, Selvaraju V, Thirunavukkarasu M, et al. Thioredoxin-1 (Trx1) engineered mesenchymal stem cell therapy increased pro-angiogenic factors, reduced fibrosis and improved heart function in the infarcted rat myocardium. Int J Cardiol 2015; 201: 517-28.
[http://dx.doi.org/10.1016/j.ijcard.2015.08.117] [PMID: 26322599]
[80]
Silva GV, Litovsky S, Assad JA, et al. Mesenchymal stem cells differentiate into an endothelial phenotype, enhance vascular density, and improve heart function in a canine chronic ischemia model. Circulation 2005; 111(2): 150-6.
[http://dx.doi.org/10.1161/01.CIR.0000151812.86142.45] [PMID: 15642764]
[81]
Gnecchi M, He H, Noiseux N, et al. Evidence supporting paracrine hypothesis for Akt-modified mesenchymal stem cell-mediated cardiac protection and functional improvement. FASEB J 2006; 20(6): 661-9.
[http://dx.doi.org/10.1096/fj.05-5211com] [PMID: 16581974]
[82]
Gurung S, Deane JA, Darzi S, Werkmeister JA, Gargett CE. In vivo survival of human endometrial mesenchymal stem cells transplanted under the kidney capsule of immunocompromised mice. Stem Cells Dev 2018; 27(1): 35-43.
[http://dx.doi.org/10.1089/scd.2017.0177] [PMID: 29105567]
[83]
Müller-Ehmsen J, Krausgrill B, Burst V, et al. Effective engraftment but poor mid-term persistence of mononuclear and mesenchymal bone marrow cells in acute and chronic rat myocardial infarction. J Mol Cell Cardiol 2006; 41(5): 876-84.
[http://dx.doi.org/10.1016/j.yjmcc.2006.07.023] [PMID: 16973174]
[84]
Leiker M, Suzuki G, Iyer VS, Canty JM Jr, Lee T. Assessment of a nuclear affinity labeling method for tracking implanted mesenchymal stem cells. Cell Transplant 2008; 17(8): 911-22.
[http://dx.doi.org/10.3727/096368908786576444] [PMID: 19069634]
[85]
Levit RD, Landázuri N, Phelps EA, et al. Cellular encapsulation enhances cardiac repair. J Am Heart Assoc 2013; 2(5): e000367.
[http://dx.doi.org/10.1161/JAHA.113.000367] [PMID: 24113327]
[86]
Iso Y, Spees JL, Serrano C, et al. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment. Biochem Biophys Res Commun 2007; 354(3): 700-6.
[http://dx.doi.org/10.1016/j.bbrc.2007.01.045] [PMID: 17257581]
[87]
Yuan MJ, Maghsoudi T, Wang T. Exosomes mediate the intercellular communication after myocardial infarction. Int J Med Sci 2016; 13(2): 113-6.
[http://dx.doi.org/10.7150/ijms.14112] [PMID: 26941569]
[88]
Purushothaman A. Exosomes from cell culture-conditioned medium: Isolation by ultracentrifugation and characterization. Methods Mol Biol 2019; 1952: 233-44.
[http://dx.doi.org/10.1007/978-1-4939-9133-4_19] [PMID: 30825179]
[89]
Wu X, Showiheen SAA, Sun AR, et al. Exosomes extraction and identification. Methods Mol Biol 2019; 2054: 81-91.
[http://dx.doi.org/10.1007/978-1-4939-9769-5_4] [PMID: 31482448]
[90]
Huang S, Wang L, Bruce TF, Marcus RK. Isolation and quantification of human urinary exosomes by hydrophobic interaction chromatography on a polyester capillary-channeled polymer fiber stationary phase. Anal Bioanal Chem 2019; 411(25): 6591-601.
[http://dx.doi.org/10.1007/s00216-019-02022-7] [PMID: 31372698]
[91]
Busatto S, Vilanilam G, Ticer T, et al. Tangential flow filtration for highly efficient concentration of extracellular vesicles from large volumes of fluid. Cells 2018; 7(12): E273.
[http://dx.doi.org/10.3390/cells7120273] [PMID: 30558352]
[92]
Baglio SR, Rooijers K, Koppers-Lalic D, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther 2015; 6: 127.
[http://dx.doi.org/10.1186/s13287-015-0116-z] [PMID: 26129847]
[93]
Wang K, Jiang Z, Webster KA, et al. Enhanced cardioprotection by human endometrium mesenchymal stem cells driven by exosomal MicroRNA-21. Stem Cells Transl Med 2017; 6(1): 209-22.
[http://dx.doi.org/10.5966/sctm.2015-0386] [PMID: 28170197]
[94]
Lopatina T, Bruno S, Tetta C, Kalinina N, Porta M, Camussi G. Platelet-derived growth factor regulates the secretion of extracellular vesicles by adipose mesenchymal stem cells and enhances their angiogenic potential. Cell Commun Signal 2014; 12: 26.
[http://dx.doi.org/10.1186/1478-811X-12-26] [PMID: 24725987]
[95]
Ma T, Fu B, Yang X, Xiao Y, Pan M. Adipose mesenchymal stem cell-derived exosomes promote cell proliferation, migration, and inhibit cell apoptosis via Wnt/β-catenin signaling in cutaneous wound healing. J Cell Biochem 2019; 120(6): 10847-54.
[http://dx.doi.org/10.1002/jcb.28376] [PMID: 30681184]
[96]
Cooper DR, Wang C, Patel R, et al. Human adipose-derived stem cell conditioned media and exosomes containing MALAT1 promote human dermal fibroblast migration and ischemic wound healing. Adv Wound Care 2018; 7(9): 299-308.
[http://dx.doi.org/10.1089/wound.2017.0775] [PMID: 30263873]
[97]
Blazquez R, Sanchez-Margallo FM, de la Rosa O, et al. Immunomodulatory potential of human adipose mesenchymal stem cells derived exosomes on in vitro stimulated T cells. Front Immunol 2014; 5: 556.
[http://dx.doi.org/10.3389/fimmu.2014.00556] [PMID: 25414703]
[98]
Yang WZ, Yang J, Xue LP, Xiao LB, Li Y. MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2. J Diabetes Complications 2017; 31(4): 653-63.
[http://dx.doi.org/10.1016/j.jdiacomp.2016.12.004] [PMID: 28131600]
[99]
Brooks DR, Burtner JL, Borrelli B, et al. Twelve-month outcomes of a group-randomized community health advocate-led smoking cessation intervention in public housing. Nicotine Tob Res 2018; 20(12): 1434-41.
[http://dx.doi.org/10.1093/ntr/ntx193] [PMID: 29145626]
[100]
Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovasc Res 2020; 116(2): 353-67.
[http://dx.doi.org/10.1093/cvr/cvz139] [PMID: 31119268]
[101]
Ni J, Liu X, Yin Y, Zhang P, Xu YW, Liu Z. Exosomes derived from TIMP2-modified human umbilical cord mesenchymal stem cells enhance the repair effect in rat model with myocardial infarction possibly by the Akt/Sfrp2 pathway. Oxid Med Cell Longev 2019; 2019: 1958941.
[http://dx.doi.org/10.1155/2019/1958941] [PMID: 31182988]
[102]
Farzaneh M, Rahimi F, Alishahi M, Khoshnam SE. paracrine mechanisms involved in mesenchymal stem cell differentiation into cardiomyocytes. Curr Stem Cell Res Ther 2019; 14(1): 9-13.
[http://dx.doi.org/10.2174/1574888X13666180821160421] [PMID: 30152289]
[103]
Kim BC, Poo H, Lee KH, Kim MN, Kwon OY, Shin KS. Mucilaginibacter angelicae sp. nov., isolated from the rhizosphere of Angelica polymorpha maxim. Int J Syst Evol Microbiol 2012; 62(Pt 1): 55-60.
[http://dx.doi.org/10.1099/ijs.0.029728-0] [PMID: 21317281]
[104]
Li Y, Yang R, Guo B, et al. Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochem Biophys Res Commun 2019; 514(1): 323-8.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.138] [PMID: 31036323]
[105]
Zhu LP, Tian T, Wang JY, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics 2018; 8(22): 6163-77.
[http://dx.doi.org/10.7150/thno.28021] [PMID: 30613290]
[106]
Ma T, Chen Y, Chen Y, et al. MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells Int 2018; 2018: 3290372.
[http://dx.doi.org/10.1155/2018/3290372] [PMID: 30271437]
[107]
Luther KM, Haar L, McGuinness M, et al. Exosomal miR-21a-5p mediates cardioprotection by mesenchymal stem cells. J Mol Cell Cardiol 2018; 119: 125-37.
[http://dx.doi.org/10.1016/j.yjmcc.2018.04.012] [PMID: 29698635]
[108]
Wang Y, Ding N, Guan G, et al. Rapid delivery of Hsa-miR-590-3p using targeted exosomes to treat acute myocardial infarction through regulation of the cell cycle. J Biomed Nanotechnol 2018; 14(5): 968-77.
[http://dx.doi.org/10.1166/jbn.2018.2493] [PMID: 29883566]
[109]
Chen Y, Zhao Y, Chen W, et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther 2017; 8(1): 268.
[http://dx.doi.org/10.1186/s13287-017-0722-z] [PMID: 29178928]
[110]
Atlas SA. Atrial natriuretic factor: renal and systemic effects. Hosp Pract (Off Ed) 1986; 21(7): 67-77.
[PMID: 2941446]
[111]
Moisseiev E, Anderson JD, Oltjen S, et al. Protective effect of intravitreal administration of exosomes derived from mesenchymal stem cells on retinal ischemia. Curr Eye Res 2017; 42(10): 1358-67.
[http://dx.doi.org/10.1080/02713683.2017.1319491] [PMID: 28636406]
[112]
Kang K, Ma R, Cai W, et al. Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction. Stem Cells Int 2015; 2015: 659890.
[http://dx.doi.org/10.1155/2015/659890] [PMID: 26074976]
[113]
Yu B, Kim HW, Gong M, et al. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int J Cardiol 2015; 182: 349-60.
[http://dx.doi.org/10.1016/j.ijcard.2014.12.043] [PMID: 25590961]
[114]
He JG, Li HR, Han JX, et al. GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Sci Rep 2018; 8(1): 9047.
[http://dx.doi.org/10.1038/s41598-018-27435-9] [PMID: 29899566]
[115]
Gong XH, Liu H, Wang SJ, Liang SW, Wang GG. Exosomes derived from SDF1-overexpressing mesenchymal stem cells inhibit ischemic myocardial cell apoptosis and promote cardiac endothelial microvascular regeneration in mice with myocardial infarction. J Cell Physiol 2019; 234(8): 13878-93.
[http://dx.doi.org/10.1002/jcp.28070] [PMID: 30720220]
[116]
Zhang CS, Shao K, Liu CW, Li CJ, Yu BT. Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. Eur Rev Med Pharmacol Sci 2019; 23(15): 6691-9.
[PMID: 31378912]
[117]
Xiao C, Wang K, Xu Y, et al. Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circ Res 2018; 123(5): 564-78.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312758] [PMID: 29921652]
[118]
Zhu J, Lu K, Zhang N, et al. Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artif Cells Nanomed Biotechnol 2018; 46(8): 1659-70.
[PMID: 29141446]
[119]
Feng Y, Huang W, Wani M, Yu X, Ashraf M. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One 2014; 9(2): e88685.
[http://dx.doi.org/10.1371/journal.pone.0088685] [PMID: 24558412]
[120]
Si YL, Zhao YL, Hao HJ, Fu XB, Han WD. MSCs: Biological characteristics, clinical applications and their outstanding concerns. Ageing Res Rev 2011; 10(1): 93-103.
[http://dx.doi.org/10.1016/j.arr.2010.08.005] [PMID: 20727988]
[121]
Rojewski MT, Lotfi R, Gjerde C, et al. Translation of a standardized manufacturing protocol for mesenchymal stromal cells: A systematic comparison of validation and manufacturing data. Cytotherapy 2019; 21(4): 468-82.
[http://dx.doi.org/10.1016/j.jcyt.2019.03.001] [PMID: 30926359]
[122]
Wuchter P, Bieback K, Schrezenmeier H, et al. Standardization of good manufacturing practice-compliant production of bone marrow-derived human mesenchymal stromal cells for immunotherapeutic applications. Cytotherapy 2015; 17(2): 128-39.
[http://dx.doi.org/10.1016/j.jcyt.2014.04.002] [PMID: 24856898]
[123]
Hare JM, Traverse JH, Henry TD, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 2009; 54(24): 2277-86.
[http://dx.doi.org/10.1016/j.jacc.2009.06.055] [PMID: 19958962]
[124]
Hare JM, Fishman JE, Gerstenblith G, et al. Comparison of allogeneic vs autologous bone marrow–derived mesenchymal stem cells delivered by transendocardial injection in patients with ischemic cardiomyopathy: the POSEIDON randomized trial. JAMA 2012; 308(22): 2369-79.
[http://dx.doi.org/10.1001/jama.2012.25321] [PMID: 23117550]
[125]
Heldman AW, DiFede DL, Fishman JE, et al. Transendocardial mesenchymal stem cells and mononuclear bone marrow cells for ischemic cardiomyopathy: The TAC-HFT randomized trial. JAMA 2014; 311(1): 62-73.
[http://dx.doi.org/10.1001/jama.2013.282909] [PMID: 24247587]
[126]
Florea V, Rieger AC, DiFede DL, et al. Dose comparison study of allogeneic mesenchymal stem cells in patients with ischemic cardiomyopathy (The TRIDENT Study). Circ Res 2017; 121(11): 1279-90.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.311827] [PMID: 28923793]
[127]
Bartunek J, Behfar A, Dolatabadi D, et al. Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. J Am Coll Cardiol 2013; 61(23): 2329-38.
[http://dx.doi.org/10.1016/j.jacc.2013.02.071] [PMID: 23583246]
[128]
Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with severe ischaemic heart failure: A randomized placebo-controlled trial (MSC-HF trial). Eur Heart J 2015; 36(27): 1744-53.
[http://dx.doi.org/10.1093/eurheartj/ehv136] [PMID: 25926562]
[129]
Bartunek J, Terzic A, Davison BA, et al. Cardiopoietic cell therapy for advanced ischaemic heart failure: results at 39 weeks of the prospective, randomized, double blind, sham-controlled CHART-1 clinical trial. Eur Heart J 2017; 38(9): 648-60.
[PMID: 28025189]
[130]
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure: A Phase 1/2 Randomized Controlled Trial (RIMECARD Trial [Randomized Clinical Trial of Intravenous Infusion Umbilical Cord Mesenchymal Stem Cells on Cardiopathy]). Circ Res 2017; 121(10): 1192-204.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310712] [PMID: 28974553]
[131]
Karantalis V, DiFede DL, Gerstenblith G, et al. Autologous mesenchymal stem cells produce concordant improvements in regional function, tissue perfusion, and fibrotic burden when administered to patients undergoing coronary artery bypass grafting: The Prospective Randomized Study of Mesenchymal Stem Cell Therapy in Patients Undergoing Cardiac Surgery (PROMETHEUS) trial. Circ Res 2014; 114(8): 1302-10.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303180] [PMID: 24565698]
[132]
Guijarro D, Lebrin M, Lairez O, et al. Intramyocardial transplantation of mesenchymal stromal cells for chronic myocardial ischemia and impaired left ventricular function: Results of the MESAMI 1 pilot trial. Int J Cardiol 2016; 209: 258-65.
[http://dx.doi.org/10.1016/j.ijcard.2016.02.016] [PMID: 26901787]
[133]
Mathiasen AB, Haack-Sørensen M, Jørgensen E, Kastrup J. Autotransplantation of mesenchymal stromal cells from bone-marrow to heart in patients with severe stable coronary artery disease and refractory angina-final 3-year follow-up. Int J Cardiol 2013; 170(2): 246-51.
[http://dx.doi.org/10.1016/j.ijcard.2013.10.079] [PMID: 24211066]
[134]
Viswanathan C, Davidson Y, Cooper K, Tipnis S, Pujari G, Kurian VM. Tansplantation of autologous bone marrow derived mesenchymal stem cells trans-epicardially in patients undergoing coronary bypass surgery. Indian Heart J 2010; 62(1): 43-8.
[PMID: 21180034]
[135]
Wang JA, Xie XJ, He H, et al. [A prospective, randomized, controlled trial of autologous mesenchymal stem cells transplantation for dilated cardiomyopathy]. Zhonghua Xin Xue Guan Bing Za Zhi 2006; 34(2): 107-10.
[PMID: 16626573]
[136]
Kastrup J, Haack-Sørensen M, Juhl M, et al. Cryopreserved off-the-shelf allogeneic adipose-derived stromal cells for therapy in patients with ischemic heart disease and heart failure-a safety study. Stem Cells Transl Med 2017; 6(11): 1963-71.
[http://dx.doi.org/10.1002/sctm.17-0040] [PMID: 28880460]
[137]
Bolli R, Hare JM, March KL, et al. Rationale and design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit+ Cardiac Stem Cells As Regenerative Therapy for Heart Failure). Circ Res 2018; 122(12): 1703-15.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312978] [PMID: 29703749]
[138]
Nasseri BA, Ebell W, Dandel M, et al. Autologous CD133+ bone marrow cells and bypass grafting for regeneration of ischaemic myocardium: The Cardio133 trial. Eur Heart J 2014; 35(19): 1263-74.
[http://dx.doi.org/10.1093/eurheartj/ehu007] [PMID: 24497345]
[139]
Chugh AR, Beache GM, Loughran JH, et al. Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: Surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 2012; 126(11): S54-64.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.092627] [PMID: 22965994]
[140]
Martino H, Brofman P, Greco O, et al. Multicentre, randomized, double-blind trial of intracoronary autologous mononuclear bone marrow cell injection in non-ischaemic dilated cardiomyopathy (the dilated cardiomyopathy arm of the MiHeart study). Eur Heart J 2015; 36(42): 2898-904.
[http://dx.doi.org/10.1093/eurheartj/ehv477] [PMID: 26392433]
[141]
Hamshere S, Arnous S, Choudhury T, et al. Randomized trial of combination cytokine and adult autologous bone marrow progenitor cell administration in patients with non-ischaemic dilated cardiomyopathy: The REGENERATE-DCM clinical trial. Eur Heart J 2015; 36(44): 3061-9.
[http://dx.doi.org/10.1093/eurheartj/ehv390] [PMID: 26333366]
[142]
Paitazoglou C, Bergmann MW, Vrtovec B, et al. Rationale and design of the European multicentre study on Stem Cell therapy in IschEmic Non-treatable Cardiac diseasE (SCIENCE). Eur J Heart Fail 2019; 21(8): 1032-41.
[http://dx.doi.org/10.1002/ejhf.1412] [PMID: 30790396]
[143]
Yang Y, Lei D, Huang S, et al. Elastic 3D-printed hybrid polymeric scaffold improves cardiac remodeling after myocardial infarction. Adv Healthc Mater 2019; 8(10): e1900065.
[http://dx.doi.org/10.1002/adhm.201900065] [PMID: 30941925]
[144]
Maiullari F, Costantini M, Milan M, et al. A multi-cellular 3D bioprinting approach for vascularized heart tissue engineering based on HUVECs and iPSC-derived cardiomyocytes. Sci Rep 2018; 8(1): 13532.
[http://dx.doi.org/10.1038/s41598-018-31848-x] [PMID: 30201959]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy