Generic placeholder image

Current Proteomics

Editor-in-Chief

ISSN (Print): 1570-1646
ISSN (Online): 1875-6247

Research Article

Soy Protein Remnants Digested by Gastro-duodenal Proteases can Alter Microbial Interactions and Intestinal Cholesterol Absorption

Author(s): Juyoung Lee , Yujin Yum , Sunghee Kim , Dorsilla Anono Katimbwa and Jinkyu Lim *

Volume 18, Issue 2, 2021

Published on: 05 March, 2020

Page: [212 - 223] Pages: 12

DOI: 10.2174/1570164617666200305113924

Price: $65

Abstract

Background: Although the food quality of soy protein is known to be as good as that of animal proteins, some soybean proteins are not susceptible to digestion and remain undigested in the intestine. We hypothesized that digestion-resistant soy proteins might interact with the intestinal membrane, microbes, and metabolites, and change the intestinal physiology or the profile of the gut microbiome.

Objective: To identify the Protease-Resistant Soy Proteins (PRSPs) and their interaction with intestinal membrane proteins by MS, and to assess the functions of PRSPs in the small intestine.

Methods: Soy proteins were sequentially digested with pepsin and pancreatin, and the PRSPs were identified by SDS-PAGE and MS. Intestinal cell membrane proteins interacting with PRSPs were isolated by affinity purification and photo-affinity crosslinking, and identified using MS/MS. Inhibition of cholesterol absorption to lipoprotein-depleted intestinal cells, CaCo-2, and hepatic cells, HepG2, was measured in the presence and absence of PRSPs. FITC-conjugated Gram-positive, Lactobacillus plantarum, and Gram-negative bacteria, Escherichia coli, were incubated with Ca- Co-2 cells in the presence of PRSPs to investigate the regulation of bacterial cell binding to intestinal epithelial cells by PRSPs.

Results: MS/MS of PRSPs identified glycinin, β-conglycinin, trypsin inhibitors, lipoxygenase, and sucrose-binding protein. MS analysis also identified the intestinal membrane proteins bound to PRSPs. The functions of the identified interacting proteins included ion transportation, carbohydrate- binding, cytoskeleton formation, hydrolysis, cell-cell junction formation, and cholesterol/steroid- binding. In particular, apolipoprotein E, aminopeptidase N, and Niemann-Pick C1-like protein 1 are known to be involved in cholesterol absorption in the small intestine. The inhibition of cholesterol absorption by CaCo-2 and HepG2 cells by PRSPs confirmed the MS results. Binding of L. plantarum and E. coli to CaCo-2 cells was efficiently inhibited by PRSPs.

Conclusion: PRSPs can interact with intestinal membrane proteins, and regulate cholesterol absorption by intestinal epithelial cell and interactions of the gut microbiome. Soy protein in the intestine acts as a nutrient, and triggers changes in intestinal functions by interacting with intestinal cells, microorganisms, and nutrients. These findings will provide valuable new functional information about the effects of soy proteins on human health.

Keywords: Soy proteins, pepsin- and pancreatin-resistant proteins, gut epithelial cells, interacting proteins, bacterial cell binding, cholesterol transport.

Graphical Abstract

[1]
He, F.J.; Chen, J.Q. Consumption of soybean, soy foods, soy isoflavones and breast cancer incidence: Differences between Chinese women and women in Western countries and possible mechanisms. Food Sci. Hum. Wellness, 2013, 2, 146-161.
[http://dx.doi.org/10.1016/j.fshw.2013.08.002]
[2]
Messina, M. Soy and health update: Evaluation of the clinical and epidemiologic literature. Nutrients, 2016, 8(12), 754.
[http://dx.doi.org/10.3390/nu8120754] [PMID: 27886135]
[3]
Lima, A.; Oliveira, J.; Saúde, F.; Mota, J.; Ferreira, R.B. Proteins in soy might have a higher role in cancer prevention than previously expected: soybean protein fractions are more effective MMP-9 inhibitors than non-protein fractions, even in cooked seeds. Nutrients, 2017, 9(3), 201.
[http://dx.doi.org/10.3390/nu9030201] [PMID: 28264435]
[4]
Aoyama, T.; Fukui, K.; Takamatsu, K.; Hashimoto, Y.; Yamamoto, T. Soy protein isolate and its hydrolysate reduce body fat of dietary obese rats and genetically obese mice (yellow KK). Nutrition, 2000, 16(5), 349-354.
[http://dx.doi.org/10.1016/S0899-9007(00)00230-6] [PMID: 10793303]
[5]
Hoffman, J.R.; Falvo, M.J. Protein - which is best? J. Sports Sci. Med., 2004, 3(3), 118-130.
[PMID: 24482589]
[6]
Hughes, G.J.; Ryan, D.J.; Mukherjea, R.; Schasteen, C.S. Protein Digestibility-Corrected Amino Acid Scores (PDCAAS) for soy protein isolates and concentrate: criteria for evaluation. J. Agric. Food Chem., 2011, 59(23), 12707-12712.
[http://dx.doi.org/10.1021/jf203220v] [PMID: 22017752]
[7]
Ou, S.; Kwok, K.C.; Kang, Y. Changes in in vitro digestibility and available lysine of soy protein isolate after formation of film. J. Food Eng., 2004, 64, 301-305.
[http://dx.doi.org/10.1016/j.jfoodeng.2003.10.013]
[8]
Lallès, J.P.; Tukur, H.M.; Salgado, P.; Mills, E.N.; Morgan, M.R.; Quillien, L.; Levieux, D.; Toullec, R. Immunochemical studies on gastric and intestinal digestion of soybean glycinin and beta-conglycinin in vivo . J. Agric. Food Chem., 1999, 47(7), 2797-2806.
[http://dx.doi.org/10.1021/jf980882+] [PMID: 10552568]
[9]
Hashidume, T.; Kato, A.; Tanaka, T.; Miyoshi, S.; Itoh, N.; Nakata, R.; Inoue, H.; Oikawa, A.; Nakai, Y.; Shimizu, M.; Inoue, J.; Sato, R. Single ingestion of soy β-conglycinin induces increased postprandial circulating FGF21 levels exerting beneficial health effects. Sci. Rep., 2016, 6, 28183.
[http://dx.doi.org/10.1038/srep28183] [PMID: 27312476]
[10]
Deibert, P.; König, D.; Schmidt-Trucksaess, A.; Zaenker, K.S.; Frey, I.; Landmann, U.; Berg, A. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high- soy-protein diet. Int. J. Obes. Relat. Metab. Disord., 2004, 28(10), 1349-1352.
[http://dx.doi.org/10.1038/sj.ijo.0802765] [PMID: 15303108]
[11]
Moriyama, T.; Kishimoto, K.; Nagai, K.; Urade, R.; Ogawa, T.; Utsumi, S.; Maruyama, N.; Maebuchi, M. Soybean beta-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci. Biotechnol. Biochem., 2004, 68(2), 352-359.
[http://dx.doi.org/10.1271/bbb.68.352] [PMID: 14981298]
[12]
Wanezaki, S.; Tachibana, N.; Nagata, M.; Saito, S.; Nagao, K.; Yanagita, T.; Kohno, M. Soy β-conglycinin improves obesity-induced metabolic abnormalities in a rat model of nonalcoholic fatty liver disease. Obes. Res. Clin. Pract., 2015, 9(2), 168-174.
[http://dx.doi.org/10.1016/j.orcp.2014.03.005] [PMID: 25890430]
[13]
Watanabe, K.; Igarashi, M.; Li, X.; Nakatani, A.; Miyamoto, J.; Inaba, Y.; Sutou, A.; Saito, T.; Sato, T.; Tachibana, N.; Inoue, H.; Kimura, I. Dietary soybean protein ameliorates high-fat diet-induced obesity by modifying the gut microbiota-dependent biotransformation of bile acids. PLoS One, 2018, 13(8), e0202083.
[http://dx.doi.org/10.1371/journal.pone.0202083] [PMID: 30102711]
[14]
Ercolini, D.; Fogliano, V. Food design to feed the human gut microbiota. J. Agric. Food Chem., 2018, 66(15), 3754-3758.
[http://dx.doi.org/10.1021/acs.jafc.8b00456] [PMID: 29565591]
[15]
Zhang, N.; Ju, Z.; Zuo, T. Time for food: the impact of diet on gut microbiota and human health. Nutrition, 2018, 51-52, 80-85.
[http://dx.doi.org/10.1016/j.nut.2017.12.005] [PMID: 29621737]
[16]
Conlon, M.A.; Bird, A.R. The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 2014, 7(1), 17-44.
[http://dx.doi.org/10.3390/nu7010017] [PMID: 25545101]
[17]
Lim, J.K. Development of methods for protein extraction from three major Korean fermented soy foods for 2-dimensional gel and mass spectrometric analyses. J. Appl. Biol. Chem., 2008, 51, 88-94.
[http://dx.doi.org/10.3839/jabc.2008.022]
[18]
De Angelis, E.; Pilolli, R.; Bavaro, S.L.; Monaci, L. Insight into the gastro-duodenal digestion resistance of soybean proteins and potential implications for residual immunogenicity. Food Funct., 2017, 8(4), 1599-1610.
[http://dx.doi.org/10.1039/C6FO01788F] [PMID: 28294226]
[19]
Soskic, V.; Godovac-Zimmermann, J. Improvement of an in-gel tryptic digestion method for matrix-assisted laser desorption/ionization-time of flight mass spectrometry peptide mapping by use of volatile solubilizing agents. Proteomics, 2001, 1(11), 1364-1367.
[http://dx.doi.org/10.1002/1615-9861(200111)1:11<1364:AID-PROT1364>3.0.CO;2-H] [PMID: 11922596]
[20]
Hwang, S.I.; Lundgren, D.H.; Mayya, V.; Rezaul, K.; Cowan, A.E.; Eng, J.K.; Han, D.K. Systematic characterization of nuclear proteome during apoptosis: a quantitative proteomic study by differential extraction and stable isotope labeling. Mol. Cell. Proteomics, 2006, 5(6), 1131-1145.
[http://dx.doi.org/10.1074/mcp.M500162-MCP200] [PMID: 16540461]
[21]
Sadygov, R.G.; Liu, H.; Yates, J.R. Statistical models for protein validation using tandem mass spectral data and protein amino acid sequence databases. Anal. Chem., 2004, 76(6), 1664-1671.
[http://dx.doi.org/10.1021/ac035112y] [PMID: 15018565]
[22]
Salmi, J.; Nyman, T.A.; Nevalainen, O.S.; Aittokallio, T. Filtering strategies for improving protein identification in high-throughput MS/MS studies. Proteomics, 2009, 9(4), 848-860.
[http://dx.doi.org/10.1002/pmic.200800517] [PMID: 19160393]
[23]
Han, D.K.; Eng, J.; Zhou, H.; Aebersold, R. Quantitative profiling of differentiation-induced microsomal proteins using isotope-coded affinity tags and mass spectrometry. Nat. Biotechnol., 2001, 19(10), 946-951.
[http://dx.doi.org/10.1038/nbt1001-946] [PMID: 11581660]
[24]
Xia, K.; Pittelli, S.; Church, J.; Colón, W. Kinetic stability of proteins in beans and peas: implications for protein digestibility, seed germination, and plant adaptation. J. Agric. Food Chem., 2016, 64(40), 7649-7657.
[http://dx.doi.org/10.1021/acs.jafc.6b01965] [PMID: 27643830]
[25]
Riascos, J.J.; Weissinger, A.K.; Weissinger, S.M.; Burks, A.W. Hypoallergenic legume crops and food allergy: factors affecting feasibility and risk. J. Agric. Food Chem., 2010, 58(1), 20-27.
[http://dx.doi.org/10.1021/jf902526y] [PMID: 19921800]
[26]
Riascos, J.J.; Weissinger, S.M.; Weissinger, A.K.; Kulis, M.; Burks, A.W.; Pons, L. The Seed biotinylated protein of soybean (Glycine max): A boiling-resistant new allergen (Gly m 7) with the capacity to induce IgE-mediated allergic responses. J. Agric. Food Chem., 2016, 64(19), 3890-3900.
[http://dx.doi.org/10.1021/acs.jafc.5b05873] [PMID: 27108990]
[27]
Fu, T.J.; Abbott, U.R.; Hatzos, C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid-a comparative study. J. Agric. Food Chem., 2002, 50(24), 7154-7160.
[http://dx.doi.org/10.1021/jf020599h] [PMID: 12428975]
[28]
Swidsinski, A.; Loening-Baucke, V.; Lochs, H.; Hale, L.P. Spatial organization of bacterial flora in normal and inflamed intestine: A fluorescence in situ hybridization study in mice. World J. Gastroenterol., 2005, 11(8), 1131-1140.
[http://dx.doi.org/10.3748/wjg.v11.i8.1131] [PMID: 15754393]
[29]
Swidsinski, A.; Weber, J.; Loening-Baucke, V.; Hale, L.P.; Lochs, H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol., 2005, 43(7), 3380-3389.
[http://dx.doi.org/10.1128/JCM.43.7.3380-3389.2005] [PMID: 16000463]
[30]
Pajarillo, E.A.B.; Kim, S.H.; Valeriano, V.D.; Lee, J.Y.; Kang, D.K. Proteomic view of the crosstalk between Lactobacillus mucosae and intestinal epithelial cells in co-culture revealed by Q exactive-based quantitative proteomics. Front. Microbiol., 2017, 8, 2459.
[http://dx.doi.org/10.3389/fmicb.2017.02459] [PMID: 29312173]
[31]
Kato, K.; Ishiwa, A. The role of carbohydrates in infection strategies of enteric pathogens. Trop. Med. Health, 2015, 43(1), 41-52.
[http://dx.doi.org/10.2149/tmh.2014-25] [PMID: 25859152]
[32]
Levy, E.; Spahis, S.; Sinnett, D.; Peretti, N.; Maupas-Schwalm, F.; Delvin, E.; Lambert, M.; Lavoie, M.A. Intestinal cholesterol transport proteins: an update and beyond. Curr. Opin. Lipidol., 2007, 18(3), 310-318.
[http://dx.doi.org/10.1097/MOL.0b013e32813fa2e2] [PMID: 17495606]
[33]
Altmann, S.W.; Davis, H.R., Jr; Zhu, L.J.; Yao, X.; Hoos, L.M.; Tetzloff, G.; Iyer, S.P.N.; Maguire, M.; Golovko, A.; Zeng, M.; Wang, L.; Murgolo, N.; Graziano, M.P. Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science, 2004, 303(5661), 1201-1204.
[http://dx.doi.org/10.1126/science.1093131] [PMID: 14976318]
[34]
Kramer, W.; Girbig, F.; Corsiero, D.; Pfenninger, A.; Frick, W.; Jähne, G.; Rhein, M.; Wendler, W.; Lottspeich, F.; Hochleitner, E.O.; Orsó, E.; Schmitz, G.; Aminopeptidase, N. CD13) is a molecular target of the cholesterol absorption inhibitor ezetimibe in the enterocyte brush border membrane. J. Biol. Chem., 2005, 280(2), 1306-1320.
[http://dx.doi.org/10.1074/jbc.M406309200] [PMID: 15494415]
[35]
Greco, D.; Battista, S.; Mele, L.; Piemontese, A.; Papotti, B.; Cavazzini, S.; Potì, F.; Di Rocco, G.; Poli, A.; Bernini, F.; Zanotti, I. Alcohol pattern consumption differently affects the efficiency of macrophage reverse cholesterol transport in vivo. Nutrients, 2018, 10(12), 1885.
[http://dx.doi.org/10.3390/nu10121885] [PMID: 30513887]
[36]
Getz, G.S.; Reardon, C.A. Apoprotein E and reverse cholesterol transport. Int. J. Mol. Sci., 2018, 19(11), 3479.
[http://dx.doi.org/10.3390/ijms19113479] [PMID: 30404132]
[37]
Nagaoka, S.; Miwa, K.; Eto, M.; Kuzuya, Y.; Hori, G.; Yamamoto, K. Soy protein peptic hydrolysate with bound phospholipids decreases micellar solubility and cholesterol absorption in rats and caco-2 cells. J. Nutr., 1999, 129(9), 1725-1730.
[http://dx.doi.org/10.1093/jn/129.9.1725] [PMID: 10460211]
[38]
Nagaoka, S.; Awano, T.; Nagata, N.; Masaoka, M.; Hori, G.; Hashimoto, K. Serum cholesterol reduction and cholesterol absorption inhibition in CaCo-2 cells by a soyprotein peptic hydrolyzate. Biosci. Biotechnol. Biochem., 1997, 61(2), 354-356.
[http://dx.doi.org/10.1271/bbb.61.354] [PMID: 9058976]
[39]
Ramdath, D.D.; Padhi, E.M.; Sarfaraz, S.; Renwick, S.; Duncan, A.M. Beyond the cholesterol-lowering effect of soy protein: a review of the effects of dietary soy and its constituents on risk factors for cardiovascular disease. Nutrients, 2017, 9(4), 324.
[http://dx.doi.org/10.3390/nu9040324] [PMID: 28338639]
[40]
Jia, L.; Betters, J.L.; Yu, L. Niemann-Pick C1-Like 1 (NPC1L1) protein in intestinal and hepatic cholesterol transport. Annu. Rev. Physiol., 2011, 73, 239-259.
[http://dx.doi.org/10.1146/annurev-physiol-012110-142233] [PMID: 20809793]
[41]
Saida, S.; Watanabe, K.; Kato, I.; Fujino, H.; Umeda, K.; Okamoto, S.; Uemoto, S.; Hishiki, T.; Yoshida, H.; Tanaka, S.; Adachi, S.; Niwa, A.; Nakahata, T.; Heike, T. Prognostic significance of aminopeptidase-N (CD13) in hepatoblastoma. Pediatr. Int., 2015, 57(4), 558-566.
[http://dx.doi.org/10.1111/ped.12597] [PMID: 25682862]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy