Review Article

阿片类生长因子及其衍生物作为潜在的无毒多功能抗癌和镇痛化合物

卷 28, 期 4, 2021

发表于: 04 March, 2020

页: [673 - 686] 页: 14

弟呕挨: 10.2174/0929867327666200304122406

价格: $65

摘要

尽管在癌症发病机制、分子生物学、诊断、治疗和预防等方面的研究取得了重大进展,但在世界范围内,其发病率和死亡率仍居高不下。癌细胞对抗癌药物的耐药性仍然是当今肿瘤学的一个重大问题。此外,一个重要的挑战是抗癌药物不能选择性靶向肿瘤细胞,从而保留健康细胞。阿片类生长因子(OGF),化学名称为MET -脑啡肽,是一种新的潜在的有效和安全治疗选择。它是一种内源性五肽(Tyr- Gly - Gly - Phee - Met),具有抗肿瘤、镇痛和增强免疫功能。临床试验表明,单独使用OGF治疗,以及与标准化疗相结合,是一种安全、无毒的抗癌药物,可以缩小肿瘤大小。本文就OGF及其类似物的构效关系作一综述。我们还强调了具有镇痛、免疫调节活性和穿透血脑屏障能力的OGF衍生物,并可能作为安全药物用于提高癌症患者的化疗疗效和改善生活质量。这些综述表明,蛋氨酸脑啡肽及其类似物是开发新型、无毒、具有镇痛活性的抗癌药物的重要候选药物。我们需要更多的临床前和临床研究来探索这些机会。

关键词: 阿片类生长因子,脑啡肽,类似物,抗癌治疗,多功能化合物,靶向治疗

[1]
International Agency for Research on Cancer, 2018. Available at: https://www.who.int/news-room/fact-sheets/detail/cancer (Accessed Date: July 7, 2019).
[2]
Zagon, I.S.; McLaughlin, P.J. Opioid growth factor and the treatment of human pancreatic cancer: a review. World J. Gastroenterol., 2014, 20(9), 2218-2223.
[http://dx.doi.org/10.3748/wjg.v20.i9.2218] [PMID: 24605021]
[3]
Suzuki, M.; Chiwaki, F.; Sawada, Y.; Ashikawa, M.; Aoyagi, K.; Fujita, T.; Yanagihara, K.; Komatsu, M.; Narita, M.; Suzuki, T.; Nagase, H.; Kushima, R.; Sakamoto, H.; Fukagawa, T.; Katai, H.; Nakagama, H.; Yoshida, T.; Uezono, Y.; Sasaki, H. Peripheral opioid antagonist enhances the effect of anti-tumor drug by blocking a cell growth-suppressive pathway in vivo. PLoS One, 2015, 10(4)e0123407
[http://dx.doi.org/10.1371/journal.pone.0123407] [PMID: 25853862]
[4]
Seidah, N.G.; Chrétien, M. Eukaryotic protein processing: endoproteolysis of precursor proteins. Curr. Opin. Biotechnol., 1997, 8(5), 602-607.
[http://dx.doi.org/10.1016/S0958-1669(97)80036-5] [PMID: 9353231]
[5]
Blebea, J.; Mazo, J.E.; Kihara, T.K.; Vu, J-H.; McLaughlin, P.J.; Atnip, R.G.; Zagon, I.S. Opioid growth factor modulates angiogenesis. J. Vasc. Surg., 2000, 32(2), 364-373.
[http://dx.doi.org/10.1067/mva.2000.107763b] [PMID: 10917997]
[6]
Bajpai, K.; Singh, V.K.; Agarwal, S.S.; Dhawan, V.C.; Naqvi, T.; Haq, W.; Mathur, K.B. Immunomodulatory activity of met-enkephalin and its two potent analogs. Int. J. Immunopharmacol., 1995, 17(3), 207-212.
[http://dx.doi.org/10.1016/0192-0561(94)00080-8] [PMID: 7558515]
[7]
Janecka, A.; Staniszewska, R.; Gach, K.; Fichna, J. Enzymatic degradation of endomorphins. Peptides, 2008, 29(11), 2066-2073.
[http://dx.doi.org/10.1016/j.peptides.2008.07.015] [PMID: 18718496]
[8]
Beddell, C.R.; Clark, R.B.; Hardy, G.W.; Lowe, L.A.; Ubatuba, F.B.; Vane, J.R.; Wilkinson, S.; Chang, K-j.; Cuatrecasas, P.; Miller, R.J. Structural requirements for opioid activity of analogues of the Enkephalins. Proc. R. Soc. Lond. B Biol. Sci., 1977, 198(1132), 249-265.
[http://dx.doi.org/10.1098/rspb.1977.0096] [PMID: 19753]
[9]
Li, X.; Meng, Y.; Plotnikoff, N.P.; Youkilis, G.; Griffin, N.; Wang, E.; Lu, C.; Shan, F. Methionine enkephalin (MENK) inhibits tumor growth through regulating CD4+Foxp3+ regulatory T cells (Tregs) in mice. Cancer Biol. Ther., 2015, 16(3), 450-459.
[http://dx.doi.org/10.1080/15384047.2014.1003006] [PMID: 25701137]
[10]
Li, W.; Chen, W.; Herberman, R.B.; Plotnikoff, N.P.; Youkilis, G.; Griffin, N.; Wang, E.; Lu, C.; Shan, F. Immunotherapy of cancer via mediation of cytotoxic T lymphocytes by methionine enkephalin (MENK). Cancer Lett., 2014, 344(2), 212-222.
[http://dx.doi.org/10.1016/j.canlet.2013.10.029] [PMID: 24291668]
[11]
Karlin, A. Neuronal Information Transfer; Elsevier Science, 1978.
[12]
Frederickson, R.C.A. Enkephalin pentapeptides--a review of current evidence for a physiological role in vertebrate neurotransmission. Life Sci., 1977, 21(1), 23-42.
[http://dx.doi.org/10.1016/0024-3205(77)90421-0] [PMID: 18645]
[13]
Hughes, J.; Smith, T.W.; Kosterlitz, H.W.; Fothergill, L.A.; Morgan, B.A.; Morris, H.R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature, 1975, 258(5536), 577-580.
[http://dx.doi.org/10.1038/258577a0] [PMID: 1207728]
[14]
Kosterlitz, H.W.; Hughes, J. Some thoughts on the significance of enkephalin, the endogenous ligand. Life Sci., 1975, 17(1), 91-96.
[http://dx.doi.org/10.1016/0024-3205(75)90243-X] [PMID: 806763]
[15]
Udenfriend, S.; Kilpatrick, D.L. Biochemistry of the enkephalins and enkephalin-containing peptides. Arch. Biochem. Biophys., 1983, 221(2), 309-323.
[http://dx.doi.org/10.1016/0003-9861(83)90149-2] [PMID: 6340606]
[16]
Steiner, D.F. The proprotein convertases. Curr. Opin. Chem. Biol., 1998, 2(1), 31-39.
[http://dx.doi.org/10.1016/S1367-5931(98)80033-1] [PMID: 9667917]
[17]
Süudhof, T.C. Neurotransmitter Release in: Pharmacology of neurotransmitter release. Süudhof, T.C; Starke, K., Ed.; Springer: Berlin, Heidelberg, 2008, pp. 1-21.
[http://dx.doi.org/10.1007/978-3-540-74805-2]
[18]
Noble, F.; Roques, B.P. Protection of endogenous enkephalin catabolism as natural approach to novel analgesic and antidepressant drugs. Expert Opin. Ther. Targets, 2007, 11(2), 145-159.
[http://dx.doi.org/10.1517/14728222.11.2.145] [PMID: 17227231]
[19]
Waksman, G.; Hamel, E.; Fournié-Zaluski, M.C.; Roques, B.P. Autoradiographic comparison of the distribution of the neutral endopeptidase “enkephalinase” and of mu and delta opioid receptors in rat brain. Proc. Natl. Acad. Sci. USA, 1986, 83(5), 1523-1527.
[http://dx.doi.org/10.1073/pnas.83.5.1523] [PMID: 3006054]
[20]
Noble, F.; Banisadr, G.; Jardinaud, F.; Popovici, T.; Lai-Kuen, R.; Chen, H.; Bischoff, L.; Parsadaniantz, S.M.; Fournie-Zaluski, M.C.; Roques, B.P. First discrete autoradiographic distribution of aminopeptidase N in various structures of rat brain and spinal cord using the selective iodinated inhibitor [125I]RB 129. Neuroscience, 2001, 105(2), 479-488.
[http://dx.doi.org/10.1016/S0306-4522(01)00185-3] [PMID: 11672613]
[21]
Kakidani, H.; Furutani, Y.; Takahashi, H.; Noda, M.; Morimoto, Y.; Hirose, T.; Asai, M.; Inayama, S.; Nakanishi, S.; Numa, S. Cloning and sequence analysis of cDNA for porcine β-neo-endorphin/dynorphin precursor. Nature, 1982, 298(5871), 245-249.
[http://dx.doi.org/10.1038/298245a0] [PMID: 6123953]
[22]
Noda, M.; Furutani, Y.; Takahashi, H.; Toyosato, M.; Hirose, T.; Inayama, S.; Nakanishi, S.; Numa, S. Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature, 1982, 295(5846), 202-206.
[http://dx.doi.org/10.1038/295202a0] [PMID: 6276759]
[23]
Mansour, A.; Hoversten, M.T.; Taylor, L.P.; Watson, S.J.; Akil, H. The cloned μ, δ and κ receptors and their endogenous ligands: evidence for two opioid peptide recognition cores. Brain Res., 1995, 700(1-2), 89-98.
[http://dx.doi.org/10.1016/0006-8993(95)00928-J] [PMID: 8624732]
[24]
Fallon, J.H.; Leslie, F.M. Distribution of dynorphin and enkephalin peptides in the rat brain. J. Comp. Neurol., 1986, 249(3), 293-336.
[http://dx.doi.org/10.1002/cne.902490302] [PMID: 2874159]
[25]
Gall, C.; Brecha, N.; Karten, H.J.; Chang, K.J. Localization of enkephalin-like immunoreactivity to identified axonal and neuronal populations of the rat hippocampus. J. Comp. Neurol., 1981, 198(2), 335-350.
[http://dx.doi.org/10.1002/cne.901980211] [PMID: 6263955]
[26]
Denning, G.M.; Ackermann, L.W.; Barna, T.J.; Armstrong, J.G.; Stoll, L.L.; Weintraub, N.L.; Dickson, E.W. Proenkephalin expression and enkephalin release are widely observed in non-neuronal tissues. Peptides, 2008, 29(1), 83-92.
[http://dx.doi.org/10.1016/j.peptides.2007.11.004] [PMID: 18082911]
[27]
van den Brink, O.W.V.; Delbridge, L.M.; Rosenfeldt, F.L.; Penny, D.; Esmore, D.S.; Quick, D.; Kaye, D.M.; Pepe, S. Endogenous cardiac opioids: enkephalins in adaptation and protection of the heart. Heart Lung Circ., 2003, 12(3), 178-187.
[http://dx.doi.org/10.1046/j.1444-2892.2003.00240.x] [PMID: 16352129]
[28]
Le Merrer, J.; Becker, J.A.J.; Befort, K.; Kieffer, B.L. Reward processing by the opioid system in the brain. Physiol. Rev., 2009, 89(4), 1379-1412.
[http://dx.doi.org/10.1152/physrev.00005.2009] [PMID: 19789384]
[29]
Bodnar, R.J. Endogenous opiates and behavior: 2015. Peptides, 2017, 88, 126-188.
[http://dx.doi.org/10.1016/j.peptides.2016.12.004] [PMID: 28012859]
[30]
Henry, M.S.; Gendron, L.; Tremblay, M.E.; Drolet, G. Enkephalins: endogenous analgesics with an emerging role in stress resilience. Neural Plast., 2017, 20171546125
[http://dx.doi.org/10.1155/2017/1546125] [PMID: 28781901]
[31]
Zagon, I.S. The effect of heroin and naloxone on the growth of neuroblastoma tumors in mice. NIDA Res. Monogr., 1981, 34, 394-398.
[PMID: 6783951]
[32]
Zagon, I.S.; McLaughlin, P.J. Opioid antagonists inhibit the growth of metastatic murine neuroblastoma. Cancer Lett., 1983, 21(1), 89-94.
[http://dx.doi.org/10.1016/0304-3835(83)90087-3] [PMID: 6640516]
[33]
Zagon, I.S.; McLaughlin, P.J. Duration of opiate receptor blockade determines tumorigenic response in mice with neuroblastoma: a role for endogenous opioid systems in cancer. Life Sci., 1984, 35(4), 409-416.
[http://dx.doi.org/10.1016/0024-3205(84)90651-9] [PMID: 6087062]
[34]
Zagon, I.S.; Sassani, J.W.; Allison, G.; McLaughlin, P.J. Conserved expression of the opioid growth factor, [Met5]enkephalin, and the ζ (ζ) opioid receptor in vertebrate cornea. Brain Res., 1995, 671(1), 105-111.
[http://dx.doi.org/10.1016/0006-8993(94)01314-8] [PMID: 7728521]
[35]
Zagon, I.S.; McLaughlin, P.J. Identification of opioid peptides regulating proliferation of neurons and glia in the developing nervous system. Brain Res., 1991, 542(2), 318-323.
[http://dx.doi.org/10.1016/0006-8993(91)91585-O] [PMID: 2029640]
[36]
Leslie, F.M. Methods used for the study of opioid receptors. Pharmacol. Rev., 1987, 39(3), 197-249.
[PMID: 2827196]
[37]
McLaughlin, P.J.; Zagon, I.S. The opioid growth factor-opioid growth factor receptor axis: homeostatic regulator of cell proliferation and its implications for health and disease. Biochem. Pharmacol., 2012, 84(6), 746-755.
[http://dx.doi.org/10.1016/j.bcp.2012.05.018] [PMID: 22687282]
[38]
Zagon, I.S.; Verderame, M.F.; Zimmer, W.E.; McLaughlin, P.J. Molecular characterization and distribution of the opioid growth factor receptor (OGFr) in mouse. Brain Res. Mol. Brain Res., 2000, 84(1-2), 106-114.
[http://dx.doi.org/10.1016/S0169-328X(00)00232-1] [PMID: 11113537]
[39]
Zagon, I.S.; Gibo, D.M.; McLaughlin, P.J. Zeta (zeta), a growth-related opioid receptor in developing rat cerebellum: identification and characterization. Brain Res., 1991, 551(1-2), 28-35.
[http://dx.doi.org/10.1016/0006-8993(91)90909-F] [PMID: 1655161]
[40]
Zagon, I.S.; Goodman, S.R.; McLaughlin, P.J. ζ (ζ), the opioid growth factor receptor: identification and characterization of binding subunits. Brain Res., 1993, 605(1), 50-56.
[http://dx.doi.org/10.1016/0006-8993(93)91355-V] [PMID: 8385541]
[41]
Zagon, I.S.; Ruth, T.B.; McLaughlin, P.J. Nucleocytoplasmic distribution of opioid growth factor and its receptor in tongue epithelium. Anat. Rec. Part A Discov. Mol. Cell. Evol. Biol., 2004, 282(1), 24-37.
[http://dx.doi.org/10.1002/ar.a.20161] [PMID: 15584033]
[42]
Cheng, F.; McLaughlin, P.J.; Banks, W.A.; Zagon, I.S. Internalization of the opioid growth factor, [Met5]-enkephalin, is dependent on clathrin-mediated endocytosis for downregulation of cell proliferation. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2010, 299(3), R774-R785.
[http://dx.doi.org/10.1152/ajpregu.00318.2010] [PMID: 20592180]
[43]
Zagon, I.S.; Sassani, J.W.; McLaughlin, P.J. Adaptation of homeostatic ocular surface epithelium to chronic treatment with the opioid antagonist naltrexone. Cornea, 2006, 25(7), 821-829.
[http://dx.doi.org/10.1097/01.ico.0000224646.66472.aa] [PMID: 17068460]
[44]
Zagon, I.S.; Sassani, J.W.; Kane, E.R.; McLaughlin, P.J. Homeostasis of ocular surface epithelium in the rat is regulated by opioid growth factor. Brain Res., 1997, 759(1), 92-102.
[http://dx.doi.org/10.1016/S0006-8993(97)00238-2] [PMID: 9219867]
[45]
Zagon, I.S.; Sassani, J.W.; Verderame, M.F.; McLaughlin, P.J. Particle-mediated gene transfer of opioid growth factor receptor cDNA regulates cell proliferation of the corneal epithelium. Cornea, 2005, 24(5), 614-619.
[http://dx.doi.org/10.1097/01.ico.0000153561.89902.57] [PMID: 15968171]
[46]
Zagon, I.S.; Roesener, C.D.; Verderame, M.F.; Ohlsson-Wilhelm, B.M.; Levin, R.J.; McLaughlin, P.J. Opioid growth factor regulates the cell cycle of human neoplasias. Int. J. Oncol., 2000, 17(5), 1053-1061.
[http://dx.doi.org/10.3892/ijo.17.5.1053] [PMID: 11029512]
[47]
Cheng, F.; McLaughlin, P.J.; Verderame, M.F.; Zagon, I.S. The OGF-OGFr axis utilizes the p16INK4a and p21WAF1/CIP1 pathways to restrict normal cell proliferation. Mol. Biol. Cell, 2009, 20(1), 319-327.
[http://dx.doi.org/10.1091/mbc.e08-07-0681] [PMID: 18923142]
[48]
Janković, B.D.; Radulović, J. Enkephalins, brain and immunity: modulation of immune responses by methionine-enkephalin injected into the cerebral cavity. Int. J. Neurosci., 1992, 67(1-4), 241-270.
[http://dx.doi.org/10.3109/00207459208994788] [PMID: 1305637]
[49]
Jiao, X.; Wang, X.; Wang, R.; Geng, J.; Liu, N.; Chen, H.; Griffin, N.; Shan, F. Rules to activate CD8+T cells through regulating subunits of opioid receptors by methionine enkephalin (MENK). Int. Immunopharmacol., 2018, 65, 76-83.
[http://dx.doi.org/10.1016/j.intimp.2018.09.040] [PMID: 30290369]
[50]
Zhang, K.; Yang, J.; Ao, N.; Jin, S.; Qi, R.; Shan, F.; Du, J. Methionine enkephalin (MENK) regulates the immune pathogenesis of type 2 diabetes mellitus via the IL-33/ST2 pathway. Int. Immunopharmacol., 2019, 73, 23-40.
[http://dx.doi.org/10.1016/j.intimp.2019.04.054] [PMID: 31078923]
[51]
Zagon, I.S.; Donahue, R.N.; McLaughlin, P.J. Opioid growth factor-opioid growth factor receptor axis is a physiological determinant of cell proliferation in diverse human cancers. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2009, 297(4), R1154-R1161.
[http://dx.doi.org/10.1152/ajpregu.00414.2009] [PMID: 19675283]
[52]
Zhao, D.; Plotnikoff, N.; Griffin, N.; Song, T.; Shan, F. Methionine enkephalin, its role in immunoregulation and cancer therapy. Int. Immunopharmacol., 2016, 37, 59-64.
[http://dx.doi.org/10.1016/j.intimp.2016.02.015] [PMID: 26927200]
[53]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[54]
Zagon, I.S.; Jaglowski, J.R.; Verderame, M.F.; Smith, J.P.; Leure-Dupree, A.E.; McLaughlin, P.J. Combination chemotherapy with gemcitabine and biotherapy with opioid growth factor (OGF) enhances the growth inhibition of pancreatic adenocarcinoma. Cancer Chemother. Pharmacol., 2005, 56(5), 510-520.
[http://dx.doi.org/10.1007/s00280-005-1028-x] [PMID: 15947928]
[55]
Zagon, I.S.; Kreiner, S.; Heslop, J.J.; Conway, A.B.; Morgan, C.R.; McLaughlin, P.J. Prevention and delay in progression of human pancreatic cancer by stable overexpression of the opioid growth factor receptor. Int. J. Oncol., 2008, 33(2), 317-323.
[PMID: 18636152]
[56]
Smith, J.P.; Conter, R.L.; Bingaman, S.I.; Harvey, H.A.; Mauger, D.T.; Ahmad, M.; Demers, L.M.; Stanley, W.B.; McLaughlin, P.J.; Zagon, I.S. Treatment of advanced pancreatic cancer with opioid growth factor: phase I. Anticancer Drugs, 2004, 15(3), 203-209.
[http://dx.doi.org/10.1097/00001813-200403000-00003] [PMID: 15014352]
[57]
Smith, J.P.; Bingaman, S.I.; Mauger, D.T.; Harvey, H.H.; Demers, L.M.; Zagon, I.S. Opioid growth factor improves clinical benefit and survival in patients with advanced pancreatic cancer. Open Access J. Clin. Trials, 2010, 2010(2), 37-48.
[http://dx.doi.org/10.2147/oajct.s8270 ] [PMID: 20890374]
[58]
McLaughlin, P.J.; Stack, B.C., Jr; Braine, K.M.; Ruda, J.D.; Zagon, I.S. Opioid growth factor inhibition of a human squamous cell carcinoma of the head and neck in nude mice: dependency on the route of administration. Int. J. Oncol., 2004, 24(1), 227-232.
[http://dx.doi.org/10.3892/ijo.24.1.227] [PMID: 14654962]
[59]
McLaughlin, P.J.; Levin, R.J.; Zagon, I.S. Regulation of human head and neck squamous cell carcinoma growth in tissue culture by opioid growth factor. Int. J. Oncol., 1999, 14(5), 991-998.
[http://dx.doi.org/10.3892/ijo.14.5.991] [PMID: 10200353]
[60]
Zhang, S.Y.; Klein-Szanto, A.J.; Sauter, E.R.; Shafarenko, M.; Mitsunaga, S.; Nobori, T.; Carson, D.A.; Ridge, J.A.; Goodrow, T.L. Higher frequency of alterations in the p16/CDKN2 gene in squamous cell carcinoma cell lines than in primary tumors of the head and neck. Cancer Res., 1994, 54(19), 5050-5053.
[PMID: 7923115]
[61]
McLaughlin, P.J.; Stack, B.C. Jr.; Levin, R.J.; Fedok, F.; Zagon, I.S. Defects in the opioid growth factor receptor in human squamous cell carcinoma of the head and neck. Cancer, 2003, 97(7), 1701-1710.
[http://dx.doi.org/10.1002/cncr.11237] [PMID: 12655527]
[62]
von Schweinitz, D. Hepatoblastoma: recent developments in research and treatment. Semin. Pediatr. Surg., 2012, 21(1), 21-30.
[http://dx.doi.org/10.1053/j.sempedsurg.2011.10.011] [PMID: 22248967]
[63]
Rogosnitzky, M.; Finegold, M.J.; McLaughlin, P.J.; Zagon, I.S. Opioid growth factor (OGF) for hepatoblastoma: a novel non-toxic treatment. Invest. New Drugs, 2013, 31(4), 1066-1070.
[http://dx.doi.org/10.1007/s10637-012-9918-3] [PMID: 23275062]
[64]
Wang, Q.; Gao, X.; Yuan, Z.; Wang, Z.; Meng, Y.; Cao, Y.; Plotnikoff, N.P.; Griffin, N.; Shan, F. Methionine enkephalin (MENK) improves lymphocyte subpopulations in human peripheral blood of 50 cancer patients by inhibiting regulatory T cells (Tregs). Hum. Vaccin. Immunother., 2014, 10(7), 1836-1840.
[http://dx.doi.org/10.4161/hv.28804] [PMID: 25424790]
[65]
Calhoun, S.E.; Meunier, C.J.; Lee, C.A.; McCarty, G.S.; Sombers, L.A. Characterization of a multiple-scan-rate voltammetric waveform for real-time detection of met-enkephalin. ACS Chem. Neurosci., 2019, 10(4), 2022-2032.
[http://dx.doi.org/10.1021/acschemneuro.8b00351] [PMID: 30571911]
[66]
Zagon, I.S.; McLaughlin, P.J. Endogenous opioid systems regulate growth of neural tumor cells in culture. Brain Res., 1989, 490(1), 14-25.
[http://dx.doi.org/10.1016/0006-8993(89)90425-3] [PMID: 2758319]
[67]
Horvat, S.; Mlinarić-Majerski, K.; Glavas-Obrovac, L.; Jakas, A.; Veljković, J.; Marczi, S.; Kragol, G.; Roscić, M.; Matković, M.; Milostić-Srb, A. Tumor-cell-targeted methionine-enkephalin analogues containing unnatural amino acids: design, synthesis, and in vitro antitumor activity. J. Med. Chem., 2006, 49(11), 3136-3142.
[http://dx.doi.org/10.1021/jm051026+] [PMID: 16722632]
[68]
Gredičak, M.; Supek, F.; Kralj, M.; Majer, Z.; Hollósi, M.; Šmuc, T.; Mlinarić-Majerski, K.; Horvat, S. Computational structure-activity study directs synthesis of novel antitumor enkephalin analogs. Amino Acids, 2010, 38(4), 1185-1191.
[http://dx.doi.org/10.1007/s00726-009-0329-5] [PMID: 19639251]
[69]
Szweda, R.; Trzebicka, B.; Dworak, A.; Otulakowski, L.; Kosowski, D.; Hertlein, J.; Haladjova, E.; Rangelov, S.; Szweda, D. Smart polymeric nanocarriers of Met-enkephalin. Biomacromolecules, 2016, 17(8), 2691-2700.
[http://dx.doi.org/10.1021/acs.biomac.6b00725] [PMID: 27409457]
[70]
Morgan, B.A.; Smith, C.F.C.; Waterfield, A.A.; Hughes, J.; Kosterlitz, H.W. Structure-activity relationships of methionine-enkephalin. J. Pharm. Pharmacol., 1976, 28(8), 660-661.
[http://dx.doi.org/10.1111/j.2042-7158.1976.tb02827.x] [PMID: 11324]
[71]
Duggan, A.W.; Hall, J.G.; Headley, P.M. Morphine, enkephalin and the substantia gelatinosa. Nature, 1976, 264(5585), 456-458.
[http://dx.doi.org/10.1038/264456a0] [PMID: 187952]
[72]
Simantov, R.; Snyder, S.H. Morphine-like peptides in mammalian brain: isolation, structure elucidation, and interactions with the opiate receptor. Proc. Natl. Acad. Sci. USA, 1976, 73(7), 2515-2519.
[http://dx.doi.org/10.1073/pnas.73.7.2515] [PMID: 1065904]
[73]
Simantov, R.; Snyder, S.H. Opiates and endogenous opioid peptides. AfoZ. Pharmaol., 1976, 12, 987-988.
[74]
Büscher, H.H.; Hill, R.C.; Römer, D.; Cardinaux, F.; Closse, A.; Hauser, D.; Pless, J. Evidence for analgesic activity of enkephalin in the mouse. Nature, 1976, 261(5559), 423-425.
[http://dx.doi.org/10.1038/261423a0] [PMID: 934276]
[75]
Bradbury, A.F.; Smyth, D.G.; Snell, C.R.; Deakin, J.F.W.; Wendlandt, S. Comparison of the analgesic properties of lipotropin C-fragment and stabilized enkephalins in the rat. Biochem. Biophys. Res. Commun., 1977, 74(2), 748-754.
[http://dx.doi.org/10.1016/0006-291X(77)90365-5] [PMID: 836323]
[76]
Udenfriend, S.; Meienhofer, J. Opioid peptides: biology, chemistry and genetics in: The Peptides: Analysis, Synthesis, Biology; E.Silver, 2014, p. 6.
[77]
Dutta, A.S.; Gormley, J.J.; Hayward, C.F.; Morley, J.S.; Shaw, J.S.; Stacey, G.J.; Turnbull, M.J. Analgesia following intravenous administration of enkephalin analogues. Br. J. Pharmacol., 1977, 61(3), 481-482.
[PMID: 588832]
[78]
Dutta, A.S.; Gormley, J.J.; Hayward, C.F.; Morley, J.S.; Shaw, J.S.; Stacey, G.J.; Turnbull, M.T. Enkephalin analogues eliciting analgesia after intravenous injection. Life Sci., 1977, 21(4), 559-562.
[http://dx.doi.org/10.1016/0024-3205(77)90097-2] [PMID: 904434]
[79]
Pert, C.B.; Bowie, D.L.; Pert, A.; Morell, J.L.; Gross, E. Agonist-antagonist properties of N-allyl-[D-Ala]2-Met-enkephalin. Nature, 1977, 269(5623), 73-75.
[http://dx.doi.org/10.1038/269073a0] [PMID: 197431]
[80]
Roemer, D.; Buescher, H.H.; Hill, R.C.; Pless, J.; Bauer, W.; Cardinaux, F.; Closse, A.; Hauser, D.; Huguenin, R. A synthetic enkephalin analogue with prolonged parenteral and oral analgesic activity. Nature, 1977, 268(5620), 547-549.
[http://dx.doi.org/10.1038/268547a0] [PMID: 196219]
[81]
Bajusz, S.; Patthy, A.; Kenessey, A.; Gráf, L.; Székely, J.I.; Rónai, A.Z. Is there correlation between analgesic potency and biodegradation of enkephalin analogs? Biochem. Biophys. Res. Commun., 1978, 84(4), 1045-1053.
[http://dx.doi.org/10.1016/0006-291X(78)91689-3] [PMID: 728144]
[82]
Stefano, G.B.; Shipp, M.A.; Scharrer, B. A possible immunoregulatory function for [Met]-enkephalin-Arg6-Phe7 involving human and invertebrate granulocytes. J. Neuroimmunol., 1991, 31(2), 97-103.
[http://dx.doi.org/10.1016/0165-5728(91)90015-Y] [PMID: 1991823]
[83]
Egleton, R.D.; Mitchell, S.A.; Huber, J.D.; Janders, J.; Stropova, D.; Polt, R.; Yamamura, H.I.; Hruby, V.J.; Davis, T.P. Improved bioavailability to the brain of glycosylated Met-enkephalin analogs. Brain Res., 2000, 881(1), 37-46.
[http://dx.doi.org/10.1016/S0006-8993(00)02794-3] [PMID: 11033091]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy