Generic placeholder image

Current Graphene Science (Discontinued)

Editor-in-Chief

ISSN (Print): 2452-2732
ISSN (Online): 2452-2740

Review Article

Recent Advancement in MoS2 for Hydrogen Evolution Reactions

Author(s): Kwadwo Mensah-Darkwa*, Rita N. Tabi, Maxwell Owusu, Tenzin Ingsel, Pawan K. Kahol and Ram K. Gupta*

Volume 3, Issue 1, 2020

Page: [11 - 25] Pages: 15

DOI: 10.2174/2452273204666200303124226

Abstract

The economic growth of any country depends on certain factors of which energy is a part and even prominent. The global economy has depended heavily on fossil fuels as the main source of reliable energy for so many decades. Their adverse long-term impact on society has led to a substantial increase in research activities both in industry and academia. Most of the research has been dominated by the development of green energy technologies and the expansion of such technologies in order to meet increasing future demands of energy. Prominent among the research drive is the development of fuel cells, whose driving force comes from hydrogen. This is because hydrogen is economical considering its relative abundance, low cost, yet high activity in production. Materials such as Pt, C, Fe, MoS2 have gained popularity in the production of hydrogen for use in fuel cell devices. The high efficiency of MoS2, amorphous or crystalline, in hydrogen evolution reactions (HER) depends on a suitable architecture that increases the exposure of its edge sites. Such architecture could be determined by the design of catalysts in terms of proportions of molybdenum and dopant ions, the composite structure between MoS2 and electrically conductive materials, synthesis temperature and the synthesis method. Therefore, a review is made on recent achievements for different nanoarchitectures of MoS2 as well as its composite structures for use as electro-catalysts in HER performance and future prospects.

Keywords: Electro-catalysts in HER performance, hydrogen evolution reaction, MoS2, nano-architecture of MoS2, transition metal chalcogenides, water splitting.

Graphical Abstract

[1]
Khatib H. IEA World Energy Outlook 2011-A comment. Energy Policy 2012; 48: 737-43.
[http://dx.doi.org/10.1016/j.enpol.2012.06.007]
[2]
Karekezi S, McDade S. Global Energy Assessment: Energy. Poverty, and Development 2012; pp. 151-90.
[http://dx.doi.org/10.1017/CBO9780511793677.008]
[3]
Angel Gurría . OECD Green Growth Studies. OECD publishing 2012.
[4]
Branchini L, Cagnoli P, De Pascale A, Lussu F, Orlandini V, Valentini E. Environmental assessment of renewable fuel energy systems with cross-media effects approach. Energy Procedia 2015; 81: 655-64.
[http://dx.doi.org/10.1016/j.egypro.2015.12.050]
[5]
Yan X, et al. The economic and environmental impact analysis of replacing fossil energy with electricity in Guangxi-based on Input-Output model. Energy Procedia 2018; 152: 841-6.
[http://dx.doi.org/10.1016/j.egypro.2018.09.188]
[6]
Kibria A, Akhundjanov SB, Oladi R. Fossil fuel share in the energy mix and economic growth. Int Rev Econ Finance 2019; 59: 253-64.
[http://dx.doi.org/10.1016/j.iref.2018.09.002]
[7]
Jiang Z, Lin B. The perverse fossil fuel subsidies in China-The scale and effects. Energy 2014; 70: 411-9.
[http://dx.doi.org/10.1016/j.energy.2014.04.010]
[8]
Lang K, Auer BR. The economic and financial properties of crude oil: A review. North Am J Econ Financ 2019.
[http://dx.doi.org/10.1016/j.najef.2019.01.011]
[9]
Song M, Fisher R, Kwoh Y. Technological challenges of green innovation and sustainable resource management with large scale data. Technol Forecast Soc Change 2018; 144: 361-8.
[http://dx.doi.org/10.1016/j.techfore.2018.07.055]
[10]
Rastogi RP, Pandey A, Larroche C, Madamwar D. Algal Green Energy - R & D and technological perspectives for biodiesel production. Renew Sustain Energy Rev 2018; 82: 2946-69.
[http://dx.doi.org/10.1016/j.rser.2017.10.038]
[11]
Kumar Y, Ringenberg J, ShekaraDepuru S, et al. Wind energy: Trends and enabling technologies. Renew Sustain Energy Rev 2016; 53: 209-24.
[http://dx.doi.org/10.1016/j.rser.2015.07.200]
[12]
Pérez-Collazo C, Greaves D, Iglesias G. A review of combined wave and offshore wind energy. Renew Sustain Energy Rev 2015; 42: 141-53.
[http://dx.doi.org/10.1016/j.rser.2014.09.032]
[13]
Slate AJ, Whitehead KA, Brownson DAC, Banks CE. Microbial fuel cells: An overview of current technology. Renew Sustain Energy Rev 2019; 101: 60-81.
[http://dx.doi.org/10.1016/j.rser.2018.09.044]
[14]
Saadabadi SA, Thallam Thattai A, Fan L, Lindeboom REF, Spanjers H, Aravind PV. Solid Oxide Fuel Cells fuelled with biogas: Potential and constraints. Renew Energy 2019; 134: 194-214.
[http://dx.doi.org/10.1016/j.renene.2018.11.028]
[15]
Chen GQ, Wu XD, Guo JL, Meng J, Li CH. Global overview for energy use of the world economy: Household-consumption-based accounting based on the world input-output database (WIOD). Energy Econ 2019; 81: 835-47.
[http://dx.doi.org/10.1016/j.eneco.2019.05.019]
[16]
Stucki T. Which firms benefit from investments in green energy technologies? - The effect of energy costs. Res Policy 2019; 48(3): 546-55.
[http://dx.doi.org/10.1016/j.respol.2018.09.010]
[17]
Du K, Li J. Towards a green world: How do green technology innovations affect total-factor carbon productivity. Energy Policy 2019; 131: 240-50.
[http://dx.doi.org/10.1016/j.enpol.2019.04.033]
[18]
Timilsina G. The economics of renewable energy promotion policies. National Bureau of Economic Research 2017.
[19]
Global Wind Statistics 2019. Glob Wind Energy Counc 2019; 1(1): 1-5. Available from: https://gwec.net/global-wind-report-2019/
[20]
Goetzberger A, Hoffmann VU. Photovoltaic solar energy generation. Springer Science & Business Media 2005; Vol. 112.
[21]
Reinders A, Verlinden P, van Sark W, Freundlich A. Photovoltaic solar energy: From Fundamentals to Applications. Wiley 2017.
[22]
Rappaport P. The electron-voltaic effect in P-N junctions induced by beta-particle bombardment. Phys Rev 1954; 93(1): 246-7. [5
[http://dx.doi.org/10.1103/PhysRev.93.246.2]
[23]
Chapin DM, Fuller CS, Pearson GL. A new silicon P-N junction photocell for converting solar radiation into electrical power. J Appl Phys 1954; 25(5): 676-7. [3
[http://dx.doi.org/10.1063/1.1721711]
[24]
Reynolds D, Leies G. Photovoltaic effect in cadmium sulfide. Phys Rev 1954; 96(2): 533.
[http://dx.doi.org/10.1103/PhysRev.96.533]
[25]
Lu Q, Yu H, Zhao K, Leng Y, Hou J, Xie P. Residential demand response considering distributed PV consumption: A model based on China’s PV policy. Energy 2019; 172: 443-56.
[http://dx.doi.org/10.1016/j.energy.2019.01.097]
[26]
Fuentes M, Vivar M, de la Casa J, Aguilera J. An experimental comparison between commercial hybrid PV-T and simple PV systems intended for BIPV. Renew Sustain Energy Rev 2018; 93: 110-20.
[http://dx.doi.org/10.1016/j.rser.2018.05.021]
[27]
Cho D, Valenzuela J. Scheduling energy consumption for residential stand-alone photovoltaic systems. Sol Energy 2019; 187: 393-403.
[http://dx.doi.org/10.1016/j.solener.2019.05.054]
[28]
Hamilton J, Negnevitsky M, Wang X, Lyden S. High penetration renewable generation within Australian isolated and remote power systems. Energy 2019; 168: 684-92.
[http://dx.doi.org/10.1016/j.energy.2018.11.118]
[29]
Yang Y, Kim KA, Blaabjerg F, Sangwongwanich A. “Power electronic technologies for PV systems,” in Advances in Grid-Connected Photovoltaic Power Conversion Systems, Y Yang, K A Kim, F Blaabjerg, and A B T-A in G. Woodhead Publishing 2018; pp. 15-43.
[30]
Zhang S, Tang Y. Optimal schedule of grid-connected residential PV generation systems with battery storages under time-of-use and step tariffs. J Energy Storage 2019; 23: 175-82.
[http://dx.doi.org/10.1016/j.est.2019.01.030]
[31]
Viswanathan B, Subramanian V, Lee JS. Materials and Processes for Solar Fuel Production. Springer New York 2014; Vol. 174.
[http://dx.doi.org/10.1007/978-1-4939-1628-3]
[32]
Kenard RJ Jr. Steam methane reforming for hydrogen production World Pet 1962; 33(3)
[33]
Dowdy T E. Coal gasification and hydrogen production system and method Google Patents, Sep-1999
[34]
Turner JA. A realizable renewable energy future 1999.
[http://dx.doi.org/10.1126/science.285.5428.687]
[35]
Turner JA. Sustainable hydrogen production In 2004; 305(5686): 972-4.
[36]
Ursua A, Gandia LM, Sanchis P. Hydrogen production from water electrolysis: current status and future trends. Proc IEEE 2011; 100(2): 410-26.
[http://dx.doi.org/10.1109/JPROC.2011.2156750]
[37]
Wang M, Wang Z, Gong X, Guo Z. The intensification technologies to water electrolysis for hydrogen production-a review. Renew Sustain Energy Rev 2014; 29: 573-88.
[http://dx.doi.org/10.1016/j.rser.2013.08.090]
[38]
Gong M, Wang D-Y, Chen C-C, Hwang B-J, Dai H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res 2016; 9(1): 28-46.
[http://dx.doi.org/10.1007/s12274-015-0965-x]
[39]
Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev 2010; 110(11): 6474-502.
[http://dx.doi.org/10.1021/cr100246c ] [PMID: 21062098]
[40]
Bian X, Zhu J, Liao L, et al. Nanocomposite of MoS2 on ordered mesoporous carbon nanospheres: A highly active catalyst for electrochemical hydrogen evolution. Electrochem Commun 2012; 22(1): 128-32.
[http://dx.doi.org/10.1016/j.elecom.2012.06.009]
[41]
Benson J, Li M, Wang S, Wang P, Papakonstantinou P. Electrocatalytic hydrogen evolution reaction on edges of a few layer molybdenum disulfide nanodots. ACS Appl Mater Interfaces 2015; 7(25): 14113-22.
[http://dx.doi.org/10.1021/acsami.5b03399 ] [PMID: 26052739]
[42]
Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater 2012; 11(11): 963-9.
[http://dx.doi.org/10.1038/nmat3439 ] [PMID: 23042413]
[43]
Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 2015; 44(15): 5148-80.
[http://dx.doi.org/10.1039/C4CS00448E ] [PMID: 25886650]
[44]
Abdolmaleki A, Mohamadi Z, Ensafi AA, Atashbar NZ, Rezaei B. Efficient and stable HER electrocatalyst using Pt-nanoparticles @poly(3,4-ethylene dioxythiophene) modified sulfonated graphene nanocomposite. Int J Hydrogen Energy 2018; 43(17): 8323-32.
[http://dx.doi.org/10.1016/j.ijhydene.2018.03.142]
[45]
Chen T, Chang Y, Hsu C, Wei K, Chiang C, Li L. Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int J Hydrogen Energy 2013; 38(28): 12302-9.
[http://dx.doi.org/10.1016/j.ijhydene.2013.07.021]
[46]
Li S, Zhou S, Wang X, Tang P, Pasta M, Warner JH. Increasing the electrochemical activity of basal plane sites in porous 3D edge rich MoS2 thin films for the hydrogen evolution reaction. Mater Today Energy 2019; 13: 134-44.
[http://dx.doi.org/10.1016/j.mtener.2019.05.002]
[47]
Ren X, Pang L, Zhang Y, Ren X, Fan H. One-step hydrothermal synthesis of monolayer MoS2 quantum dots for highly efficient electrocatalytic hydrogen evolution. J Mater Chem A Mater Energy Sustain 2015; 3: 10693.
[http://dx.doi.org/10.1039/C5TA02198G]
[48]
Chen TY, Chang YH, Hsu CL, Wei KH, Chiang CY, Li LJ. Comparative study on MoS2 and WS2 for electrocatalytic water splitting. Int J Hydrogen Energy 2013; 38(28): 12302-9.
[http://dx.doi.org/10.1016/j.ijhydene.2013.07.021]
[49]
Ding J, Zhou Y, Li Y, Guo S, Huang X. MoS2 nanosheet assembling superstructure with a three-dimensional ion accessible site: A new class of bifunctional materials for batteries and electrocatalysis. Chem Mater 2016; 28(7): 2074-80.
[http://dx.doi.org/10.1021/acs.chemmater.5b04815]
[50]
Gao M-R, Chan MKY, Sun Y. Edge-terminated molybdenum disulfide with a 9.4-Å interlayer spacing for electrochemical hydrogen production. Nat Commun 2015; 6: 7493.
[http://dx.doi.org/10.1038/ncomms8493 ] [PMID: 26138031]
[51]
Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: Insights into the origin of their catalytic activity. ACS Catal 2012; 2: 1916.
[http://dx.doi.org/10.1021/cs300451q]
[52]
Kiriya D, Lobaccaro P, Nyein HY, et al. general thermal texturization process of MoS2 for efficient electrocatalytic hydrogen evolution reaction. Nano Lett 2016; 16(7): 4047-53.
[http://dx.doi.org/10.1021/acs.nanolett.6b00569 ] [PMID: 27322506]
[53]
Jiang Z, Zhou W, Hong A, Guo M, Luo X, Yuan C. MoS2 moiré superlattice for hydrogen evolution reaction. ACS Energy Lett 2019; 4(12): 2830-5.
[http://dx.doi.org/10.1021/acsenergylett.9b02023]
[54]
Wang D, Zhang X, Bao S, Zhang Z, Fei H, Wu Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J Mater Chem A Mater Energy Sustain 2017; 5(6): 2681-8.
[http://dx.doi.org/10.1039/C6TA09409K]
[55]
Presolski S, Pumera M. Covalent functionalization of MoS2. Mater Today 2016; 19(3): 140-5.
[http://dx.doi.org/10.1016/j.mattod.2015.08.019]
[56]
Voiry D, Salehi M, Silva R, et al. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 2013; 13(12): 6222-7.
[http://dx.doi.org/10.1021/nl403661s ] [PMID: 24251828]
[57]
Tao L, Duan X, Wang C, Duan X, Wang S. Plasma-engineered MoS2 thin-film as an efficient electrocatalyst for hydrogen evolution reaction. Chem Commun (Camb) 2015; 51(35): 7470-3.
[http://dx.doi.org/10.1039/C5CC01981H ] [PMID: 25829057]
[58]
Cummins DR, Martinez U, Sherehiy A, et al. Efficient hydrogen evolution in transition metal dichalcogenides via a simple one-step hydrazine reaction. Nat Commun 2016; 7: 11857.
[http://dx.doi.org/10.1038/ncomms11857 ] [PMID: 27282871]
[59]
Wan Y, Zhang Z, Xu X, et al. Engineering active edge sites of fractal-shaped single-layer MoS2 catalysts for high-efficiency hydrogen evolution. Nano Energy 2018; 51: 786-92.
[http://dx.doi.org/10.1016/j.nanoen.2018.02.027]
[60]
Liu Z, Zao Liu, et al. Vertical nanosheet array of 1T phase MoS2 for e fficient and stable hydrogen evolution. Appl Catal B 2019; 246: 296-302.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.062]
[61]
Jaramillo TF, Jørgensen KP, Bonde J, et al. Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science (80) 2007; 317: 100-2.
[62]
Laursen AB, Kegnæs S, Dahl S, Chorkendorff I. Molybdenum sulfides-efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution. Energy Environ Sci 2012; 5: 5577.
[http://dx.doi.org/10.1039/c2ee02618j]
[63]
Hinnemann B, Moses PG, Bonde J, et al. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc 2005; 127(15): 5308-9.
[http://dx.doi.org/10.1021/ja0504690 ] [PMID: 15826154]
[64]
Laursen AB, Kegnæs S, Dahl S, Chorkendorff I. Molybdenum sulfides - Efficient and viable materials for electro - And photoelectrocatalytic hydrogen evolution. Energy Environ Sci 2012; 5(2): 5577-91.
[http://dx.doi.org/10.1039/c2ee02618j]
[65]
Merki D, Fierro S, Vrubel H, Hu X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci (Camb) 2011; 2(7): 1262-7.
[http://dx.doi.org/10.1039/C1SC00117E]
[66]
Miao J, Xiao FX, Yang HB, et al. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte. Sci Adv 2015; 1(7)e1500259
[http://dx.doi.org/10.1126/sciadv.1500259] [PMID: 26601227]
[67]
Jaramillo T F, Jørgensen K P, Bonde J, Nielsen J H, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science (80- ) 2007; 317(5834): 100 LP-2.
[68]
Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: An advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc 2011; 133(19): 7296-9.
[http://dx.doi.org/10.1021/ja201269b ] [PMID: 21510646]
[69]
Li F, Li J, Cao Z, et al. MoS2 quantum dot decorated RGO: A designed electrocatalyst with high active site density for the hydrogen evolution reaction. J Mater Chem A Mater Energy Sustain 2015; 3(43): 21772-8.
[http://dx.doi.org/10.1039/C5TA05219J]
[70]
Zong X, Yan H, Wu G, et al. Enhancement of photocatalytic H2 evolution on CdS by loading MoS2 as Cocatalyst under visible light irradiation. J Am Chem Soc 2008; 130(23): 7176-7.
[http://dx.doi.org/10.1021/ja8007825 ] [PMID: 18473462]
[71]
Yan Y, Ge X, Liu Z, Wang J-Y, Lee J-M, Wang X. Facile synthesis of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction. Nanoscale 2013; 5(17): 7768-71.
[http://dx.doi.org/10.1039/c3nr02994h ] [PMID: 23884193]
[72]
Liao L, Zhu J, Bian X, et al. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 2013; 23(42): 5326-33.
[http://dx.doi.org/10.1002/adfm.201300318]
[73]
Sun J, Huang Z, Huang T, et al. Defect-rich porous CoS1.097/MoS2 hybrid microspheres as electrocatalysts for ph-universal hydrogen evolution. ACS Appl Energy Mater 2019; 2(10): 7504-11.
[http://dx.doi.org/10.1021/acsaem.9b01486]
[74]
Bar-Ziv R, Ranjan P, Lavie A, et al. Au-MoS2 Hybrids as Hydrogen Evolution Electrocatalysts. ACS Appl Energy Mater 2019; 2(8): 6043-50.
[http://dx.doi.org/10.1021/acsaem.9b01147]
[75]
Pang L, Barras A, Zhang Y, et al. CoO Promoted the Catalytic Activity of Nitrogen-Doped MoS2 Supported on Carbon Fibers for Overall Water Splitting. ACS Appl Mater Interfaces 2019; 11(35): 31889-98.
[http://dx.doi.org/10.1021/acsami.9b09112 ] [PMID: 31402641]
[76]
Liao L, Zhu J, Bian X, Zhu L, Scanlon MD, Girault HH. MoS2 formed on mesoporous graphene as a highly active catalyst for hydrogen evolution. Adv Funct Mater 2013; 1-8.
[77]
Guo J, Li F, Sun Y, Zhang X, Tang L. Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution. J Power Sources 2015; 291: 195-200.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.034]
[78]
Wang D, Zhang X, Shen Y, Wu Z. Ni-doped MoS2 nanoparticles as highly active hydrogen evolution electrocatalysts. RSC Advances 2016; 6(20): 16656-61.
[http://dx.doi.org/10.1039/C6RA02610A]
[79]
Lai F, Miao YE, Huang Y, Zhang Y, Liu T. nitrogen-doped carbon nanofiber/molybdenum disulfide nanocomposites derived from bacterial cellulose for high-efficiency electrocatalytic hydrogen evolution reaction. ACS Appl Mater Interfaces 2016; 8(6): 3558-66.
[http://dx.doi.org/10.1021/acsami.5b06274 ] [PMID: 26302501]
[80]
Xie J, Zhang J, Li S, et al. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nanosheets for efficient hydrogen evolution. J Am Chem Soc 2013; 135(47): 17881-8.
[http://dx.doi.org/10.1021/ja408329q ] [PMID: 24191645]
[81]
Li F, Li J, Lin X, et al. Designed synthesis of multi-walled carbon nanotubes @ Cu @ MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction. J Power Sources 2015; 300: 301-8.
[http://dx.doi.org/10.1016/j.jpowsour.2015.09.084]
[82]
Liu A, Zhao L, Zhang J, Lin L, Wu H. Solvent-Assisted Oxygen Incorporation of Vertically Aligned MoS2 Ultrathin Nanosheets Decorated on Reduced Graphene Oxide for Improved Electrocatalytic Hydrogen Evolution. ACS Appl Mater Interfaces 2016; 8(38): 25210-8.
[http://dx.doi.org/10.1021/acsami.6b06031 ] [PMID: 27599679]
[83]
Zhang N, Ma W, Wu T, Wang H, Han D, Niu L. Edge-rich MoS2 Naonosheets Rooting into Polyaniline Nano fibers as Effective Catalyst for Electrochemical Hydrogen Evolution. Electrochim Acta 2015; 180: 155-63.
[http://dx.doi.org/10.1016/j.electacta.2015.08.108]
[84]
Liu Y-R, Hu W-H, Li X, et al. One-pot synthesis of hierarchical Ni2P/MoS2 hybrid electrocatalysts with enhanced activity for hydrogen evolution reaction. Appl Surf Sci 2016; 383: 276-82.
[http://dx.doi.org/10.1016/j.apsusc.2016.04.190]
[85]
Li DJ, Maiti UN, Lim J, et al. Molybdenum sulfide/n-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction. Nano Lett 2014; 14(3): 1228-33.
[86]
Zhang N, Sun X, Xie J, Xu K, Zhou M, Xie Y. Layer-by-layer b -Ni(OH)2/graphene nanohybrids for ultraflexible all-solid-state thin-film supercapacitors with high electrochemical performance. Nano Energy 2013; 2(1): 65-74.
[http://dx.doi.org/10.1016/j.nanoen.2012.07.016]
[87]
Feng J, Sun X, Wu C, et al. Metallic few-layered VS2 ultrathin nanosheets: high two-dimensional conductivity for in-plane supercapacitors. J Am Chem Soc 2011; 133(44): 17832-8.
[http://dx.doi.org/10.1021/ja207176c ] [PMID: 21951158]
[88]
Zhan X, Yi X. Chemical Society Reviews. Chem Soc Rev 2013; 42(21): 8187-99.
[PMID: 23887238]
[89]
Liang Y, Li Y, Wang H, Dai H. Strongly coupled inorganic/nanocarbon hybrid materials for advanced electrocatalysis. J Am Chem Soc 2013; 135(6): 2013-36.
[http://dx.doi.org/10.1021/ja3089923 ] [PMID: 23339685]
[90]
Li H, Yu K, Li C, et al. Charge-Transfer Induced High Efficient Hydrogen Evolution of MoS2/graphene Cocatalyst. Sci Rep 2016; 5: 1-11.
[http://dx.doi.org/10.1038/srep18730]
[91]
Biroju RK, Pal S, Sharma R, Giri PK, Narayanan TN. Stacking sequence dependent photo- electrocatalytic performance of CVD grown MoS 2/graphene van der Waals solids In. Nanotechnology 28 (085101) 2017; 28.
[92]
Xiang ZC, Zhang Z, Xu XJ, Zhang Q, Yuan C. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution. Carbon N Y 2016; 98: 84-9.
[http://dx.doi.org/10.1016/j.carbon.2015.10.071]
[93]
Zang C, et al. MoS2 Decorated carbon nanofibers as efficient and durable electrocatalyst for hydrogen evolution reaction. 2016; 3(4): 33.
[http://dx.doi.org/10.3390/c3040033]
[94]
Merki D, Hu X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts. Energy Environ Sci 2011; 4(10): 3878-88.
[http://dx.doi.org/10.1039/c1ee01970h]
[95]
Daniel M, Vrubel H, Lorenzo R, Stéphane F, Xile H. Fe, Co, and Ni ions promote the catalytic activity of amorphous molybdenum sulfide films for hydrogen evolution. Chem Sci (Camb) 2012; 3: 2515-25.
[96]
Vrubel H, Merki D, Hu X. Hydrogen evolution catalyzed by MoS 3 and MoS2 particles. Energy Environ Sci 2012; 5(3): 6136-44.
[http://dx.doi.org/10.1039/c2ee02835b]
[97]
Greeley J, Jaramillo T F, Bonde J, Chorkendorff I, Schlapbach J K N. Computational high-throughput screening of electrocataly-ticmaterials for hydrogen evolution materials for sustainable energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group 2010; 5: 280-4.
[98]
Usman T, Kubota Y, Araki K. Ishida, Okamoto Y. The effect of boron addition on the hydrodesulfurization activity of MoS2/Al2O3 and Co-MoS2/Al2O3 catalysts. J Catal 2004; 227: 523-9.
[99]
Wu Z, Whiffen VML, Zhu W, Wang D, Smith KJ. Effect of Annealing Temperature on Co-MoS2 Nanosheets for Hydrodesulfurization of Dibenzothiophene. Catal Lett 2014; 144(2): 261-7.
[http://dx.doi.org/10.1007/s10562-013-1143-y]
[100]
Dang L, Liang H, Zhuo J, et al. Direct Synthesis and Anion Exchange of Noncarbonate-Intercalated NiFe-Layered Double Hydroxides and the Influence on Electrocatalysis. Chem Mater 2018; 30: 4321-30.
[http://dx.doi.org/10.1021/acs.chemmater.8b01334]
[101]
Zhu X, Dou X, Dai J, et al. Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angew Chem Int Ed Engl 2016; 55(40): 12465-9.
[http://dx.doi.org/10.1002/anie.201606313 ] [PMID: 27572334]
[102]
Lei C, Wang Yu, Hou Y, et al. Efficient Alkaline Hydrogen Evolution on Atomically Dispersed Ni-Nx Species Anchored Porous Carbon with Embedded Ni Nanoparticles by Accelerating Water Dissociation Kinetics. Energy Environ Sci 2019; 12: 149-56.
[http://dx.doi.org/10.1039/C8EE01841C]
[103]
Liu X, Dai L. Carbon-based metal-free catalysts. Nat Rev Mater 2016; 1: 16064.
[http://dx.doi.org/10.1038/natrevmats.2016.64]
[104]
Jin H, Guo C, Liu X, et al. Emerging Two-Dimensional Nanomaterials for Electrocatalysis. Chem Rev 2018; 118(13): 6337-408.
[http://dx.doi.org/10.1021/acs.chemrev.7b00689 ] [PMID: 29552883]
[105]
Jin H, Liu X, Jiao Y, Vasileff A, Zheng Y, Qiao S. Constructing Tunable Dual Active Sites on Two-Dimensional C3N4@MoN Hybrid for Electrocatalytic Hydrogen Evolution. Nano Energy 2018; 53: 690-7.
[http://dx.doi.org/10.1016/j.nanoen.2018.09.046]
[106]
Zhang J, Zhao Z, Xia Z, Dai L. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat Nanotechnol 2015; 10(5): 444-52.
[http://dx.doi.org/10.1038/nnano.2015.48 ] [PMID: 25849787]
[107]
Guruprasad K, Maiyalagan T, Shanmugam S. Phosphorus doped MoS2 nanosheet promoted with nitrogen, sulfur dual doped reduced graphene oxide as an effective electrocatalyst for hydrogen evolution reaction. ACS Appl Energy Mater 2019; 2: 6184-94.
[http://dx.doi.org/10.1021/acsaem.9b00629]
[108]
Su W, Wang P, Caia Z, Yanga J, Wanga X. One-pot hydrothermal synthesis of Al-doped MoS 2 @ graphene aerogel nanocomposite electrocatalysts for enhanced hydrogen evolution reaction. Results Phys 2019; 12: 250-8.
[http://dx.doi.org/10.1016/j.rinp.2018.11.066]
[109]
Bian L, Gao W, Sun J, et al. Phosphorus-doped mos 2 nanosheets supported on carbon cloths as efficient hydrogen-generation electrocatalysts. In: ChemCatChem. 2018; 2018: pp. (10)1571-7.
[http://dx.doi.org/10.1002/cctc.201701680]
[110]
Du C, Huang H, Jian J, Wu Y, Shang M, Song W. Enhanced Electrocatalytic Hydrogen Evolution Performance of MoS2 Ultrathin Nanosheets via Sn Doping. Appl Catal A Gen 2017; 538(May): 1-8.
[http://dx.doi.org/10.1016/j.apcata.2017.03.010]
[111]
Guo T, Wang L, Sun S, et al. Layered MoS 2 @ graphene functionalized with nitrogen-doped graphene quantum dots as an enhanced electrochemical hydrogen evolution catalyst. Chin Chem Lett 2019; 30(6): 1253-60.
[http://dx.doi.org/10.1016/j.cclet.2019.02.009]
[112]
Bolar S, Shit S, Kumar JS, et al. Optimization of active surface area of fl ower like MoS 2 using V-doping towards enhanced hydrogen evolution reaction in acidic and basic medium. Appl Catal B 2019; 254: 432-42.
[http://dx.doi.org/10.1016/j.apcatb.2019.04.028]
[113]
Xue J-Y, Li FL, Zhao ZY, et al. In Situ Generation of Bifunctional Fe-Doped MoS2 Nanocanopies for Efficient Electrocatalytic Water Splitting. Inorg Chem 2019; 58(16): 11202-9.
[http://dx.doi.org/10.1021/acs.inorgchem.9b01814 ] [PMID: 31385509]
[114]
Luo Z, Ouyang Y, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun 2018; 9(1): 2120.
[http://dx.doi.org/10.1038/s41467-018-04501-4 ] [PMID: 29844358]
[115]
Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss 2008; 140(0): 219-31.
[PMID: 19213319]
[116]
Guo J, Li F, Sun Y, Zhang X, Tang L. Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution. J Power Sources 2015; 291: 195-200.
[http://dx.doi.org/10.1016/j.jpowsour.2015.05.034]

© 2025 Bentham Science Publishers | Privacy Policy