Generic placeholder image

Current Pharmaceutical Analysis

Editor-in-Chief

ISSN (Print): 1573-4129
ISSN (Online): 1875-676X

Research Article

Using Gold Nanoparticles for Ultra-trace Spectrophotometric Determination of Sitagliptin Drug in Various Real Samples

Author(s): Maryam Moradi, Mahmoud Reza Sohrabi* and Saeid Mortazavinik

Volume 17, Issue 5, 2021

Published on: 02 March, 2020

Page: [646 - 654] Pages: 9

DOI: 10.2174/1573412916666200302102446

Price: $65

Abstract

Background: The determination of trace drugs in aquatic environments is important. For this purpose, many methods such as High Performance Liquid Chromatography (HPLC) and gas chromatography mass spectrometry (GC/MS) have been used.

Objective: This study introduces a simple, sensitive, and rapid colorimetric method for the spectrophotometric determination of sitagliptin (STG) in drinking water, tablet, human plasma, and human urine using gold nanoparticles (AuNPs).

Methods: The Surface Plasmon Resonance (SPR) property of AuNPs and the interaction between STG and AuNPs are the base of the colorimetric method. The addition of STG into AuNPs led to the aggregation of AuNPs. Transmission Electron Microscopy (TEM) proved the aggregation of AuNPs in the presence of STG. Also, the size of the nanoparticles distribution was evaluated by Dynamic Light Scattering (DLS). In addition, Fourier-Transform Infrared Spectrophotometer (FTIR) was used to study the chemical structure of AuNPs, STG, and AuNPs in the presence of STG.

Results: The parameters that affect the absorbance such as pH, type and volume of buffer, AuNPs concentration, interaction time, ionic strength, and interfering ions were investigated and optimized. Under the optimum conditions, the determination of STG was performed via this method over the range of 50-300 μgL-1 (R2=0.9941) with the Limit of Detection (LOD) and Limit of Quantification (LOQ) of 1.23 and 1.39 μgL-1, respectively.

Conclusion: Eventually, the results showed that the proposed method has a high potential for simple, rapid, sensitive, and accurate determination of STG.

Keywords: Colorimetric, sitagliptin, gold nanoparticles, surface plasmon resonance, biological fluids, drinking water.

Graphical Abstract

[1]
Liu, W.; Sutton, N.B.; Rijnaarts, H.H.M.; Langenhoff, A.A.M. Pharmaceutical removal from water with iron-or manganese-based technologies: A review. Crit. Rev. Environ. Sci. Technol., 2016, 46, 1584-1621.
[http://dx.doi.org/10.1080/10643389.2016.1251236]
[2]
Bagheri, H.; Afkhami, A.; Noroozi, A. Removal of pharmaceutical compounds from hospital wastewaters using nanomaterials: A Review. Anal. Bioanaly. Chem. Res., 2016, 3, 1-18.
[3]
Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ., 2006, 356(1-3), 143-153.
[http://dx.doi.org/10.1016/j.scitotenv.2005.04.031] [PMID: 15936058]
[4]
Tambosi, J.L.; Yamanaka, L.Y.; Jose, H.J.; Moreira, R.F.P.M.; Schroder, H.F. Recent research data on the removal of pharmaceuticals from sewage treatment plants (STP). Quim. Nova, 2010, 33, 411-420.
[http://dx.doi.org/10.1590/S0100-40422010000200032]
[5]
Babu Patneedi, C.; Durga Prasadu, K. Impact of pharmaceutical wastes on human life and environment. Rasayan J. Chem., 2015, 8, 67-70.
[6]
Stackelberg, P.E.; Furlong, E.T.; Meyer, M.T.; Zaugg, S.D.; Henderson, A.K.; Reissman, D.B. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ., 2004, 329(1-3), 99-113.
[http://dx.doi.org/10.1016/j.scitotenv.2004.03.015] [PMID: 15262161]
[7]
Radjenovic, J.; Petrovic, M.; Barceló, D. Analysis of pharmaceuticals in wastewater and removal using a membrane bioreactor. Anal. Bioanal. Chem., 2007, 387(4), 1365-1377.
[http://dx.doi.org/10.1007/s00216-006-0883-6] [PMID: 17115140]
[8]
Miao, X.S.; Metcalfe, C.D. Determination of cholesterol-lowering statin drugs in aqueous samples using liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A, 2003, 998(1-2), 133-141.
[http://dx.doi.org/10.1016/S0021-9673(03)00645-9] [PMID: 12862379]
[9]
Qureshi, T.; Memon, N.; Memon, S.Q.; Shaikh, H. Determination of Ibuprofen drug in aqueous environmental samples by gas chromatography–mass spectrometry without derivatization. Am. J. Mod. Chromatogr., 2014, 1, 45-54.
[10]
Martin, J.; Buchberger, W.; Luis Santos, J.; Alonso, E.; Aparicio, I. High-performance liquid chromatography quadrupole time-of-flight mass spectrometry method for the analysis of antidiabetic drugs in aqueous environmental samples. J. Chromatog. B., 2012, 895-896, 94-101.
[11]
Yeon Park, S.; Myung, S.W. Simultaneous determination of nonsteroidal anti-inflammatory drugs in aqueous samples using dispersive liquid–liquid microextraction and hplc analysis. Bull. Korean Chem. Soc., 2015, 36, 2901-2906.
[http://dx.doi.org/10.1002/bkcs.10601]
[12]
Kazerooni, H.; Bahreyni, A.; Ramezani, M.; Abnous, K.; Mohammad Taghdisi, S. A colorimetric aptasensor for selective detection of oxytetracycline in milk, using gold nanoparticles and oxytetracline-short aptamer. Nanomed. J., 2019, 6, 105-111.
[13]
Qi, M.; Tu, C.; Dai, Y.; Wang, W.; Wang, A.; Chen, J. simple colorimetric analytical assay using gold nanoparticles for specific detection of tetracycline in environmental water sample. Anal. Methods, 2018, 10, 3402-3407.
[http://dx.doi.org/10.1039/C8AY00713F]
[14]
Awual, R.; Hasan, M. Colorimetric detection and removal of copper(II) ions from wastewater samples using tailor-made composite adsorbent. Sens. Actuators B Chem., 2015, 206, 692-700.
[http://dx.doi.org/10.1016/j.snb.2014.09.086]
[15]
Masoudyfar, Z.; Elhami, S. Surface plasmon resonance of gold nanoparticles as a colorimetric sensor for indirect detection of Cefixime. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 211, 234-238.
[http://dx.doi.org/10.1016/j.saa.2018.12.007] [PMID: 30553146]
[16]
Miao, X.S.; Metcalfe, C.D. Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography-electrospray tandem mass spectrometry. Anal. Chem., 2003, 75(15), 3731-3738.
[http://dx.doi.org/10.1021/ac030082k] [PMID: 14572037]
[17]
El-Bagary, R.I.; Elkady, E.F.; Ayoub, B.M. Liquid chromatographic determination of sitagliptin either alone or in ternary mixture with metformin and sitagliptin degradation product. Talanta, 2011, 85(1), 673-680.
[http://dx.doi.org/10.1016/j.talanta.2011.04.051] [PMID: 21645757]
[18]
Caglar, S.; Onal, A.; Toker, S. Determination of sitagliptin with fluorescamine in tablets and spiked serum samples by spectrofluorimetry and a degradation study. Curr. Pharm. Anal., 2012, 8, 278-285.
[http://dx.doi.org/10.2174/157341212801619270]
[19]
Ravisankar, P.; Mounika, G.; Devadasu, Ch. DevalaRao, G. A simple validated UV Spectrophotometric method for quantitative analysis of Sitagliptin phosphate in pharmaceutical dosage form. J. Chem. Pharmaceut Sci., 2014, 7, 254-258.
[20]
Karimulla, S.K.; Vasanth, P.M.; Ramesh, T.; Ramesh, M. Method development and validation of sitagliptin and metformin using reverse phase HPLC method in bulk and tablet dosage form. Der Pharmacia Lettre., 2013, 5, 168-174.
[21]
Parham, H.; Pourreza, N.; Marahel, F. Resonance Rayleigh scattering method for determination of 2-mercaptobenzothiazole using gold nanoparticles probe. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 151, 308-314.
[http://dx.doi.org/10.1016/j.saa.2015.06.108] [PMID: 26143323]
[22]
Turkevich, J.; Cooper Stevenson, P.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc., 1951, 11, 55-75.
[http://dx.doi.org/10.1039/df9511100055]
[23]
Harmonized Tripartite Guideline, Validation of Analytical Procedures: Text and Methodology, Q2 (R1), Current Step 4 Version, Parent Guidelines on Methodology. Dated Nov 6, 1996, Incorporated in Nov 2005.. http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/Quality/ [Apr 23, 2012.];
[24]
Uçaktürk, E. Development of a gas chromatography-mass spectrometry method for the analysis of sitagliptin in human urine. J. Pharm. Biomed. Anal., 2013, 74, 71-76.
[http://dx.doi.org/10.1016/j.jpba.2012.10.012] [PMID: 23245236]
[25]
Salim, M.; El-Enany, N.; Belal, F.; Walash, M.; Patonay, G. Simultaneous determination of sitagliptin and metformin in pharmaceutical preparations by capillary zone electrophoresis and its application to human plasma analysis. Anal. Chem. Insights, 2012, 7, 31-46.
[http://dx.doi.org/10.4137/ACI.S9940] [PMID: 22904611]
[26]
Chavhan, V.; Ghante, M.; Sawant, S. development and validation of RP-HPLC method for simultaneous estimation of sitagliptin phosphate and simvastatin in bulk and tablet dosage form. J. App. Phar., 2014, 6, 327-338.

© 2025 Bentham Science Publishers | Privacy Policy