Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Role of Nanocatalyst (Photocatalysts) for Waste Water Treatment

Author(s): Muhammad Sagir* and Muhammad B. Tahir

Volume 17, Issue 2, 2021

Published on: 26 February, 2020

Page: [138 - 149] Pages: 12

DOI: 10.2174/1573411016666200226091404

Price: $65

Abstract

Background: The aim of the current study is to understand the application of Nanotechnology in the field of water and waste water treatment processes due to the increasing scarcity of water with the passage of time. The knowledge about the effect of various photo catalysts on the treatment of waste water is also compiled here.

Introduction: In recent years, many researches have been working on the projects for the removal of organic and inorganic pollutants from water using photo catalysts, which provide more efficient, economical and as well as pollution free processes to some extent. Nanomaterials are found in large research categories and are used in a variety of applications.

Methods: Photo catalysis using Iron, Zinc, Silver, Metal oxides, SnO2, Carbon Nano-tubes, Nano composites and Membranes are focused in this paper.

Result: Discussion regarding various parameters as well as future aspects of nanoparticles on waste water treatment are highlighted. Impacts of nanoparticles on health are also incorporated here.

Conclusion: Considering the current speed of development and revolution in tech, nano materials for this type of applications seems very promising.

Keywords: Carbon nano tubes, metal oxides, nano composites and membranes, nano-particles, photo-catalysts, silver, SnO2, waste water treatment, zinc.

Graphical Abstract

[1]
Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases, 2007, 2(4), MR17-MR71.
[http://dx.doi.org/10.1116/1.2815690] [PMID: 20419892]
[2]
Parmon, V. Nanomaterials in catalysis. Mater. Res. Innov., 2008, 12(2), 60-61.
[http://dx.doi.org/10.1179/143307508X304228]
[3]
Liang, X.-J.; Kumar, A.; Shi, D.; Cui, D. Nanostructures for medicine and pharmaceuticals. J. Nanomat., 2012, 2012, 2. Article ID 921897.http://dx.doi.org/10.1155/2012/921897
[4]
Kusior, A.; Klich-Kafel, J.; Trenczek-Zajac, A.; Swierczek, K.; Radecka, M.; Zakrzewska, K. TiO2–SnO2 nanomaterials for gas sensing and photocatalysis. J. Eur. Ceram. Soc., 2013, 33(12), 2285-2290.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2013.01.022]
[5]
Bujoli, B.; Roussi’ere, H.; Montavon, G. Novel phosphate-phosphonate hybrid nanomaterials applied to biology. Prog. Solid State Chem., 2006, 34(2-4), 257-266.
[http://dx.doi.org/10.1016/j.progsolidstchem.2005.11.039]
[6]
Onesios, K.M.; Yu, J.T.; Bouwer, E.J. Biodegradation and removal of pharmaceuticals and personal care products in treatment systems: a review. Biodegradation, 2009, 20(4), 441-466.
[http://dx.doi.org/10.1007/s10532-008-9237-8] [PMID: 19112598]
[7]
Lau, W-J.; Ismail, A.F. Polymeric nanofiltration membranes for textile dye wastewater treatment: preparation, performance evaluation, transport modelling, and fouling control -a review. Desalination, 2009, 245, 321-348.
[http://dx.doi.org/10.1016/j.desal.2007.12.058]
[8]
Cicek, N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater., Canad Biosys Eng., 2003, 45, 6.37-36.37.
[9]
Karadag, D.; Köroğlu, O.E.; Ozkaya, B.; Cakmakci, M. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem., 2015, 50, 262-271.
[http://dx.doi.org/10.1016/j.procbio.2014.11.005]
[10]
Bruinsma, J. By how much do land, water and crop yields need to increase by 2050? The resource outlook to 2050. Presented at the Food and Agriculture Organization of the United Nations Expert Meeting entitled “How to Feed the World in 2050”, Rome, Italy,June 24-26,2009
[11]
World Water Development Report 4. Managing water under uncertainty and risks, 2014 . http://www.unesco.org/new/en/natural-sciences/environmen/water/wwap/wwdr/wwdr4-2012
[12]
Moreira, F.C.; Soler, J.; Alpendurada, M.F.; Boaventura, R.A.R.; Brillas, E.; Vilar, V.J.P. Tertiary treatment of a municipal wastewater toward pharmaceuticals removal by chemical and electrochemical advanced oxidation processes. Water Res., 2016, 105, 251-263.
[http://dx.doi.org/10.1016/j.watres.2016.08.036] [PMID: 27619501]
[13]
Benammar, L.; Menasria, T.; Ayachi, A.; Benounis, M. Phosphate removal using aerobic bacterial consortium and pure cultures isolated from activated sludge. Process Saf. Environ. Prot., 2015, 95, 237-246.
[14]
Mannie, M.N.; Bower, A. Challenges in determining the correct waste disposal solutions for local municipalities a South African overview. Proceedings of the 20th WasteCon Conference 6, 2014.Somerset West, Cape Town
[16]
Gogate, P.R.; Pandit, A.B. A review of imperative technologies for wastewater treatment II: Hybrid methods. Adv. Environ. Res., 2004, 8, 553-597.
[http://dx.doi.org/10.1016/S1093-0191(03)00031-5]
[17]
Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environ. Sci. Nano, 2018, 5, 1078-1089.
[http://dx.doi.org/10.1039/C8EN00156A]
[18]
Lewis, N.S. Research opportunities to advance solar energy utilization. Science, 2016, 351(6271), 1920.
[http://dx.doi.org/10.1126/science.aad1920]] [PMID: 26798020]
[19]
Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Mater. Horiz., 2018, 5, 323-343.
[http://dx.doi.org/10.1039/C7MH01064H]
[20]
Matthew, P. Johnson, Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, U.K.
[22]
Kwon, S.; Fan, M.; Cooper, A. Photocatalytic applications of Micro- and Nano-TiO2 in environmental engineering. Crit. Rev. Environ. Sci. Technol., 2008, 38, 197-226.
[http://dx.doi.org/10.1080/10643380701628933]
[23]
Reutergådh, L.B.; Iangphasuk, M. Photocatalytic decolourization of reactive azo dye: A comparison between TiO2 and us photocatalysis. Chemosphere, 1997, 35, 585-596.
[http://dx.doi.org/10.1016/S0045-6535(97)00122-7]
[24]
Wu, C-H.; Chang, H-W.; Chern, J-M. Basic dye decomposition kinetics in a photocatalytic slurry reactor. J. Hazard. Mater., 2006, 137(1), 336-343.
[http://dx.doi.org/10.1016/j.jhazmat.2006.02.002] [PMID: 16563618]
[25]
Kimura, T.; Yoshikawa, N.; Matsumura, N.; Kawase, Y. Photocatalytic degradation of nonionic surfactants with immobilized TiO2 in an airlift reactor. J. Environ. Sci. Health A Tox Hazard Subst. Environ. Eng., 2004, 39(11-12), 2867-2881.
[http://dx.doi.org/10.1081/LESA-200034072] [PMID: 15533010]
[26]
Zhang, L.; Li, P.; Gong, Z.; Li, X. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO(2) under UV light. J. Hazard. Mater., 2008, 158(2-3), 478-484.
[http://dx.doi.org/10.1016/j.jhazmat.2008.01.119] [PMID: 18372106]
[27]
Bratsch, S.G. Standard electrode potentials and temperature coefficients in water at 298.15K. J. Phys. Chem. Ref. Data, 1989, 18(1), 1-21.
[http://dx.doi.org/10.1063/1.555839]
[28]
Matheson, L.J.; Tratnyek, P.G. Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol., 1994, 28(12), 2045-2053.
[http://dx.doi.org/10.1021/es00061a012] [PMID: 22191743]
[29]
Lei, Y.; Chen, F.; Luo, Y.; Zhang, L. Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J. Mater. Sci., 2014, 49(12), 4236-4245.
[http://dx.doi.org/10.1007/s10853-014-8118-2]
[30]
Tan, L.; Xu, J.; Xue, X. Multifunctional nanocomposite Fe3O4@SiO2-mPD/SP for selective removal of Pb(II) and Cr(VI) from aqueous solutions. RSC Advances, 2014, 4(86), 45920-45929.
[http://dx.doi.org/10.1039/C4RA08040H]
[31]
Ngomsik, A-F.; Bee, A.; Talbot, D.; Cote, G. Magnetic solid-liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Separ. Purif. Tech., 2012, 86, 1-8.
[http://dx.doi.org/10.1016/j.seppur.2011.10.013]
[32]
Fu, F.; Dionysiou, D.D.; Liu, H. The use of zero-valent iron for groundwater remediation and wastewater treatment: A review. J. Hazard. Mater., 2014, 267, 194-205.
[http://dx.doi.org/10.1016/j.jhazmat.2013.12.062] [PMID: 24457611]
[33]
Kalhapure, R.S.; Sonawane, S.J.; Sikwal, D.R.; Jadhav, M.; Rambharose, S.; Mocktar, C.; Govender, T. Solid lipid nanoparticles of clotrimazole silver complex: An efficient nano antibacterial against Staphylococcus aureus and MRSA. Colloids Surf. B Biointerfaces, 2015, 136, 651-658.
[http://dx.doi.org/10.1016/j.colsurfb.2015.10.003] [PMID: 26492156]
[34]
Borrego, B.; Lorenzo, G.; Mota-Morales, J.D.; Almanza-Reyes, H.; Mateos, F.; López-Gil, E.; de la Losa, N.; Burmistrov, V.A.; Pestryakov, A.N.; Brun, A.; Bogdanchikova, N. Potential application of silver nanoparticles to control the infectivity of Rift Valley fever virus in vitro and in vivo. Nanomedicine (Lond.), 2016, 12(5), 1185-1192.
[http://dx.doi.org/10.1016/j.nano.2016.01.021] [PMID: 26970026]
[35]
Krishnaraj, C.; Ramachandran, R.; Mohan, K.; Kalaichelvan, P.T. Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2012, 93, 95-99.
[http://dx.doi.org/10.1016/j.saa.2012.03.002] [PMID: 22465774]
[36]
Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for Gram-negative bacteria. J. Colloid Interface Sci., 2004, 275(1), 177-182.
[http://dx.doi.org/10.1016/j.jcis.2004.02.012] [PMID: 15158396]
[37]
Danilczuk, M.; Lund, A.; Sadlo, J.; Yamada, H.; Michalik, J. Conduction electron spin resonance of small silver particles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 63(1), 189-191.
[http://dx.doi.org/10.1016/j.saa.2005.05.002] [PMID: 15978868]
[38]
Dhanalekshmi, K.I.; Meena, K.S. DNA intercalation studies and antimicrobial activity of Ag@ZrO2 core-shell nanoparticles in vitro. Mater. Sci. Eng. C, 2016, 59, 1063-1068.
[http://dx.doi.org/10.1016/j.msec.2015.11.027] [PMID: 26652465]
[39]
Prabhu, S.; Poulose, E.K. Silver nanoparticles: Mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett., 2012, 2(1), 32.
[http://dx.doi.org/10.1186/2228-5326-2-32]
[40]
Li, X.; Lenhart, J.J.; Walker, H.W. Aggregation kinetics and dissolution of coated silver nanoparticles. Langmuir, 2012, 28(2), 1095-1104.
[http://dx.doi.org/10.1021/la202328n] [PMID: 22149007]
[41]
Quang, D.V.; Sarawade, P.B.; Jeon, S.J. Effective water disinfection using silver nanoparticle containing silica beads. Appl. Surf. Sci., 2013, 266, 280-287.
[http://dx.doi.org/10.1016/j.apsusc.2012.11.168]
[42]
Ren, D.; Smith, J.A. Retention and transport of silver nanoparticles in a ceramic porous medium used for point-of-use water treatment. Environ. Sci. Technol., 2013, 47(8), 3825-3832.
[http://dx.doi.org/10.1021/es4000752] [PMID: 23496137]
[43]
Kallman, E.N.; Oyanedel-Craver, V.A.; Smith, J.A. Ceramic filters impregnated with silver nanoparticles for point-of-use water treatment in rural guatemala. J. Environ. Eng., 2011, 137(6), 407-415.
[http://dx.doi.org/10.1061/(ASCE)EE.1943-7870.0000330]
[44]
Hu, P.; Hu, X.; Chen, C.; Hou, D.; Huang, Y. Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. CrystEngComm, 2014, 16(4), 649-653.
[http://dx.doi.org/10.1039/C3CE41925H]
[45]
Bokare, V.; Jung, J.L.; Chang, Y.Y.; Chang, Y-S. Reductive dechlorination of octachlorodibenzo-p-dioxin by nanosized zero-valent zinc: Modeling of rate kinetics and congener profile. J. Hazard. Mater., 2013, 250-251, 397-402.
[http://dx.doi.org/10.1016/j.jhazmat.2013.02.020] [PMID: 23500419]
[46]
Tratnyek, P.G.; Salter, A.J.; Nurmi, J.T.; Sarathy, V. Environmental applications of zero valent metals: Iron vs. zinc. ACS Symposium Series, 2010, 1045, pp. 165-178.
[http://dx.doi.org/10.1021/bk-2010-1045.ch009]
[47]
Imamura, K.; Yoshikawa, T.; Hashimoto, K.; Kominami, H. Stoichiometric production of aminobenzenes and ketones by photo catalytic reduction of nitrobenzenes in secondary alcoholic suspension of titanium(IV) oxide under metal-free conditions. Appl. Catal. B, 2013, 134-135, 193-197.
[http://dx.doi.org/10.1016/j.apcatb.2013.01.015]
[48]
Anpo, M.; Kishiguchi, S.; Ichihashi, Y. The design and development of second-generation titanium oxide photocatalysts able to operate under visible light irradiation by applying a metal ion-implantation method. Res. Chem. Intermed., 2001, 27(4-5), 459-467.
[http://dx.doi.org/10.1163/156856701104202101]
[49]
Mu, W.; Herrmann, J-M.; Pichat, P. Room temperature photocatalytic oxidation of liquid cyclohexane into cyclohexanone over neat and modified TiO2. Catal. Lett., 1989, 3(1), 73-84.
[http://dx.doi.org/10.1007/BF00765057]
[50]
Solis-Casados, D.; Escobar-Alarcon, L.; Fernandez, M.; Valencia, F. Malachite green degradation in simulated wastewater using Nix: TiO2 thin films. Fuel, 2013, 110, 17-22.
[http://dx.doi.org/10.1016/j.fuel.2012.10.042]
[51]
Adamek, E.; Baran, W.; Ziemiańska, J.; Sobczak, A. Effect of FeCl3 on sulfonamide removal and reduction of antimicrobial activity of wastewater in a photocatalytic process with TiO2. Appl. Catal. B, 2012, 126, 29-38.
[http://dx.doi.org/10.1016/j.apcatb.2012.06.027]
[52]
Rizzo, L.; Sannino, D.; Vaiano, V.; Sacco, O.; Scarpa, A.; Pietrogiacomi, D. Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E.coli strain in biologically treated urban wastewater. Appl. Catal. B, 2014, 144, 369-378.
[http://dx.doi.org/10.1016/j.apcatb.2013.07.033]
[53]
Sakkas, V.; Arabatzis, I.; Konstantinou, I.; Dimou, A.; Albanis, T.; Falaras, P. Metolachlor photocatalytic degradation using TiO2 photocatalysts. Appl. Catal. B, 2004, 49, 195-205.
[http://dx.doi.org/10.1016/j.apcatb.2003.12.008]
[54]
Klauson, D.; Portjanskaja, E.; Preis, S. Visible lightassisted photocatalytic oxidation of organic pollutants using nitrogen-doped titania. Environ. Chem. Lett., 2008, 6, 35-39.
[http://dx.doi.org/10.1007/s10311-007-0109-y]
[55]
Wang, X.; Fan, H.; Ren, P. UV light-assisted synthesis of coral SnO2: Characterization and its enhanced photocatalytic properties. Colloids Surf. A Physicochem. Eng. Asp., 2012, 402, 53-59.
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.018]
[56]
Wang, X.; Fan, H.; Ren, P. Electrospinning derived hollow SnO2 microtubes with highly photocatalytic property. Catal. Commun., 2013, 31, 37-41.
[http://dx.doi.org/10.1016/j.catcom.2012.11.009]
[57]
Dai, S.; Yao, Z. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity. Appl. Surf. Sci., 2012, 258, 5703-5706.
[http://dx.doi.org/10.1016/j.apsusc.2012.02.065]
[58]
Martinez, D.T.; Perez, R.C.; Delgado, G.T.; Angel, O.Z. Structural, morphological, optical and photocatalytic characterization of ZnO-SnO2 thin films prepared by the sol-gel technique. J. Photochem. Photobiol. Chem., 2012, 235, 49-55.
[http://dx.doi.org/10.1016/j.jphotochem.2012.03.009]
[59]
Zhang, Y.C.; Yao, L.; Zhang, G.; Dionysiou, D.D.; Li, J.; Du, X. One-step hydrothermal synthesis of highperformance visible-light-driven SnS2/SnO2 nanoheterojunction photocatalyst for the reduction of aqueous Cr (VI). Appl. Catal. B, 2014, 144, 730-738.
[http://dx.doi.org/10.1016/j.apcatb.2013.08.006]
[60]
Tang, S.C.; Lo, I.M. Magnetic nanoparticles: Essential factors for sustainable environmental applications. Water Res., 2013, 47(8), 2613-2632.
[http://dx.doi.org/10.1016/j.watres.2013.02.039] [PMID: 23515106]
[61]
Gupta, A.K.; Deva, D.; Sharma, A.; Verma, N. Fe-grown carbon nanofibers for removal of arsenic (V) in wastewater. Ind. Eng. Chem. Res., 2010, 49, 7074-7084.
[http://dx.doi.org/10.1021/ie100392q]
[62]
Kim, Y.C.; Han, S.; Hong, S. A feasibility study of magnetic separation of magnetic nanoparticle for forward osmosis. Water Sci. Technol., 2011, 64(2), 469-476.
[http://dx.doi.org/10.2166/wst.2011.566] [PMID: 22097022]
[63]
Duan, F.; Zhang, Q.; Shi, D.; Chen, M. Enhanced visible light photocatalytic activity of Bi 2 WO 6 via modification with polypyrrole. Appl. Surf. Sci., 2013, 268, 129-135.
[http://dx.doi.org/10.1016/j.apsusc.2012.12.031]
[64]
Chai, B.; Wang, X.; Cheng, S.; Zhou, H.; Zhang, F. Onepot triethanolamine-assisted hydrothermal synthesis of Ag/ZnO heterostructure microspheres with enhanced photocatalytic activity. Ceram. Int., 2014, 40, 429-435.
[http://dx.doi.org/10.1016/j.ceramint.2013.06.019]
[65]
Yu, C.; Cao, F.; Li, X.; Li, G.; Xie, Y.; Jimmy, C.Y.; Shu, Q.; Fan, Q.; Chen, J. Hydrothermal synthesis and characterization of novel PbWO4 microspheres with hierarchical nanostructures and enhanced photocatalytic performance in dye degradation. Chem. Eng. J., 2013, 219, 86-95.
[http://dx.doi.org/10.1016/j.cej.2012.12.064]
[66]
Shi, X.; Chen, X.; Chen, X. PVP assisted hydrothermal synthesis of BiOBr hierarchical nanostructures and high photocatalytic capacity. Chem. Eng. J., 2013, 222, 120-127.
[http://dx.doi.org/10.1016/j.cej.2013.02.034]
[67]
Liu, S.; Tu, Y.; Dai, G. The effects of citrate ion on morphology and photocatalytic activity of flower-like Bi2O2CO3. Ceram. Int., 2014, 40, 2343-2348.
[http://dx.doi.org/10.1016/j.ceramint.2013.08.004]
[68]
Li, T.; Luo, S.; Yang, L. Three-dimensional hierarchical Ag/AgI/BiOI microspheres with high visible-light photocatalytic activity. Mater. Lett., 2013, 109, 247-252.
[http://dx.doi.org/10.1016/j.matlet.2013.07.044]
[69]
Wang, C.; Yan, J.; Wu, X. Synthesis and characterization of AgBr/AgNbO3 composite with enhanced visible-light photocatalytic activity. Appl. Surf. Sci., 2013, 273, 159-166.
[http://dx.doi.org/10.1016/j.apsusc.2013.02.004]
[70]
He, G.; Qian, M.; Sun, X.; Chen, Q.; Wang, X.; Chen, H. Graphene sheets-based Ag@ Ag3 PO4 heterostructure for enhanced photocatalytic activity and stability under visible light. Powder Technol., 2013, 246, 278-283.
[http://dx.doi.org/10.1016/j.powtec.2013.05.034]
[72]
Chatterjee, A.; Deopura, B.L. Carbon nanotubes and nanofibre: An overview. Fibers Polym., 2002, 3(4), 134-139.
[http://dx.doi.org/10.1007/BF02912657]
[73]
Peng, X.; Li, Y.; Luan, Z. Adsorption of 1,2 dichlorobenzene from water to carbon nanotubes. Chem. Phys. Lett., 2003, 376(1-2), 154-158.
[http://dx.doi.org/10.1016/S0009-2614(03)00960-6]
[74]
Lu, C.; Su, F.S.; Hu, S. Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions. Appl. Surf. Sci., 2008, 254(21), 7035-7041.
[http://dx.doi.org/10.1016/j.apsusc.2008.05.282]
[75]
Cho, H-H.; Wepasnick, K.; Smith, B.A.; Bangash, F.K.; Fairbrother, D.H.; Ball, W.P. Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: The relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir, 2010, 26(2), 967-981.
[http://dx.doi.org/10.1021/la902440u] [PMID: 19894751]
[76]
Li, Y-H.; Ding, J.; Luan, Z. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon, 2003, 41(14), 2787-2792.
[http://dx.doi.org/10.1016/S0008-6223(03)00392-0]
[77]
Madrakian, T.; Afkhami, A.; Ahmadi, M.; Bagheri, H. Removal of some cationic dyes from aqueous solutions using magnetic-modified multi-walled carbon nanotubes. J. Hazard. Mater., 2011, 196, 109-114.
[http://dx.doi.org/10.1016/j.jhazmat.2011.08.078] [PMID: 21930344]
[78]
Ray, P.Z.; Shipley, H.J. Inorganic nano-adsorbents for the removal of heavy metals and arsenic: A review. RSC Advances, 2015, 5(38), 29885-29907.
[http://dx.doi.org/10.1039/C5RA02714D]
[79]
Adeleye, A.S.; Conway, J.R.; Garner, K.; Huang, Y.; Su, Y.; Keller, A.A. Engineered nanomaterials for water treatment and remediation: Costs, benefits, and applicability. Chem. Eng. J., 2016, 286, 640-662.
[http://dx.doi.org/10.1016/j.cej.2015.10.105]
[80]
Li, Y-H.; Wang, S.; Wei, J. Lead adsorption on carbon nanotubes. Chem. Phys. Lett., 2002, 357(3-4), 263-266.
[http://dx.doi.org/10.1016/S0009-2614(02)00502-X]
[81]
Adeleye, A.S.; Keller, A.A. Long-term colloidal stability and metal leaching of single wall carbon nanotubes: effect of temperature and extracellular polymeric substances. Water Res., 2014, 49, 236-250.
[http://dx.doi.org/10.1016/j.watres.2013.11.032] [PMID: 24342047]
[82]
Gupta, V.K.; Agarwal, S.; Saleh, T.A. Chromium removal by combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res., 2011, 45(6), 2207-2212.
[http://dx.doi.org/10.1016/j.watres.2011.01.012] [PMID: 21303713]
[83]
Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: Classification, preparation, and applications (with emphasis on aqueous media). Chem. Rev., 2013, 113(10), 7728-7768.
[http://dx.doi.org/10.1021/cr400086v] [PMID: 23869773]
[84]
Diallo, M.S.; Christie, S.; Swaminathan, P.; Johnson, J.H., Jr; Goddard, W.A. III Dendrimer enhanced ultrafiltration. 1. Recovery of Cu(II) from aqueous solutions using PAMAM dendrimers with ethylene diamine core and terminal NH2 groups. Environ. Sci. Technol., 2005, 39(5), 1366-1377.
[http://dx.doi.org/10.1021/es048961r] [PMID: 15787379]
[85]
Sadeghi-Kiakhani, M.; Mokhtar Arami, M.; Gharanjig, K. Dye removal from colored-textile wastewater using chitosan-PPI dendrimer hybrid as a biopolymer: Optimization, kinetic, and isotherm studies. J. Appl. Polym. Sci., 2013, 127, 2607-2619.
[http://dx.doi.org/10.1002/app.37615]
[86]
Baker, M.D.; Ozin, G.A.; Godber, J. Far-infrared studies of silver atoms, silver ions, and silver clusters in zeolites A and Y. J. Phys. Chem., 1985, 89, 305-311.
[http://dx.doi.org/10.1021/j100248a026]
[87]
Egger, S.; Lehmann, R.P.; Height, M.J.; Loessner, M.J.; Schuppler, M. Antimicrobial properties of a novel silver-silica nanocomposite material. Appl. Environ. Microbiol., 2009, 75(9), 2973-2976.
[http://dx.doi.org/10.1128/AEM.01658-08] [PMID: 19270121]
[88]
Nagy, A.; Harrison, A.; Sabbani, S.; Munson, R.S., Jr; Dutta, P.K.; Waldman, W.J. Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int. J. Nanomedicine, 2011, 6, 1833-1852.
[PMID: 21931480]
[89]
Petrik, L.; Missengue, R.; Fatoba, M.; Tuffin, M.; Sachs, J. Silver/zeolite nano composite-based clay filters for water disinfection. Report to the Water Research Commission. No KV 297/12. Available from:. http://www.ircwash.org/resources/silver-zeolite-nano-composite-based-clay
[90]
Tiwari, D.K.; Behari, J.; Sen, P. Application of nanoparticles in waste water treatment. World Appl. Sci. J., 2008, 3, 417-433.
[91]
Jung, J.Y.; Chung, Y.C.; Shin, H.S.; Son, D.H. Enhanced ammonia nitrogen removal using consistent biological regeneration and ammonium exchange of zeolite in modified SBR process. Water Res., 2004, 38(2), 347-354.
[http://dx.doi.org/10.1016/j.watres.2003.09.025] [PMID: 14675646]
[92]
Abatal, M.; Olguin, M.T.; Abdellaoui, Y.; Bouari, A.E. Sorption of Cd(II), Ni(II) and Zn(II) on natural, sodium-, and acid-Modified clinoptilolite-Rich tu. Environ. Prot. Eng., 2018, 44, 41-59.
[93]
Tsai, W-T.; Hsu, H-C.; Su, T-Y.; Lin, K-Y.; Lin, C-M. Adsorption characteristics of bisphenol-A in aqueous solutions onto hydrophobic zeolite. J. Colloid Interface Sci., 2006, 299(2), 513-519.
[http://dx.doi.org/10.1016/j.jcis.2006.02.034] [PMID: 16631189]
[94]
Kussainova, M.Z.; Chernyakov, R.M.; Jussipbekov, Z.U.; Pas, S. Structural investigation of raw clinoptilolite over the Pb2+ adsorption process from phosphoric acid. J. Mol. Struct., 2019, 1184, 49-58.
[http://dx.doi.org/10.1016/j.molstruc.2019.02.012]
[95]
Azari, A.; Babaei, A-A.; Kalantary, R.R.; Esrafili, A.; Moazzen, M.; Kakavandi, B. Nitrate removal from aqueous solution using carbon nanotubes magnetized by Nano zero-valent iron. Majallah-i Danishgah-i Ulum-i Pizishki-i Mazandaran, 2014, 23(2), 14-27.
[96]
Peyravi, M.; Jahanshahi, M.; Rahimpour, A.; Javadi, A.; Hajavi, S. Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration. Chem. Eng. J., 2014, 241, 155-166.
[http://dx.doi.org/10.1016/j.cej.2013.12.024]
[97]
Tesh, S.J.; Scott, T.B. Nano-composites for water remediation: A review. Adv. Mater., 2014, 26(35), 6056-6068.
[http://dx.doi.org/10.1002/adma.201401376] [PMID: 25069835]
[98]
Hu, P.; Chen, C.; Zeng, R.; Xiang, J.; Huang, Y.; Hou, D.; Li, Q.; Huang, Y. Facile synthesis of bimodal porous graphitic carbon nitride nanosheets as efficient photocatalysts for hydrogen evolution. Nano Energy, 2018, 50, 376-382.
[http://dx.doi.org/10.1016/j.nanoen.2018.05.066]
[99]
Wegmann, M.; Michen, B.; Graule, T. Nanostructured surface modification of microporous ceramics for efficient virus filtration. J. Eur. Ceram. Soc., 2008, 28, 1603-1612.
[http://dx.doi.org/10.1016/j.jeurceramsoc.2007.11.002]
[100]
Feng, C.; Khulbe, K.C.; Matsuura, T.; Tabe, S.; Ismail, A.F. Preparation and characterization of electro-spun nanofiber membranes and their possible applications in water treatment. Separ. Purif. Tech., 2013, 102, 118-135.
[http://dx.doi.org/10.1016/j.seppur.2012.09.037]
[101]
Kim, E.S.; Deng, B. Fabrication of polyamide thin-film nano-composite (PA-TFN) membrane with hydrophilized ordered mesoporous carbon (H-OMC) for water purifications. J. Membr. Sci., 2011, 375, 46-54.
[http://dx.doi.org/10.1016/j.memsci.2011.01.041]
[102]
Fathizadeh, M.; Aroujalian, A.; Raisi, A. Effect of added NaXnano-zeolite into polyamide as a top thin layer of membrane on water flux and salt rejection in a reverse osmosis process. J. Membr. Sci., 2011, 375, 88-95.
[http://dx.doi.org/10.1016/j.memsci.2011.03.017]
[103]
Gehrke, I.; Keuter, V.; Gross, F. Development of nanocomposite membranes with photocatalytic surfaces. J. Nanosci. Nanotechnol., 2012, 12(12), 9163-9168.
[http://dx.doi.org/10.1166/jnn.2012.6740] [PMID: 23447972]
[104]
Gehrke, I. Environmental friendly recycling of strategic metals.Fraunhofer UMSICHT Annual Report., 2013. Available from:, http://www.umsicht.fraunhofer.de/content/dam/umsicht/en/documents/annual%20reports/2013-annual-report.pdf
[105]
Jagadevan, S.; Jayamurthy, M.; Dobson, P.; Thompson, I.P.A. A novel hybrid nano zerovalent iron initiated oxidation--biological degradation approach for remediation of recalcitrant waste metalworking fluids. Water Res., 2012, 46(7), 2395-2404.
[http://dx.doi.org/10.1016/j.watres.2012.02.006] [PMID: 22365368]
[106]
Sharma, V.; Sharma, A. Nanotechnology: An emerging future trend in wastewater treatment with its innovative products and processes. Int. J. Enhanced Res. Sci. Technol. Eng., 2012, 1, 121-128.
[107]
Whitesides, G.M.; Grzybowski, B. Self-assembly at all scales. Science, 2002, 295(5564), 2418-2421.
[http://dx.doi.org/10.1126/science.1070821] [PMID: 11923529]
[108]
41. Qiu X, Yu H, Karunakaran M, Pradeep N, Nunes SP, Peinemann KV. Selective separation of similarly sized proteins with tunable nanoporous blocks copolymer membranes. ACS Nano, 2013, 7, 768-776.
[http://dx.doi.org/10.1021/nn305073e]
[109]
Pendergast, M.T.; Dorin, R.M.; Phillip, W.A.; Wiesner, U.; Hoek, E.M. Understanding the structure and performance of self-assembled triblock terpolymer membranes. J. Membr. Sci., 2013, 444, 461-468.
[http://dx.doi.org/10.1016/j.memsci.2013.04.074]
[110]
Hu, P.; Hou, D.; Shi, H.; Chen, C.; Huang, Y.; Hu, X. Microwave-assisted synthesis of self-assembled BiO1.84H0.08 hierarchical nanostructures as a new photocatalyst. Appl. Surf. Sci., 2014, 319, 244-249.
[http://dx.doi.org/10.1016/j.apsusc.2014.07.141]
[111]
Cloete, T.E.; de Kwaadsteniet, M.; Botes, M.; Lopez-Romero, J.M. Nanotechnology in Water Treatment Applications; Caister Academic Press: Norfolk, UK, 2010.
[112]
Ramakrishna, S.; Fujihara, K.; Teo, W.E.; Yong, T.; Ma, Z.W.; Ramaseshan, R. Electrospun nanofibers: solving global issues. Mater. Today, 2006, 9, 40-50.
[http://dx.doi.org/10.1016/S1369-7021(06)71389-X]
[113]
Karim, M.R.; Rhodes, E.R.; Brinkman, N.; Wymer, L.; Fout, G.S. New electropositive filter for concentrating enteroviruses and noroviruses from large volumes of water. Appl. Environ. Microbiol., 2009, 75(8), 2393-2399.
[http://dx.doi.org/10.1128/AEM.00922-08] [PMID: 19218410]
[114]
Tang, C.Y.; Zhao, Y.; Wang, R.; Hélix-Nielsen, C.; Fane, A.G. Desalination by biomimetic aquaporin membranes: Review of status and prospects. Desalination, 2013, 308, 34-40.
[http://dx.doi.org/10.1016/j.desal.2012.07.007]
[115]
Xie, W.; He, F.; Wang, B. An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1, 7592-7600.
[http://dx.doi.org/10.1039/c3ta10731k]
[116]
Clemente, Z.; Castro, V.L.; Jonsson, C.M.; Fraceto, L.F. Ecotoxicology of Nano-TiO2 – an evaluation of its toxicity to organisms of aquatic ecosystems. Int. J. Environ. Res., 2011, 6, 33-50.
[117]
Asghari, S.; Johari, S.A.; Lee, J.H.; Kim, Y.S.; Jeon, Y.B.; Choi, H.J.; Moon, M.C.; Yu, I.J. Toxicity of various silver nanoparticles compared to silver ions in Daphnia magna. J. Nanobiotechnology, 2012, 10, 14.
[http://dx.doi.org/10.1186/1477-3155-10-14] [PMID: 22472056]
[118]
Petersen, E.J.; Zhang, L.; Mattison, N.T.; O’Carroll, D.M.; Whelton, A.J.; Uddin, N.; Nguyen, T.; Huang, Q.; Henry, T.B.; Holbrook, R.D.; Chen, K.L. Potential release pathways, environmental fate, and ecological risks of carbon nanotubes. Environ. Sci. Technol., 2011, 45(23), 9837-9856.
[http://dx.doi.org/10.1021/es201579y] [PMID: 21988187]
[119]
Jackson, P.; Jacobsen, N.R.; Baun, A.; Birkedal, R.; Kühnel, D.; Jensen, K.A.; Vogel, U.; Wallin, H. Bioaccumulation and ecotoxicity of carbon nanotubes. Chem. Cent. J., 2013, 7(1), 154.
[http://dx.doi.org/10.1186/1752-153X-7-154] [PMID: 24034413]
[120]
RTP Division Nanomaterial case studies: nanoscale titanium dioxide in water treatment and in topical sunscreen.2010. EPA/600/R-09/057F. Available from:, http://cfpub.epa.gov/ncea/cfm/recor display.cfm?deid=230972
[121]
Zhu, X.; Chang, Y.; Chen, Y. Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere, 2010, 78(3), 209-215.
[http://dx.doi.org/10.1016/j.chemosphere.2009.11.013] [PMID: 19963236]
[122]
Smith, C.J.; Shaw, B.J.; Handy, R.D. Toxicity of single walled carbon nanotubes to rainbow trout, (Oncorhynchus mykiss): Respiratory toxicity, organ pathologies, and other physiological effects. Aquat. Toxicol., 2007, 82(2), 94-109.
[http://dx.doi.org/10.1016/j.aquatox.2007.02.003] [PMID: 17343929]
[123]
Mouchet, F.; Landois, P.; Sarremejean, E.; Bernard, G.; Puech, P.; Pinelli, E.; Flahaut, E.; Gauthier, L. Characterisation and in vivo ecotoxicity evaluation of double-wall carbon nanotubes in larvae of the amphibian Xenopus laevis. Aquat. Toxicol., 2008, 87(2), 127-137.
[http://dx.doi.org/10.1016/j.aquatox.2008.01.011] [PMID: 18313771]
[124]
Klaper, R.; Crago, J.; Barr, J.; Arndt, D.; Setyowati, K.; Chen, J. Toxicity biomarker expression in daphnids exposed to manufactured nanoparticles: Changes in toxicity with functionalization. Environ. Pollut., 2009, 157(4), 1152-1156.
[http://dx.doi.org/10.1016/j.envpol.2008.11.010] [PMID: 19095335]
[125]
Zhu, S.; Oberdörster, E.; Haasch, M.L. Toxicity of an engineered nanoparticle (fullerene, C60) in two aquatic species, Daphnia and fathead minnow. Mar. Environ. Res., 2006, 62(Suppl.), S5-S9.
[http://dx.doi.org/10.1016/j.marenvres.2006.04.059] [PMID: 16709433]
[126]
Spohn, P.; Hirsch, C.; Hasler, F.; Bruinink, A.; Krug, H.F.; Wick, P. C60 fullerene: a powerful antioxidant or a damaging agent? The importance of an in-depth material characterization prior to toxicity assays. Environ. Pollut., 2009, 157(4), 1134-1139.
[http://dx.doi.org/10.1016/j.envpol.2008.08.013] [PMID: 18824284]
[127]
Fries, R.; Greßler, S.; Simko, M. Kohlenstoff-Nanoröhrchen – Teil II: Risiken und Regulierung. Carbon nanotubes – Part II: Risks and regulation. NanoTrust-Dossiers., 2011, 1, 24.
[128]
Fortner, J.D.; Lyon, D.Y.; Sayes, C.M.; Boyd, A.M.; Falkner, J.C.; Hotze, E.M.; Alemany, L.B.; Tao, Y.J.; Guo, W.; Ausman, K.D.; Colvin, V.L.; Hughes, J.B. C60 in water: Nanocrystal formation and microbial response. Environ. Sci. Technol., 2005, 39(11), 4307-4316.
[http://dx.doi.org/10.1021/es048099n] [PMID: 15984814]
[129]
Baun, A.; Sørensen, S.N.; Rasmussen, R.F.; Hartmann, N.B.; Koch, C.B. Toxicity and bioaccumulation of xenobiotic organic compounds in the presence of aqueous suspensions of aggregates of nano-C(60). Aquat. Toxicol., 2008, 86(3), 379-387.
[http://dx.doi.org/10.1016/j.aquatox.2007.11.019] [PMID: 18190976]
[130]
Tao, X.; Fortner, J.D.; Zhang, B.; He, Y.; Chen, Y.; Hughes, J.B. Effects of aqueous stable fullerene nanocrystals (nC60) on Daphnia magna: Evaluation of sub-lethal reproductive responses and accumulation. Chemosphere, 2009, 77(11), 1482-1487.
[http://dx.doi.org/10.1016/j.chemosphere.2009.10.027] [PMID: 19897225]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy