Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Systematic Review Article

Autologous Chondrocyte Implantation and Mesenchymal Stem Cells for the Treatments of Chondral Defects of the Knee- A Systematic Review

Author(s): Filippo Migliorini , Alessandra Berton , Giuseppe Salvatore , Vincenzo Candela , Wasim Khan*, Umile G. Longo and Vincenzo Denaro

Volume 15, Issue 6, 2020

Page: [547 - 556] Pages: 10

DOI: 10.2174/1574888X15666200221122834

Price: $65

Abstract

Background: There is still a lack of consensus about the best treatment of chondral defects of the knee. We conducted a systematic PRISMA review to evaluate clinical outcomes of Autologous Chondrocyte Implantation (ACI) and Mesenchymal Stem Cell (MSC) injections for the treatment of focal chondral defects of the knee.

Methods: A systematic review of literature was performed according to the PRISMA guidelines. All the articles reporting data on ACI and MSC treatments for chondral defects of the knee were considered for inclusion. The main databases were accessed: PubMed, Medline, CINAHL, Cochrane, Embase and Google Scholar. The statistical analysis was performed using the Review Manager Software.

Results: In the p-ACI group (987 knees), the Cincinnati Score improved by 18.94% (p=0.1), VAS by 38% (p=0.01), Tegner score by 19.11% (p=0.03), Lysholm score by 22.40% (p=0.01), IKCD by 27.36% (p=0.003). In the c-ACI group (444 knees), the Cincinnati Score improved by 23.80% (p=0.08), KOOS by 23.48% (p=0.03), VAS by 33.2% (p=0.005), IKDC by 33.30% (p=0.005). In the m-ACI group (599 knees), the Cincinnati Score improved by 26.80% (p=0.08), KOOS by 31.59% (p=0.1), VAS by 30.43% (p=0.4), Tegner score by 23.1% (p=0.002), Lysholm score by 31.14% (p=0.004), IKCD by 30.57% (p<0.001). In the MSCs group (291 knees), the KOOS improved by 29.7% (p=0.003), VAS by 41.89% (p<0.001), Tegner score by 25.81% (p=0.003), Lysholm score by 36.96% (p<0.001), IKCD by 30.57% (p=0.001).

Conclusion: Both ACI and MSC therapies can be considered as a concrete solution to treat focal chondral defects of the knee.

Keywords: Chondral defects, ACI, periosteal patch, collagen membrane, mesenchymal stem cells, bone marrow-derived, adipose- derived, peripheral blood-derived.

« Previous
[1]
Basad E, Stürz H, Steinmeyer J. Treatment of osteochondral defects of the knee with autologous bone graft and chondrocyte transplantation: an overview together with our results. Acta Orthop Traumatol Turc 2007; 41(Suppl. 2): 79-86.
[PMID: 18180588]
[2]
Jones KJ, Sheppard WL, Arshi A, Hinckel BB, Sherman SL. Articular Cartilage Lesion Characteristic Reporting Is Highly Variable in Clinical Outcomes Studies of the Knee Cartilage 2018.
[3]
Arøen A, Løken S, Heir S, et al. Articular cartilage lesions in 993 consecutive knee arthroscopies. Am J Sports Med 2004; 32(1): 211-5.
[http://dx.doi.org/10.1177/0363546503259345] [PMID: 14754746]
[4]
Curl WWKJ, Krome J, Gordon ES, Rushing J, Smith BP, Poehling GG. Cartilage injuries: a review of 31,516 knee arthroscopies. Arthroscopy 1997; 13(4): 456-60.
[http://dx.doi.org/10.1016/S0749-8063(97)90124-9] [PMID: 9276052]
[5]
Hjelle K, Solheim E, Strand T, Muri R, Brittberg M. Articular cartilage defects in 1,000 knee arthroscopies. Arthroscopy 2002; 18(7): 730-4.
[http://dx.doi.org/10.1053/jars.2002.32839] [PMID: 12209430]
[6]
Basad E, Ishaque B, Bachmann G, Stürz H, Steinmeyer J. Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study. Knee Surg Sports Traumatol Arthrosc 2010; 18(4): 519-27.
[http://dx.doi.org/10.1007/s00167-009-1028-1] [PMID: 20062969]
[7]
Hinckel BB, Gomoll AH. Autologous Chondrocytes and Next-Generation Matrix-Based Autologous Chondrocyte Implantation. Clin Sports Med 2017; 36(3): 525-48.
[http://dx.doi.org/10.1016/j.csm.2017.02.008] [PMID: 28577711]
[8]
Lefkoe TPTP, Trafton PG, Ehrlich MG, et al. An experimental model of femoral condylar defect leading to osteoarthrosis. J Orthop Trauma 1993; 7(5): 458-67.
[http://dx.doi.org/10.1097/00005131-199310000-00009] [PMID: 8229383]
[9]
Messner K. Cartilage replacement operation using pre-cultured cells. Orthopade 1999; 28(1): 61-7.
[PMID: 10081045]
[10]
Dulay GS, Cooper C, Dennison EM. Knee pain, knee injury, knee osteoarthritis & work. Best Pract Res Clin Rheumatol 2015; 29(3): 454-61.
[http://dx.doi.org/10.1016/j.berh.2015.05.005] [PMID: 26612241]
[11]
Davies-Tuck MLWA, Wluka AE, Wang Y, et al. The natural history of cartilage defects in people with knee osteoarthritis. Osteoarthritis Cartilage 2008; 16(3): 337-42.
[http://dx.doi.org/10.1016/j.joca.2007.07.005] [PMID: 17698376]
[12]
Marquez-Lara A, Mannava S, Howse EA, Stone AV, Stubbs AJ. Arthroscopic Management of Hip Chondral Defects: A Systematic Review of the Literature. Arthroscopy 2016; 32(7): 1435-43.
[http://dx.doi.org/10.1016/j.arthro.2016.01.058] [PMID: 27117866]
[13]
Riboh JC, Cole BJ, Farr J. Particulated articular cartilage for symptomatic chondral defects of the knee. Curr Rev Musculoskelet Med 2015; 8(4): 429-35.
[http://dx.doi.org/10.1007/s12178-015-9300-0] [PMID: 26371073]
[14]
Mistry H, Connock M, Pink J, et al. Autologous chondrocyte implantation in the knee: systematic review and economic evaluation. Health Technol Assess 2017; 21(6): 1-294.
[http://dx.doi.org/10.3310/hta21060] [PMID: 28244303]
[15]
Nixon AJ, Sparks HD, Begum L, et al. Matrix-induced autologous chondrocyte implantation (MACI) using a cell-seeded collagen membrane improves cartilage healing in the equine model. J Bone Joint Surg Am 2017; 99(23): 1987-98.
[http://dx.doi.org/10.2106/JBJS.16.00603] [PMID: 29206788]
[16]
Devitt BM, Bell SW, Webster KE, Feller JA, Whitehead TS. Surgical treatments of cartilage defects of the knee: Systematic review of randomised controlled trials. Knee 2017; 24(3): 508-17.
[http://dx.doi.org/10.1016/j.knee.2016.12.002] [PMID: 28189406]
[17]
Martinelli N, Bonifacini C, Longo UG, et al. Current strategies of tissue engineering in talus chondral defects. Curr Stem Cell Res Ther 2013; 8(3): 217-21.
[http://dx.doi.org/10.2174/1574888X11308030006] [PMID: 23317470]
[18]
Wang KC, Frank RM, Cotter EJ, et al. Long-term Clinical Outcomes After Microfracture of the Glenohumeral Joint: Average 10-Year Follow-up. Am J Sports Med 2018; 46(4): 786-94.
[http://dx.doi.org/10.1177/0363546517750627] [PMID: 29373801]
[19]
Sherman SL, Thyssen E, Nuelle CW. Osteochondral Autologous Transplantation. Clin Sports Med 2017; 36(3): 489-500.
[http://dx.doi.org/10.1016/j.csm.2017.02.006] [PMID: 28577708]
[20]
Khan WS, Longo UG. ACI and MACI procedures for cartilage repair utilise mesenchymal stem cells rather than chondrocytes. Med Hypotheses 2011; 77(2): 309.
[http://dx.doi.org/10.1016/j.mehy.2011.05.004] [PMID: 21601368]
[21]
Franceschi F, Longo UG, Ruzzini L, Marinozzi A, Maffulli N, Denaro V. Simultaneous arthroscopic implantation of autologous chondrocytes and high tibial osteotomy for tibial chondral defects in the varus knee. Knee 2008; 15(4): 309-13.
[http://dx.doi.org/10.1016/j.knee.2008.04.007] [PMID: 18541430]
[22]
Ronga M, Grassi FA, Bulgheroni P. Arthroscopic autologous chondrocyte implantation for the treatment of a chondral defect in the tibial plateau of the knee. Arthroscopy 2004; 20(1): 79-84.
[http://dx.doi.org/10.1016/j.arthro.2003.11.012] [PMID: 14716284]
[23]
Zeifang F, Oberle D, Nierhoff C, Richter W, Moradi B, Schmitt H. Autologous chondrocyte implantation using the original periosteum-cover technique versus matrix-associated autologous chondrocyte implantation: a randomized clinical trial. Am J Sports Med 2010; 38(5): 924-33.
[http://dx.doi.org/10.1177/0363546509351499] [PMID: 19966102]
[24]
Brittberg M, Lindahl A, Nilsson A, Ohlsson C, Isaksson O, Peterson L. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331(14): 889-95.
[http://dx.doi.org/10.1056/NEJM199410063311401] [PMID: 8078550]
[25]
Gillogly SD, Wheeler KS. Autologous Chondrocyte Implantation With Collagen Membrane. Sports Med Arthrosc Rev 2015; 23(3): 118-24.
[http://dx.doi.org/10.1097/JSA.0000000000000079] [PMID: 26225570]
[26]
Steinwachs M, Kreuz PC. Autologous chondrocyte implantation in chondral defects of the knee with a type I/III collagen membrane: a prospective study with a 3-year follow-up. Arthroscopy 2007; 23(4): 381-7.
[http://dx.doi.org/10.1016/j.arthro.2006.12.003] [PMID: 17418330]
[27]
Gigante A, Bevilacqua C, Cappella M, Manzotti S, Greco F. Engineered articular cartilage: influence of the scaffold on cell phenotype and proliferation. J Mater Sci Mater Med 2003; 14(8): 713-6.
[http://dx.doi.org/10.1023/A:1024915817061] [PMID: 15348413]
[28]
Basad E, Wissing FR, Fehrenbach P, Rickert M, Steinmeyer J, Ishaque B. Matrix-induced autologous chondrocyte implantation (MACI) in the knee: clinical outcomes and challenges. Knee Surg Sports Traumatol Arthrosc 2015; 23(12): 3729-35.
[http://dx.doi.org/10.1007/s00167-014-3295-8] [PMID: 25218576]
[29]
Vapniarsky N, Arzi B, Hu JC, Nolta JA, Athanasiou KA. Concise Review: Human Dermis as an Autologous Source of Stem Cells for Tissue Engineering and Regenerative Medicine. Stem Cells Transl Med 2015; 4(10): 1187-98.
[http://dx.doi.org/10.5966/sctm.2015-0084] [PMID: 26253713]
[30]
Samsonraj RM, Raghunath M, Nurcombe V, Hui JH, van Wijnen AJ, Cool SM. Concise Review: Multifaceted Characterization of Human Mesenchymal Stem Cells for Use in Regenerative Medicine. Stem Cells Transl Med 2017; 6(12): 2173-85.
[http://dx.doi.org/10.1002/sctm.17-0129] [PMID: 29076267]
[31]
Garcia D, Longo UG, Vaquero J, et al. Amniotic membrane transplant for articular cartilage repair: an experimental study in sheep. Curr Stem Cell Res Ther 2015; 10(1): 77-83.
[http://dx.doi.org/10.2174/1574888X09666140710120012] [PMID: 25012733]
[32]
Longo UG, Loppini M, Berton A, La Verde L, Khan WS, Denaro V. Stem cells from umbilical cord and placenta for musculoskeletal tissue engineering. Curr Stem Cell Res Ther 2012; 7(4): 272-81.
[http://dx.doi.org/10.2174/157488812800793054] [PMID: 22563663]
[33]
Usuelli FG, D’Ambrosi R, Maccario C, Indino C, Manzi L, Maffulli N. Adipose-derived stem cells in orthopaedic pathologies. Br Med Bull 2017; 124(1): 31-54.
[PMID: 29253149]
[34]
Longo UG, Rizzello G, Berton A, et al. Potential of adipose derived stem cells in orthopaedic surgery. Curr Stem Cell Res Ther 2013; 8(6): 418-21.
[http://dx.doi.org/10.2174/1574888X1130800058] [PMID: 24016327]
[35]
Fossett E, Khan WS, Longo UG, Smitham PJ. Effect of age and gender on cell proliferation and cell surface characterization of synovial fat pad derived mesenchymal stem cells Journal of orthopaedic research: official publica-tion of the Orthopaedic Research Society 2012.30: 1013-8..
[http://dx.doi.org/10.1002/jor.22057]
[36]
Singh J, Onimowo JO, Khan WS. Bone marrow derived stem cells in trauma and orthopaedics: a review of the current trend. Curr Stem Cell Res Ther 2015; 10(1): 37-42.
[http://dx.doi.org/10.2174/1574888X09666140710105141] [PMID: 25012738]
[37]
Tsai TL, Li WJ. Identification of Bone Marrow-Derived Soluble Factors Regulating Human Mesenchymal Stem Cells for Bone Regeneration. Stem Cell Reports 2017; 8(2): 387-400.
[http://dx.doi.org/10.1016/j.stemcr.2017.01.004] [PMID: 28162996]
[38]
Park YB, Ha CW, Rhim JH, Lee HJ. Stem Cell Therapy for Articular Cartilage Repair: Review of the Entity of Cell Populations Used and the Result of the Clin-ical Application of Each Entity Am J. Sports Med 2017.
[39]
Lyahyai J, Mediano DR, Ranera B, et al. Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res 2012; 8: 169.
[http://dx.doi.org/10.1186/1746-6148-8-169] [PMID: 22999337]
[40]
Bornes TD, Adesida AB, Jomha NM. Mesenchymal stem cells in the treatment of traumatic articular cartilage defects: a comprehensive review. Arthritis Res Ther 2014; 16(5): 432.
[http://dx.doi.org/10.1186/s13075-014-0432-1] [PMID: 25606595]
[41]
Huselstein C, Li Y, He X. Mesenchymal stem cells for cartilage engineering. Biomed Mater Eng 2012; 22(1-3): 69-80.
[http://dx.doi.org/10.3233/BME-2012-0691] [PMID: 22766704]
[42]
Stoltz JF, Huselstein C, Schiavi J, et al. Human stem cells and articular cartilage tissue engineering. Curr Pharm Biotechnol 2012; 13(15): 2682-91.
[http://dx.doi.org/10.2174/138920112804724846] [PMID: 23072395]
[43]
Longo UG, Petrillo S, Franceschetti E, Berton A, Maffulli N, Denaro V. Stem cells and gene therapy for cartilage repair. Stem Cells Int 2012. 2012168385
[http://dx.doi.org/10.1155/2012/168385] [PMID: 22481959]
[44]
Akgun I, Unlu MC, Erdal OA, et al. Matrix-induced autologous mesenchymal stem cell implantation versus matrix-induced autologous chondrocyte implantation in the treatment of chondral defects of the knee: a 2-year randomized study. Arch Orthop Trauma Surg 2015; 135(2): 251-63.
[http://dx.doi.org/10.1007/s00402-014-2136-z] [PMID: 25548122]
[45]
Gobbi A, Scotti C, Karnatzikos G, Mudhigere A, Castro M, Peretti GM. One-step surgery with multipotent stem cells and Hyaluronan-based scaffold for the treatment of full-thickness chondral defects of the knee in patients older than 45 years. Knee Surg Sports Traumatol Arthrosc 2017; 25(8): 2494-501.
[http://dx.doi.org/10.1007/s00167-016-3984-6] [PMID: 26768608]
[46]
Moher D, Liberati A, Tetzlaff J, Altman DG. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6(7) e1000097
[http://dx.doi.org/10.1371/journal.pmed.1000097] [PMID: 19621072]
[47]
Howick JCI, Glasziou P, Greenhalgh T, et al. https://www.cebm.net/index.aspx?o=56532011
[48]
Noyes FR eTCKRSC. OH: Cincinnati Sports Medicine Research and Education Foundation. 1983.
[49]
Roos EMRH, Roos HP, Lohmander LS, Ekdahl C, Beynnon BD. Knee Injury and Osteoarthritis Outcome Score (KOOS)--development of a self-administered outcome measure. J Orthop Sports Phys Ther 1998; 28(2): 88-96.
[http://dx.doi.org/10.2519/jospt.1998.28.2.88] [PMID: 9699158]
[50]
Hambly K. The use of the Tegner Activity Scale for articular cartilage repair of the knee: a systematic review. Knee Surg Sports Traumatol Arthrosc 2011; 19(4): 604-14.
[http://dx.doi.org/10.1007/s00167-010-1301-3] [PMID: 21076815]
[51]
Irrgang JJ, Snyder-Mackler L, Wainner RS, Fu FH, Harner CD. Development of a patient-reported measure of function of the knee. J Bone Joint Surg Am 1998; 80(8): 1132-45.
[http://dx.doi.org/10.2106/00004623-199808000-00006] [PMID: 9730122]
[52]
Irrgang JJAA, Anderson AF, Boland AL, et al. Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 2001; 29(5): 600-13.
[http://dx.doi.org/10.1177/03635465010290051301] [PMID: 11573919]
[53]
Buckwalter JA, Mankin HJ. Articular cartilage repair and transplantation. Arthritis Rheum 1998; 41(8): 1331-42.
[http://dx.doi.org/10.1002/1529-0131(199808)41:8<1331:AID-ART2>3.0.CO;2-J] [PMID: 9704631]
[54]
Longo UG, Lamberti A, Petrillo S, Maffulli N, Denaro V. Scaffolds in tendon tissue engineering. Stem Cells Int 2012. 2012517165
[http://dx.doi.org/10.1155/2012/517165] [PMID: 22190961]
[55]
Almqvist KF, Dhollander AA, Verdonk PC, Forsyth R, Verdonk R, Verbruggen G. Treatment of cartilage defects in the knee using alginate beads containing human mature allogenic chondrocytes. Am J Sports Med 2009; 37(10): 1920-9.
[http://dx.doi.org/10.1177/0363546509335463] [PMID: 19542304]
[56]
Pietschmann MF, Niethammer TR, Horng A, et al. The incidence and clinical relevance of graft hypertrophy after matrix-based autologous chondrocyte implantation. Am J Sports Med 2012; 40(1): 68-74.
[http://dx.doi.org/10.1177/0363546511424396] [PMID: 22031857]
[57]
Harris JD, Siston RA, Brophy RH, Lattermann C, Carey JL, Flanigan DC. Failures, re-operations, and complications after autologous chondrocyte implantation--a systematic review. Osteoarthritis Cartilage 2011; 19(7): 779-91.
[http://dx.doi.org/10.1016/j.joca.2011.02.010] [PMID: 21333744]
[58]
Nawaz SZ, Bentley G, Briggs TW, et al. Autologous chondrocyte implantation in the knee: mid-term to long-term results. J Bone Joint Surg Am 2014; 96(10): 824-30.
[http://dx.doi.org/10.2106/JBJS.L.01695] [PMID: 24875023]
[59]
Gooding CR BW, Bentley G, et al. A prospective, randomised study, osteochondral cttoacif, col-lagen ditkpcvtII 2006. 13(3): 203- 10..
[60]
Zaslav K CB, Brewster R, et al. A prospective study of autologous chondrocyte, cartilage iip-wfptfa Repair dotkrotSotToA 2009.37(1): 42-55..
[61]
Morgenroth DC, Medverd JR, Seyedali M, Czerniecki JM. The relationship between knee joint loading rate during walking and degenerative changes on magnetic resonance imaging. Clin Biomech (Bristol, Avon) 2014; 29(6): 664-70.
[http://dx.doi.org/10.1016/j.clinbiomech.2014.04.008] [PMID: 24820134]
[62]
Dabiri Y, Li LP. Altered knee joint mechanics in simple compression associated with early cartilage degeneration. Comput Math Methods Med 2013. 2013862903
[http://dx.doi.org/10.1155/2013/862903] [PMID: 23424607]
[63]
Horisberger M, Fortuna R, Valderrabano V, Herzog W. Long-term repetitive mechanical loading of the knee joint by in vivo muscle stimulation accelerates cartilage degeneration and increases chondrocyte death in a rabbit model. Clin Biomech (Bristol, Avon) 2013; 28(5): 536-43.
[http://dx.doi.org/10.1016/j.clinbiomech.2013.04.009] [PMID: 23701865]
[64]
Longo UG, Forriol F, Maffulli N, Denaro V. Evaluation of histological scoring systems for tissue-engineered, repaired and osteoarthritic cartilage Osteoarthritis and cartilage/OARS. Osteoarthritis Research Society 2010.
[http://dx.doi.org/10.1016/j.joca.2010.02.015]
[65]
Ferruzzi A, Buda R, Faldini C, et al. Autologous chondrocyte implantation in the knee joint: open compared with arthroscopic technique. Comparison at a minimum follow-up of five years. J Bone Joint Surg Am 2008; 90(Suppl. 4): 90-101.
[http://dx.doi.org/10.2106/JBJS.H.00633] [PMID: 18984722]
[66]
Kon E, Filardo G, Condello V, et al. Second-generation autologous chondrocyte implantation: results in patients older than 40 years. Am J Sports Med 2011; 39(8): 1668-75.
[http://dx.doi.org/10.1177/0363546511404675] [PMID: 21596901]
[67]
Bartlett W, Skinner JA, Gooding CR, et al. Autologous chondrocyte implantation versus matrix-induced autologous chondrocyte implantation for osteochondral defects of the knee: a prospective, randomised study. J Bone Joint Surg Br 2005; 87(5): 640-5.
[http://dx.doi.org/10.1302/0301-620X.87B5.15905] [PMID: 15855365]
[68]
Longo UG, Loppini M, Romeo G, Maffulli N, Denaro V. Histological scoring systems for tissue-engineered, ex vivo and degenerative meniscus Knee surgery, sports traumatolo-gy, arthroscopy: official journal of the ESSKA 2013. 21: 1569-76..
[http://dx.doi.org/10.1007/s00167-012-2142-z]
[69]
Forriol F, Longo UG, Alvarez E, et al. Scanty integration of osteochondral allografts cryopreserved at low temperatures with dimethyl sulfoxide Knee surgery, sports traumatology, ar-throscopy: official journal of the ESSKA 2011.19: 1184-91..
[http://dx.doi.org/10.1007/s00167-010-1317-8]
[70]
Vijayan S, Bartlett W, Bentley G, et al. Autologous chondrocyte implantation for osteochondral lesions in the knee using a bilayer collagen membrane and bone graft: a two- to eight-year follow-up study. J Bone Joint Surg Br 2012; 94(4): 488-92.
[http://dx.doi.org/10.1302/0301-620X.94B4.27117] [PMID: 22434464]
[71]
Brittberg M, Winalski CS. Evaluation of cartilage injuries and repair. J Bone Joint Surg Am 2003; 85-A(Suppl. 2): 58-69.
[http://dx.doi.org/10.2106/00004623-200300002-00008] [PMID: 12721346]
[72]
Hoburg A, Löer I, Körsmeier K, et al. Matrix-Associated Autologous Chondrocyte Implantation Is an Effective Treatment at Midterm Follow-up in Adolescents and Young Adults. Orthop J Sports Med 2019; 7(4) 2325967119841077
[http://dx.doi.org/10.1177/2325967119841077] [PMID: 31041335]
[73]
Macmull S, Jaiswal PK, Bentley G, Skinner JA, Carrington RW, Briggs TW. The role of autologous chondrocyte implantation in the treatment of symptomatic chondromalacia patellae. Int Orthop 2012; 36(7): 1371-7.
[http://dx.doi.org/10.1007/s00264-011-1465-6] [PMID: 22246591]
[74]
Becher C, Laute V, Fickert S, et al. Safety of three different product doses in autologous chondrocyte implantation: results of a prospective, randomised, controlled trial. J Orthop Surg Res 2017; 12(1): 71.
[http://dx.doi.org/10.1186/s13018-017-0570-7] [PMID: 28499391]
[75]
Niemeyer P, Laute V, John T, et al. The Effect of Cell Dose on the Early Magnetic Resonance Morphological Outcomes of Autologous Cell Implantation for Articular Cartilage Defects in the Knee: A Randomized Clinical Trial. Am J Sports Med 2016; 44(8): 2005-14.
[http://dx.doi.org/10.1177/0363546516646092] [PMID: 27206690]
[76]
Siebold R, Suezer F, Schmitt B, Trattnig S, Essig M. Good clinical and MRI outcome after arthroscopic autologous chondrocyte implantation for cartilage repair in the knee. Knee Surg Sports Traumatol Arthrosc 2018; 26(3): 831-9.
[http://dx.doi.org/10.1007/s00167-017-4491-0] [PMID: 28258330]
[77]
Niemeyer P, Laute V, Zinser W, et al. A Prospective, Randomized, Open-Label, Multicenter, Phase III Noninferiority Trial to Compare the Clinical Efficacy of Matrix-Associated Autologous Chondrocyte Implantation With Spheroid Technology Versus Arthroscopic Microfracture for Cartilage Defects of the Knee. Orthop J Sports Med 2019; 7(7) 2325967119854442
[http://dx.doi.org/10.1177/2325967119854442] [PMID: 31317047]
[78]
Gillogly SD, Myers TH, Reinold MM. Treatment of full-thickness chondral defects in the knee with autologous chondrocyte implantation. J Orthop Sports Phys Ther 2006; 36(10): 751-64.
[http://dx.doi.org/10.2519/jospt.2006.2409] [PMID: 17063837]
[79]
Biant LC, Bentley G, Vijayan S, Skinner JA, Carrington RW. Long-term results of autologous chondrocyte implantation in the knee for chronic chondral and osteochondral defects. Am J Sports Med 2014; 42(9): 2178-83.
[http://dx.doi.org/10.1177/0363546514539345] [PMID: 25002462]
[80]
Kon E, Filardo G, Di Martino A, Marcacci M. ACI and MACI. J Knee Surg 2012; 25(1): 17-22.
[http://dx.doi.org/10.1055/s-0031-1299651] [PMID: 22624243]
[81]
Kyriakidis T, Iosifidis M, Michalopoulos E, Melas I, Papadopoulos P, Stavropoulos-Giokas C. Matrix-induced adipose-derived mesenchymal stem cells implantation for knee articular cartilage repair. Two years follow-up. Acta Orthop Belg 2018; 84(4): 443-51.
[PMID: 30879449]
[82]
Gobbi A, Karnatzikos G, Sankineani SR. One-step surgery with multipotent stem cells for the treatment of large full-thickness chondral defects of the knee. Am J Sports Med 2014; 42(3): 648-57.
[http://dx.doi.org/10.1177/0363546513518007] [PMID: 24458240]
[83]
Gobbi A, Karnatzikos G, Scotti C, Mahajan V, Mazzucco L, Grigolo B. One-Step Cartilage Repair with Bone Marrow Aspirate Concentrated Cells and Collagen Matrix in Full-Thickness Knee Cartilage Lesions: Results at 2-Year Follow-up. Cartilage 2011; 2(3): 286-99.
[http://dx.doi.org/10.1177/1947603510392023] [PMID: 26069587]
[84]
Haleem AM, Singergy AA, Sabry D, et al. The Clinical Use of Human Culture-Expanded Autologous Bone Marrow Mesenchymal Stem Cells Transplanted on Platelet-Rich Fibrin Glue in the Treatment of Articular Cartilage Defects: A Pilot Study and Preliminary Results. Cartilage 2010; 1(4): 253-61.
[http://dx.doi.org/10.1177/1947603510366027] [PMID: 21170288]
[85]
Kim YS, Kwon OR, Choi YJ, Suh DS, Heo DB, Koh YG. Comparative Matched-Pair Analysis of the Injection Versus Implantation of Mesenchymal Stem Cells for Knee Osteoarthritis. Am J Sports Med 2015; 43(11): 2738-46.
[http://dx.doi.org/10.1177/0363546515599632] [PMID: 26337418]
[86]
Skowroński J, Rutka M. Osteochondral lesions of the knee reconstructed with mesenchymal stem cells - results. Ortop Traumatol Rehabil 2013; 15(3): 195-204.
[http://dx.doi.org/10.5604/15093492.1058409] [PMID: 23897996]
[87]
Koh YG, Choi YJ, Kwon OR, Kim YS. Second-Look Arthroscopic Evaluation of Cartilage Lesions After Mesenchymal Stem Cell Implantation in Osteoarthritic Knees. Am J Sports Med 2014; 42(7): 1628-37.
[http://dx.doi.org/10.1177/0363546514529641] [PMID: 24743139]
[88]
Koh YG, Jo SB, Kwon OR, et al. Mesenchymal stem cell injections improve symptoms of knee osteoarthritis. Arthroscopy 2013; 29(4): 748-55.
[http://dx.doi.org/10.1016/j.arthro.2012.11.017] [PMID: 23375182]
[89]
Saw KY, Anz A, Siew-Yoke Jee C, et al. Articular cartilage regeneration with autologous peripheral blood stem cells versus hyaluronic acid: a randomized controlled trial. Arthroscopy 2013; 29(4): 684-94.
[http://dx.doi.org/10.1016/j.arthro.2012.12.008] [PMID: 23380230]
[90]
Eckstein F, Mc Culloch CE, Lynch JA, et al. OA Initiative Investigators Group. How do short-term rates of femorotibial cartilage change compare to long-term changes? Four year follow-up data from the osteoarthritis initiative. Osteoarthritis Cartilage 2012; 20(11): 1250-7.
[http://dx.doi.org/10.1016/j.joca.2012.06.019] [PMID: 22800771]
[91]
Llewellyn-Bennett R, Bowman L, Bulbulia R. Post-trial follow-up methodology in large randomized controlled trials: a systematic review protocol. Syst Rev 2016; 5(1): 214.
[http://dx.doi.org/10.1186/s13643-016-0393-3] [PMID: 27978859]
[92]
Sato M, Yamato M, Mitani G, et al. Combined surgery and chondrocyte cell-sheet transplantation improves clinical and structural outcomes in knee osteoarthritis. NPJ Regen Med 2019; 4: 4.
[http://dx.doi.org/10.1038/s41536-019-0069-4] [PMID: 30820353]
[93]
Cole BJ, DeBerardino T, Brewster R, et al. Outcomes of autologous chondrocyte implantation in study of the treatment of articular repair (STAR) patients with osteochondritis dissecans. Am J Sports Med 2012; 40(9): 2015-22.
[http://dx.doi.org/10.1177/0363546512453292] [PMID: 22822178]
[94]
Gomoll AH, Gillogly SD, Cole BJ, et al. Autologous chondrocyte implantation in the patella: a multicenter experience. Am J Sports Med 2014; 42(5): 1074-81.
[http://dx.doi.org/10.1177/0363546514523927] [PMID: 24595400]
[95]
Knutsen G, Drogset JO, Engebretsen L, et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89(10): 2105-12.
[http://dx.doi.org/10.2106/00004623-200710000-00002] [PMID: 17908884]
[96]
Lim HC, Bae JH, Song SH, Park YE, Kim SJ. Current treatments of isolated articular cartilage lesions of the knee achieve similar outcomes. Clin Orthop Relat Res 2012; 470(8): 2261-7.
[http://dx.doi.org/10.1007/s11999-012-2304-9] [PMID: 22422593]
[97]
Mandelbaum B, Browne JE, Fu F, et al. Treatment outcomes of autologous chondrocyte implantation for full-thickness articular cartilage defects of the trochlea. Am J Sports Med 2007; 35(6): 915-21.
[http://dx.doi.org/10.1177/0363546507299528] [PMID: 17376858]
[98]
McNickle AG, L’Heureux DR, Yanke AB, Cole BJ. Outcomes of autologous chondrocyte implantation in a diverse patient population. Am J Sports Med 2009; 37(7): 1344-50.
[http://dx.doi.org/10.1177/0363546509332258] [PMID: 19286911]
[99]
Minas T, Von Keudell A, Bryant T, Gomoll AH. The John Insall Award: A minimum 10-year outcome study of autologous chondrocyte implantation. Clin Orthop Relat Res 2014; 472(1): 41-51.
[http://dx.doi.org/10.1007/s11999-013-3146-9] [PMID: 23979923]
[100]
Niemeyer P, Steinwachs M, Erggelet C, et al. Autologous chondrocyte implantation for the treatment of retropatellar cartilage defects: clinical results referred to defect localisation. Arch Orthop Trauma Surg 2008; 128(11): 1223-31.
[http://dx.doi.org/10.1007/s00402-007-0413-9] [PMID: 17710423]
[101]
Niemeyer P, Porichis S, Steinwachs M, et al. Long-term outcomes after first-generation autologous chondrocyte implantation for cartilage defects of the knee. Am J Sports Med 2014; 42(1): 150-7.
[http://dx.doi.org/10.1177/0363546513506593] [PMID: 24145948]
[102]
Peterson L, Vasiliadis HS, Brittberg M, Lindahl A. Autologous chondrocyte implantation: a long-term follow-up. Am J Sports Med 2010; 38(6): 1117-24.
[http://dx.doi.org/10.1177/0363546509357915] [PMID: 20181804]
[103]
Rosa D, Balato G, Ciaramella G, Soscia E, Improta G, Triassi M. Long-term clinical results and MRI changes after autologous chondrocyte implantation in the knee of young and active middle aged patients. J Orthop Traumatol 2016; 17(1): 55-62.
[http://dx.doi.org/10.1007/s10195-015-0383-6] [PMID: 26496929]
[104]
Cvetanovich GL, Riboh JC, Tilton AK, Cole BJ. Autologous chondrocyte implantation improves knee-specific functional outcomes and health-related quality of life in adolescent patients. Am J Sports Med 2017; 45(1): 70-6.
[http://dx.doi.org/10.1177/0363546516663711] [PMID: 27566240]
[105]
Kon E, Gobbi A, Filardo G, Delcogliano M, Zaffagnini S, Marcacci M. Arthroscopic second-generation autologous chondrocyte implantation compared with microfracture for chondral lesions of the knee: prospective nonrandomized study at 5 years. Am J Sports Med 2009; 37(1): 33-41.
[http://dx.doi.org/10.1177/0363546508323256] [PMID: 19059899]
[106]
Micheli LJ, Moseley JB, Anderson AF, et al. Articular cartilage defects of the distal femur in children and adolescents: treatment with autologous chondrocyte implantation. J Pediatr Orthop 2006; 26(4): 455-60.
[http://dx.doi.org/10.1097/01.bpo.0000224565.72762.eb] [PMID: 16791061]
[107]
Saris DB, Vanlauwe J, Victor J, et al. TIG/ACT/01/2000&EXT Study Group. Treatment of symptomatic cartilage defects of the knee: characterized chondrocyte implantation results in better clinical outcome at 36 months in a randomized trial compared to microfracture. Am J Sports Med 2009; 37(Suppl. 1): 10S-9S.
[http://dx.doi.org/10.1177/0363546509350694] [PMID: 19846694]
[108]
Vanlauwe JJ, Claes T, Van Assche D, Bellemans J, Luyten FP. Characterized chondrocyte implantation in the patellofemoral joint: an up to 4-year follow-up of a prospective cohort of 38 patients. Am J Sports Med 2012; 40(8): 1799-807.
[http://dx.doi.org/10.1177/0363546512452712] [PMID: 22785604]
[109]
Zaslav K, Cole B, Brewster R, et al. STAR Study Principal Investigators. A prospective study of autologous chondrocyte implantation in patients with failed prior treatment for articular cartilage defect of the knee: results of the Study of the Treatment of Articular Repair (STAR) clinical trial. Am J Sports Med 2009; 37(1): 42-55.
[http://dx.doi.org/10.1177/0363546508322897] [PMID: 18927254]
[110]
Ebert JR, Fallon M, Wood DJ, Janes GC. A prospective clinical and radiological evaluation at 5 years after arthroscopic matrix-induced autologous chondrocyte implantation. Am J Sports Med 2017; 45(1): 59-69.
[http://dx.doi.org/10.1177/0363546516663493] [PMID: 27587741]
[111]
Filardo G, Kon E, Andriolo L, Di Matteo B, Balboni F, Marcacci M. Clinical profiling in cartilage regeneration: prognostic factors for midterm results of matrix-assisted autologous chondrocyte transplantation. Am J Sports Med 2014; 42(4): 898-905.
[http://dx.doi.org/10.1177/0363546513518552] [PMID: 24481827]
[112]
Gobbi A, Kon E, Berruto M, et al. Patellofemoral full-thickness chondral defects treated with second-generation autologous chondrocyte implantation: results at 5 years’ follow-up. Am J Sports Med 2009; 37(6): 1083-92.
[http://dx.doi.org/10.1177/0363546509331419] [PMID: 19465733]
[113]
Marlovits S, Aldrian S, Wondrasch B, et al. Clinical and radiological outcomes 5 years after matrix-induced autologous chondrocyte implantation in patients with symptomatic, traumatic chondral defects. Am J Sports Med 2012; 40(10): 2273-80.
[http://dx.doi.org/10.1177/0363546512457008] [PMID: 22922521]
[114]
Niemeyer P, Lenz P, Kreuz PC, et al. Chondrocyte-seeded type I/III collagen membrane for autologous chondrocyte transplantation: prospective 2-year results in patients with cartilage defects of the knee joint. Arthroscopy 2010; 26(8): 1074-82.
[http://dx.doi.org/10.1016/j.arthro.2009.12.028] [PMID: 20678705]
[115]
Saris D, Price A, Widuchowski W, et al. SUMMIT study group. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: two-year follow-up of a prospective randomized trial. Am J Sports Med 2014; 42(6): 1384-94.
[http://dx.doi.org/10.1177/0363546514528093] [PMID: 24714783]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy