Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Trends in Nanotechnology for in vivo Cancer Diagnosis: Products and Patents

Author(s): Tatielle do Nascimento, Melanie Tavares, Mariana S.S.B. Monteiro, Ralph Santos-Oliveira, Adriane R. Todeschini, Vilênia T. de Souza and Eduardo Ricci-Júnior*

Volume 26, Issue 18, 2020

Page: [2167 - 2181] Pages: 15

DOI: 10.2174/1381612826666200219094853

Price: $65

Abstract

Background: Cancer is a set of diseases formed by abnormal growth of cells leading to the formation of the tumor. The diagnosis can be made through symptoms’ evaluation or imaging tests, however, the techniques are limited and the tumor detection may be late. Thus, pharmaceutical nanotechnology has emerged to optimize the cancer diagnosis through nanostructured contrast agent’s development.

Objective: This review aims to identify commercialized nanomedicines and patents for cancer diagnosis.

Methods: The databases used for scientific articles research were Pubmed, Science Direct, Scielo and Lilacs. Research on companies’ websites and articles for the recognition of commercial nanomedicines was performed. The Derwent tool was applied for patent research.

Results: This article aimed to research on nanosystems based on nanoparticles, dendrimers, liposomes, composites and quantum dots, associated to imaging techniques. Commercialized products based on metal and composite nanoparticles, associated with magnetic resonance and computed tomography, have been observed. The research conducted through Derwent tool displayed a small number of patents using nanotechnology for cancer diagnosis. Among these patents, the most significant number was related to the use of systems based on metal nanoparticles, composites and quantum dots.

Conclusion: Although few systems are found in the market and patented, nanotechnology appears as a promising field for the development of new nanosystems in order to optimize and accelerate the cancer diagnosis.

Keywords: Nanotechnology, nanosystems, cancer, diagnosis, imaging, nanostructured contrast agents.

[1]
World Health Organization. Cancer. Available from:. https://www.who.int/cancer/en/
[2]
Hassanpour SH, Dehghani M. Review of cancer from perspective of molecular. J Cancer Res Pract 2017; 4(4): 127-9.
[http://dx.doi.org/10.1016/j.jcrpr.2017.07.001]
[3]
National Cancer Institute; How cancer is diagnosed 2015.Available from: . https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis
[4]
Zeineldin R. Nanotechnology for cancer screening and diagnosis Biomaterials for Cancer Therapeutics Diagnosis, prevention and therapy. Woodhead Publishing 2013; pp. 137-64.
[http://dx.doi.org/10.1533/9780857096760.3.137]
[5]
Zhou Y, Abel GA, Hamilton W, et al. Diagnosis of cancer as an emergency: a critical review of current evidence. Nat Rev Clin Oncol 2017; 14(1): 45-56.
[http://dx.doi.org/10.1038/nrclinonc.2016.155] [PMID: 27725680]
[6]
Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nat Rev Cancer 2017; 17(1): 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[7]
Fan R, Mei L, Gao X, et al. Self-assembled bifunctional peptide as effective drug delivery vector with powerful antitumor activity. Adv Sci (Weinh) 2017; 4(4): 1600285
[http://dx.doi.org/10.1002/advs.201600285] [PMID: 28435772]
[8]
Banerjee SR, Foss CA, Horhota A, et al. 111In- and IRDye800CW-labeled PLA-PEG nanoparticle for imaging prostate-specific membrane antigen-expressing tissues. Biomacromolecules 2017; 18(1): 201-9.
[http://dx.doi.org/10.1021/acs.biomac.6b01485] [PMID: 28001364]
[9]
Kim D, Kim J, Park YI, Lee N, Hyeon T. Recent development of inorganic nanoparticles for biomedical Imaging. ACS Cent Sci 2018; 4(3): 324-36.
[http://dx.doi.org/10.1021/acscentsci.7b00574] [PMID: 29632878]
[10]
Gao X, Wang S, Wang B, et al. Improving the anti-ovarian cancer activity of docetaxel with biodegradable self-assembly micelles through various evaluations. Biomaterials 2015; 53: 646-58.
[http://dx.doi.org/10.1016/j.biomaterials.2015.02.108] [PMID: 25890760]
[11]
Oerlemans C, Bult W, Bos M, Storm G, Nijsen JF, Hennink WE. Polymeric micelles in anticancer therapy: targeting, imaging and triggered release. Pharm Res 2010; 27(12): 2569-89.
[http://dx.doi.org/10.1007/s11095-010-0233-4] [PMID: 20725771]
[12]
Hadjipanayis CG, Bonder MJ, Balakrishnan S, Wang X, Mao H, Hadjipanayis GC. Metallic iron nanoparticles for MRI contrast enhancement and local hyperthermia. Small 2008; 4(11): 1925-9.
[http://dx.doi.org/10.1002/smll.200800261] [PMID: 18752211]
[13]
Lee H, Gaddy D, Ventura M, et al. Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer nanomedicines. Theranostics 2018; 8(9): 2300-12.
[http://dx.doi.org/10.7150/thno.21670] [PMID: 29721081]
[14]
Garrigue P, Tang J, Ding L, et al. Self-assembling supramolecular dendrimer nanosystem for PET imaging of tumors. Proc Natl Acad Sci USA 2018; 115(45): 11454-9.
[http://dx.doi.org/10.1073/pnas.1812938115] [PMID: 30348798]
[15]
Xiong F, Hu K, Yu H, et al. A functional iron oxide nanoparticles modified with PLA-PEG-DG as tumor-targeted MRI contrast agent. Pharm Res 2017; 34(8): 1683-92.
[http://dx.doi.org/10.1007/s11095-017-2165-8] [PMID: 28608138]
[16]
Radu BM, Radu M, Tognoli C, et al. Are they in or out? The elusive interaction between Qtracker ® 800 vascular labels and brain endothelial cells. Nanomedicine (Lond) 2015; 10(22): 3329-42.
[http://dx.doi.org/10.2217/nnm.15.120] [PMID: 26177081]
[17]
Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev 2017; 117(3): 901-86.
[http://dx.doi.org/10.1021/acs.chemrev.6b00073] [PMID: 28045253]
[18]
Chapman S, Dobrovolskaia M, Farahani K, et al. Nanoparticles for cancer imaging: The good, the bad, and the promise. Nano Today 2013; 8(5): 454-60.
[http://dx.doi.org/10.1016/j.nantod.2013.06.001] [PMID: 25419228]
[19]
Nune SK, Gunda P, Thallapally PK, Lin Y-Y, Forrest ML, Berkland CJ. Nanoparticles for biomedical imaging. Expert Opin Drug Deliv 2009; 6(11): 1175-94.
[http://dx.doi.org/10.1517/17425240903229031] [PMID: 19743894]
[20]
Frangioni JV. New technologies for human cancer imaging. J Clin Oncol 2008; 26(24): 4012-21.
[http://dx.doi.org/10.1200/JCO.2007.14.3065] [PMID: 18711192]
[21]
Condeelis J, Weissleder R. In vivo imaging in cancer. Cold Spring Harb Perspect Biol 2010; 2(12): a003848
[http://dx.doi.org/10.1101/cshperspect.a003848] [PMID: 20861158]
[22]
Kairdolf BA, Qian X, Nie S. Bioconjugated nanoparticles for biosensing, in vivo imaging, and medical diagnostics. Anal Chem 2017; 89(2): 1015-31.
[http://dx.doi.org/10.1021/acs.analchem.6b04873] [PMID: 28043119]
[23]
Pellico J, Ellis CM, Davis JJ. Nanoparticle-Based paramagnetic contrast agents for magnetic resonance imaging. Contrast Media Mol Imaging 2019; 2019: 1845637
[http://dx.doi.org/10.1155/2019/1845637] [PMID: 31191182]
[24]
Xiao YD, Paudel R, Liu J, Ma C, Zhang ZS, Zhou SK. MRI contrast agents: Classification and application (Review). Int J Mol Med 2016; 38(5): 1319-26.
[http://dx.doi.org/10.3892/ijmm.2016.2744] [PMID: 27666161]
[25]
Sieroń A, Sieroń-Stołtny K, Kawczyk-Krupka A, et al. The role of fluorescence diagnosis in clinical practice. OncoTargets Ther 2013; 6: 977-82.
[PMID: 23935372]
[26]
Hussain T, Nguyen QT. Molecular imaging for cancer diagnosis and surgery. Adv Drug Deliv Rev 2014; 66: 90-100.
[http://dx.doi.org/10.1016/j.addr.2013.09.007] [PMID: 24064465]
[27]
El-Karim SSA, El-Zahar MI, Anwar MM. Nanotechnology in cancer diagnosis and treatment. J Pharm Pharmacol 2015; 2015(3): 299-315.
[28]
Valluru KS, Willmann JK. Clinical photoacoustic imaging of cancer. Ultrasonography 2016; 35(4): 267-80.
[http://dx.doi.org/10.14366/usg.16035] [PMID: 27669961]
[29]
Mehrmohammadi M, Yoon SJ, Yeager D, Emelianov SY. Photoacoustic imaging for cancer detection and staging. Curr Mol Imaging 2013; 2(1): 89-105.
[http://dx.doi.org/10.2174/2211555211302010010] [PMID: 24032095]
[30]
Santos IP, Barroso EM, Bakker Schut TC, et al. Raman spectroscopy for cancer detection and cancer surgery guidance: translation to the clinics. Analyst (Lond) 2017; 142(17): 3025-47.
[http://dx.doi.org/10.1039/C7AN00957G] [PMID: 28726868]
[31]
Cui S, Zhang S, Yue S. Raman spectroscopy and imaging for cancer diagnosis. J Healthc Eng 2018; 2018: 8619342
[http://dx.doi.org/10.1155/2018/8619342] [PMID: 29977484]
[32]
Montagnana M, Lippi G. Cancer diagnostics: current concepts and future perspectives. Ann Transl Med 2017; 5(13): 268-71.
[http://dx.doi.org/10.21037/atm.2017.06.20] [PMID: 28758094]
[33]
Teixeira VMS, Silva AC, Lopes CM. The role of nanotechnology in cancer treatment and diagnosis. Rev Fac Cien Saúde 2010; 7: 224-32.
[34]
Brazilian Agency for Industrial Development. Nanotechnology technological overview Available from: http://ats.abdi.com.br/SiteAssets/NANOTEC%20-%20PT.pdf
[35]
Zottel A, Videtič Paska A, Jovčevska I. Nanotechnology meets oncology: Nanomaterials in brain cancer research, diagnosis and therapy. Materials (Basel) 2019; 12(10): 1588.
[http://dx.doi.org/10.3390/ma12101588] [PMID: 31096609]
[36]
Jaishree V, Gupta PD. Nanotechnology: A revolution in cancer diagnosis. Indian J Clin Biochem 2012; 27(3): 214-20.
[http://dx.doi.org/10.1007/s12291-012-0221-z] [PMID: 26405378]
[37]
Salvi R, Cerqueira-Coutinho C, Ricci-Junior E, et al. Diagnosing lung cancer using etoposide microparticles labeled with 99mTc. Artif Cells Nanomed Biotechnol 2018; 46(2): 341-5.
[http://dx.doi.org/10.1080/21691401.2017.1307848] [PMID: 28355888]
[38]
Portilho FL, Pinto SR, de Barros AODS, et al. In loco retention effect of magnetic core mesoporous silica nanoparticles doped with trastuzumab as intralesional nanodrug for breast cancer. Artif Cells Nanomed Biotechnol 2018; 46(sup3): S725-33.
[http://dx.doi.org/10.1080/21691401.2018.1508030] [PMID: 30449175]
[39]
Santos do Carmo F, Ricci-Junior E, Cerqueira-Coutinho C, et al. Anti-MUC1 nano-aptamers for triple-negative breast cancer imaging by single-photon emission computed tomography in inducted animals: initial considerations. Int J Nanomedicine 2016; 12: 53-60.
[http://dx.doi.org/10.2147/IJN.S118482] [PMID: 28053523]
[40]
NCI; National Cancer Institute Division of cancer treatment and diagnosis Earlier detection and diagnosis 2017.Available from: . www.cancer.gov/sites/nano/cancer-nanotechnology/detection-diagnosis
[41]
Dadras P, Atyabi F, Irani S, et al. Formulation and evaluation of targeted nanoparticles for breast cancer theranostic system. Eur J Pharm Sci 2017; 97: 47-54.
[http://dx.doi.org/10.1016/j.ejps.2016.11.005] [PMID: 27825919]
[42]
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arab J Chem 2017; 2017: 1-24.
[43]
Hasan S. A review on nanoparticles: Their synthesis and types. Res J Recent Sci 2015; 4: 1-3.
[44]
Priya J, Naha A, Dhoot AS, Xalxo N. A review on polymeric nanoparticles: A promising novel drug delivery system. J Glob Pharma Technol 2018; 10(4): 10-7.
[45]
Mallakpour S, Behranvand V. Polymeric nanoparticles: Recent development in synthesis and application. Express Polym Lett 2016; 10(11): 895-913.
[http://dx.doi.org/10.3144/expresspolymlett.2016.84]
[46]
Banik BL, Fattahi P, Brown JL. Polymeric nanoparticles: the future of nanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2016; 8(2): 271-99.
[http://dx.doi.org/10.1002/wnan.1364] [PMID: 26314803]
[47]
Kennedy PJ, Sousa F, Ferreira D, et al. Fab-conjugated PLGA nanoparticles effectively target cancer cells expressing human CD44v6. Acta Biomater 2018; 81: 208-18.
[http://dx.doi.org/10.1016/j.actbio.2018.09.043] [PMID: 30267881]
[48]
Sharma A, Goyal AK, Rath G. Recent advances in metal nanoparticles in cancer therapy. J Drug Target 2018; 26(8): 617-32.
[http://dx.doi.org/10.1080/1061186X.2017.1400553] [PMID: 29095640]
[49]
Vu-Quang H, Vinding MS, Nielsen T, et al. Pluronic F127-folate coated super paramagenic iron oxide nanoparticles as contrast agent for cancer diagnosis in magnetic resonance imaging. Polymers (Basel) 2019; 11(4): 1-14.
[http://dx.doi.org/10.3390/polym11040743] [PMID: 31027171]
[50]
Chauhan R, El-Baz N, Keynton RS, et al. Targeted gold nanoparticle−oligonucleotide contrast agents in combination with a new local voxel-wise MRI analysis algorithm for in vitro imaging of triple-negative breast cancer. Nanomaterials (Basel) 2019; 9(5): 1-19.
[http://dx.doi.org/10.3390/nano9050709] [PMID: 31067749]
[51]
Gil PR, Parak WJ. Composite nanoparticles take aim at cancer. ACS Nano 2008; 2(11): 2200-5.
[http://dx.doi.org/10.1021/nn800716j] [PMID: 19206383]
[52]
Primc D, Belec B, Makovec D. Synthesis of composite nanoparticles using co-precipitation of a magnetic iron-oxide shell onto core nanoparticles. J Nanopart Res 2016; 18(3): 1-13.
[http://dx.doi.org/10.1007/s11051-016-3374-5]
[53]
Janczak CM, Aspinwall CA. Composite nanoparticles: the best of two worlds. Anal Bioanal Chem 2012; 402(1): 83-9.
[http://dx.doi.org/10.1007/s00216-011-5482-5] [PMID: 22015478]
[54]
Xu DD, Deng YL, Li CY, Lin Y, Tang HW. Metal-enhanced fluorescent dye-doped silica nanoparticles and magnetic separation: A sensitive platform for one-step fluorescence detection of prostate specific antigen. Biosens Bioelectron 2017; 87: 881-7.
[http://dx.doi.org/10.1016/j.bios.2016.09.034] [PMID: 27662582]
[55]
Huang C-K, Lo C-L, Chen H-H, Hsiue G-H. Multifunctional micelles for cancer cell targeting, distribution imaging, and anticancer drug delivery. Adv Funct Mater 2007; 17(14): 2291-7.
[http://dx.doi.org/10.1002/adfm.200600818]
[56]
Kaur D, Jain K, Mehra NK, Kesharwani P, Jain NK. A review on comparative study of PPI and PAMAM dendrimers. J Nanopart Res 2016; 18(6): 1-14.
[http://dx.doi.org/10.1007/s11051-016-3423-0]
[57]
Castro RI, Forero-Doria O, Guzmán L. Perspectives of dendrimer-based nanoparticles in cancer therapy. An Acad Bras Cienc 2018; 90(2)(Suppl. 1): 2331-46.
[http://dx.doi.org/10.1590/0001-3765201820170387] [PMID: 30066746]
[58]
Mathur V, Satrawala Y, Rajput MS. Dendrimers: A review. Inventi Journals 2010; 1(1): 1-5.
[59]
Ghoreishi SM, Khalaj A, Sabzevari O, et al. Technetium-99m chelator-free radiolabeling of specific glutamine tumor imaging nanoprobe: in vitro and in vivo evaluations. Int J Nanomedicine 2018; 13: 4671-83.
[http://dx.doi.org/10.2147/IJN.S157426] [PMID: 30154653]
[60]
Akbarzadeh A, Rezaei-Sadabady R, Davaran S, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett 2013; 8(1): 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[61]
Samad A, Sultana Y, Aqil M. Liposomal drug delivery systems: an update review. Curr Drug Deliv 2007; 4(4): 297-305.
[http://dx.doi.org/10.2174/156720107782151269] [PMID: 17979650]
[62]
Shashi K, Satinder K, Bharat P. A complet review on: Liposomes. Int Res J Pharm 2012; 3(7): 10-6.
[63]
Pawar HR, Bhosale SS, Derle ND. Use of liposomes in cancer therapy: A review. Int J Pharm Sci Res 2012; 3(10): 3585-90.
[64]
Zhang X, Wang B, Xia Y, et al. In vivo and in situ activated aggregation-induced emission probes for sensitive tumor imaging using tetraphenylethene functionalized trimethincyanines-encapsulated liposomes. ACS Appl Mater Interfaces 2018; 10(30): 25146-53.
[http://dx.doi.org/10.1021/acsami.8b07727] [PMID: 29984571]
[65]
Bera D, Qian L, Tseng TK, Holloway PH. Quantum dots and their multimodal applications: A review. Materials (Basel) 2010; 3: 2260-345.
[http://dx.doi.org/10.3390/ma3042260]
[66]
Maiti A, Bhattacharyya S. Review: Quantum dots and application in medical science. Int J Chem Chem Eng 2013; 3(2): 37-42.
[67]
Gobbo OL, Sjaastad K, Radomski MW, Volkov Y, Prina-Mello A. Magnetic nanoparticles in cancer theranostics. Theranostics 2015; 5(11): 1249-63.
[http://dx.doi.org/10.7150/thno.11544] [PMID: 26379790]
[68]
Yuan R, Rao T, Cheng F, et al. Quantum dot-based fluorescent probes for targeted imaging of the EJ human bladder urothelial cancer cell line. Exp Ther Med 2018; 16(6): 4779-83.
[http://dx.doi.org/10.3892/etm.2018.6805] [PMID: 30546399]
[69]
Cui F, Ji J, Sun J, et al. A novel magnetic fluorescent biosensor based on graphene quantum dots for rapid, efficient, and sensitive separation and detection of circulating tumor cells. Anal Bioanal Chem 2019; 411(5): 985-95.
[http://dx.doi.org/10.1007/s00216-018-1501-0] [PMID: 30612176]
[70]
Vieira DB, Gamarra LF. Advances in the use of nanocarriers for cancer diagnosis and treatment. Einstein (Sao Paulo) 2016; 14(1): 99-103.
[http://dx.doi.org/10.1590/S1679-45082016RB3475] [PMID: 27074238]
[71]
Hida K, Hida Y, Shindoh M. Understanding tumor endothelial cell abnormalities to develop ideal anti-angiogenic therapies. Cancer Sci 2008; 99(3): 459-66.
[http://dx.doi.org/10.1111/j.1349-7006.2007.00704.x] [PMID: 18167133]
[72]
Pereira J, Pedroso-Meireles ALL, Godoy CRT, Chamone DAF. The role of endothelial cells in hematologic malignancies. Rev Bras Hematol Hemoter 2008; 30(3): 223-8.
[73]
Marçola M, Rodrigues CE. Endothelial progenitor cells in tumor angiogenesis: another brick in the wall. Stem Cells Int 2015; 2015(2): 832649
[http://dx.doi.org/10.1155/2015/832649] [PMID: 26000021]
[74]
Figarol A, Gibot L, Golzio M, Lonetti B, Mingotaud AF, Rols MP. A journey from the endothelium to the tumor tissue: distinct behavior between PEO-PCL micelles and polymersomes nanocarriers. Drug Deliv 2018; 25(1): 1766-78.
[http://dx.doi.org/10.1080/10717544.2018.1510064] [PMID: 30311803]
[75]
Averini RK, Shavi GV, Gurram AK, et al. PLGA 50:50 nanoparticles of paclitaxel: Development, in vitro anti-tumor activity in BT-549 cells and in vivo evaluation. Bull Mater Sci 2012; 35(3): 319-26.
[http://dx.doi.org/10.1007/s12034-012-0313-7]
[76]
Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release 2016; 244(Pt A): 108-21.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.015] [PMID: 27871992]
[77]
Abeylath SC, Ganta S, Iyer AK, Amiji M. Combinatorial-designed multifunctional polymeric nanosystems for tumor-targeted therapeutic delivery. Acc Chem Res 2011; 44(10): 1009-17.
[http://dx.doi.org/10.1021/ar2000106] [PMID: 21761902]
[78]
Nanoprobes Nanoprobes Gold Nanoparticles: Nanogold Labels for Imaging and Microscopy Available from: http://www.nanoprobes.com/
[79]
[80]
Advanced Magnetics, Inc. Combidex. Available from:. http://www.slyart.com/clients/advmag/ami06/doc/prod/combidex.htm
[81]
Mallinckrodt Gastromark (Ferumoxsil, oral suspension) Available from: http://www.amagpharma.com/documents/products/pdfs/gastromark_insert.pdf
[82]
Advanced Magnetics, Inc. Gastromark. Available from: . http://www.slyart.com/clients/advmag/ami06/doc/prod/gastro.htm
[83]
The Pharma Letter First Approval for Nycomed’s Abdoscan Available from: https://www.thepharmaletter.com/article/first-approval-for-nycomed-s-abdoscan
[84]
Magnetic resonance - technology information portal Feridex https://www.mr-tip.com/serv1.php?type=db1&dbs=AMAG%20Pharmaceuticals,%20Inc
[85]
Advanced Magnetics, Inc. Feridex. Available from: . http://www.slyart.com/ clients/ advmag/ami06/doc/ prod/feri.htm
[86]
Magnetic Resonance - Technology Information Portal. Resovist.. https://www.mr-tip.com/serv1.php?type=db1&dbs=resovist
[87]
Magnetic Resonance - Technology Information Portal. Endorem.. https://www.mr-tip.com/serv1.php?type=db1&gid=806
[90]
Magnetic Resonance - Technology Information Portal. Lumirem. https://www.mr-tip.com/serv1.php?type=db1&dbs=Lumirem
[91]
Magnetic Resonance - Technology Information Portal. Primovist.. https://www.mr-tip.com/serv1.php?type=db1&dbs=Bayer+Schering+Pharma+AG
[92]
Ge Healthcare. Omniscan (Gadodiamide) Injection. Available from:. https://www.gehealthcare.com/en/products/contrast-media/omniscan
[93]
Mallinckrodt Optimark (Gadoversetamide Injection) Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/020937s021,020975s022,020976s022lbl.pdf
[94]
Pedrosa P, Vinhas R, Fernandes A, Baptista PV. Gold nanotheranostics: Proof-of-concept or clinical tool? Nanomaterials (Basel) 2015; 5(4): 1853-79.
[http://dx.doi.org/10.3390/nano5041853] [PMID: 28347100]
[95]
Lim ZZJ, Li JE, Ng CT, Yung LYL, Bay BH. Gold nanoparticles in cancer therapy. Acta Pharmacol Sin 2011; 32(8): 983-90.
[http://dx.doi.org/10.1038/aps.2011.82] [PMID: 21743485]
[96]
Singh P, Pandit S, Mokkapati VRSS, Garg A, Ravikumar V, Mijakovic I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int J Mol Sci 2018; 19(7): 1-16.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[97]
Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 2010; 31(5): 199-205.
[http://dx.doi.org/10.1016/j.tips.2010.01.003] [PMID: 20172613]
[98]
Ventola CL. The Nanomedicine Revolution Part 2: Current and future clinical aplications P&D 2012; 37(10): 582-91.
[99]
Bhaskar S, Tian F, Stoeger T, et al. Multifuncional nanocarriers for diagnostic, drug delivery and targeted treatment across Blood-brain barrier. Part Fibre Toxicol 2010; 7(3): 1-25.
[100]
Wang YX. Current status of superparamagnetic iron oxide contrast agents for liver magnetic resonance imaging. World J Gastroenterol 2015; 21(47): 13400-2.
[http://dx.doi.org/10.3748/wjg.v21.i47.13400] [PMID: 26715826]
[101]
Santoro L, Grazioli L, Filippone A, Grassedonio E, Belli G, Colagrande S. Resovist enhanced MR imaging of the liver: does quantitative assessment help in focal lesion classification and characterization? J Magn Reson Imaging 2009; 30(5): 1012-20.
[http://dx.doi.org/10.1002/jmri.21937] [PMID: 19856433]
[102]
Weissleder R, Stark DD, Engelstad BL, et al. Superparamagnetic iron oxide: pharmacokinetics and toxicity. AJR Am J Roentgenol 1989; 152(1): 167-73.
[http://dx.doi.org/10.2214/ajr.152.1.167] [PMID: 2783272]
[103]
Miltenyibiotec Available from: https://www.miltenyibiotec.com/UN-en/
[104]
Zhou Z, Lu ZR. Gadolinium-based contrast agents for magnetic resonance cancer imaging. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2013; 5(1): 1-18.
[http://dx.doi.org/10.1002/wnan.1198] [PMID: 23047730]
[105]
Tu C, Louie AY. Nanoformulations for molecular MRI. Wiley Interdiscip Rev Nanomed Nanobiotechnol 2012; 4(4): 448-57.
[http://dx.doi.org/10.1002/wnan.1170] [PMID: 22488901]
[106]
Morigi V, Tocchio A, Bellavite Pellegrini C, Sakamoto JH, Arnone M, Tasciotti E. Nanotechnology in medicine: from inception to market domination. J Drug Deliv 2012; 2012: 389485
[http://dx.doi.org/10.1155/2012/389485] [PMID: 22506121]
[107]
Li L, Tong R, Li M, Kohane DS. Self-assembled gemcitabine-gadolinium nanoparticles for magnetic resonance imaging and cancer therapy. Acta Biomater 2016; 33: 34-9.
[http://dx.doi.org/10.1016/j.actbio.2016.01.039] [PMID: 26826531]
[108]
American Cancer Society Imaging (Radiology) Tests for Cancer 2015.Available from: . www.cancer.org/treatment/understanding-your-diagnosis/tests/imaging-radiology-tests-for-cancer.html
[109]
NCI; National Cancer Institute Division of Cancer Treatment and DiagnosisCancer Imaging Basics 2016.Available from:. https://imaging.cancer.gov/imaging_basics/cancer_imaging.htm
[110]
Ando J, Yano TA, Fujita K, Kawata S. Metal nanoparticles for nano-imaging and nano-analysis. Phys Chem Chem Phys 2013; 15(33): 13713-22.
[http://dx.doi.org/10.1039/c3cp51806j] [PMID: 23861007]
[111]
Wang F, Wen L, Liu J, et al. Albumin nanocomposites with MnO2/Gd2O3 motifs for precise MR imaging of acute myocardial infarction in rabbit models. Biomaterials 2020; 230: 119614
[http://dx.doi.org/10.1016/j.biomaterials.2019.119614] [PMID: 31753475]
[112]
Han X, Xu K, Taratula O, Farsad K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019; 11(3): 799-819.
[http://dx.doi.org/10.1039/C8NR07769J] [PMID: 30603750]
[113]
Popovtzer R, Agrawal A, Kotov NA, et al. Targeted gold nanoparticles enable molecular CT imaging of cancer. Nano Lett 2008; 8(12): 4593-6.
[http://dx.doi.org/10.1021/nl8029114] [PMID: 19367807]
[114]
McCarthy JR, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev 2008; 60(11): 1241-51.
[http://dx.doi.org/10.1016/j.addr.2008.03.014] [PMID: 18508157]
[115]
Weissleder R, Kelly K, Sun EY, Shtatland T, Josephson L. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules. Nat Biotechnol 2005; 23(11): 1418-23.
[http://dx.doi.org/10.1038/nbt1159] [PMID: 16244656]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy