Review Article

专门的饮食疗法:探索改善自闭症谱系障碍(ASD)行为的方法

卷 27, 期 40, 2020

页: [6771 - 6786] 页: 16

弟呕挨: 10.2174/0929867327666200217101908

价格: $65

摘要

作为一种主要的神经发育障碍,自闭症谱系障碍(ASD)涵盖了沟通缺陷以及儿童和青少年的重复性和限制性兴趣或行为。其病因可能来自遗传,表观遗传,神经,激素或环境等原因,其产生的途径通常在ASD发病机理的发展中共同发挥协同作用。此外,ASD的代谢起源也应该很重要。强烈建议均衡饮食,其中包含必需营养和特殊营养,并建议摄入热量,以促进生长和发育,从而抵抗ASD儿童所经历的生理和行为挑战。在这篇评论文章中,我们评估了许多研究,这些研究表明ASD与饮食之间的关系可以更好地理解整体饮食的特殊效果以及该人群所需的各个营养素。这项审查将增加对该领域的知识的全面更新,并阐明可能患有的营养缺乏症,新陈代谢障碍(尤其是肠道微生物组)和ASD患者的营养不良,应认识到这些因素,以保持改善的社会健康状况、行为习惯和身体健康。

关键词: 自闭症,饮食,遗传,环境压力源,表观遗传压力源,面筋,酪蛋白。

[1]
Williams, P.G.; Dalrymple, N.; Neal, J. Eating habits of children with autism. Pediatr. Nurs., 2000, 26(3), 259-264.
[PMID: 12026389]
[2]
Bjørklund, G. The role of zinc and copper in autism spectrum disorders. Acta Neurobiol. Exp. (Warsz.), 2013, 73(2), 225-236.
[PMID: 23823984]
[3]
Loi, E.; Moi, L.; Blois, S.; Bacchelli, E.; Benedetti, A.F.V.; Cameli, C.; Fadda, R.; Maestrini, E.; Carta, M.; Doneddu, G.; Zavattari, P. ELMOD3-SH2D6 gene fusion as a possible co-star actor in autism spectrum disorder scenario. J. Cell. Mol. Med., 2020, 24(2), 2064-2069.
[http://dx.doi.org/10.1111/jcmm.14733] [PMID: 31800155]
[4]
Mandic-Maravic, V.; Mitkovic-Voncina, M.; Pljesa-Erce-govac, M.; Savic-Radojevic, A.; Djordjevic, M.; Pekmezovic, T.; Grujicic, R.; Ercegovac, M.; Simic, T.; Lecic-Tosevski, D.; Pejovic-Milovancevic, M. Autism spectrum disorders and perinatal complications-is oxidative stress the connection? Front. Psychiatry, 2019, 10, 675.
[http://dx.doi.org/10.3389/fpsyt.2019.00675] [PMID: 31681027]
[5]
Serdarevic, F.; Tiemeier, H.; Jansen, P.R.; Alemany, S.; Xerxa, Y.; Neumann, A.; Robinson, E.; Hillegers, M.H.J.; Verhulst, F.C.; Ghassabian, A. Polygenic risk scores for developmental disorders, neuromotor functioning during infancy, and autistic traits in childhood. Biol. Psychiatry, 2020, 87(2), 132-138.
[http://dx.doi.org/10.1016/j.biopsych.2019.06.006] [PMID: 31629460]
[6]
Sadeghiyeh, T.; Dastgheib, S.A.; Mirzaee-Khoramabadi, K.; Morovati-Sharifabad, M.; Akbarian-Bafghi, M.J.; Poursharif, Z.; Mirjalili, S.R.; Neamatzadeh, H. Association of MTHFR 677C>T and 1298A>C polymorphisms with susceptibility to autism: a systematic review and meta-analysis. Asian J. Psychiatr., 2019, 46, 54-61.
[http://dx.doi.org/10.1016/j.ajp.2019.09.016] [PMID: 31614268]
[7]
Christensen, D.L.; Bilder, D.A.; Zahorodny, W.; Pettygrove, S.; Durkin, M.S.; Fitzgerald, R.T.; Rice, C.; Kurzius-Spencer, M.; Baio, J.; Yeargin-Allsopp, M. Prevalence and characteristics of autism spectrum disorder among 4-year-old children in the autism and developmental disabilities monitoring network. J. Dev. Behav. Pediatr., 2016, 37(1), 1-8.
[http://dx.doi.org/10.1097/DBP.0000000000000235] [PMID: 26651088]
[8]
Schreck, K.A.; Williams, K. Food preferences and factors influencing food selectivity for children with autism spectrum disorders. Res. Dev. Disabil., 2006, 27(4), 353-363.
[http://dx.doi.org/10.1016/j.ridd.2005.03.005] [PMID: 16043324]
[9]
Francis, K. Autism interventions: a critical update. Dev. Med. Child Neurol., 2005, 47(7), 493-499.
[http://dx.doi.org/10.1017/S0012162205000952] [PMID: 15991872]
[10]
Adams, J.B.; Audhya, T.; Geis, E.; Gehn, E.; Fimbres, V.; Pollard, E.L.; Mitchell, J.; Ingram, J.; Hellmers, R.; Laake, D.; Matthews, J.S.; Li, K.; Naviaux, J.C.; Naviaux, R.K.; Adams, R.L.; Coleman, D.M.; Quig, D.W. Comprehensive nutritional and dietary intervention for autism spectrum disorder-a randomized, controlled 12-month trial. Nutrients, 2018, 10(3)E369
[http://dx.doi.org/10.3390/nu10030369] [PMID: 29562612]
[11]
Cekici, H.; Sanlier, N. Current nutritional approaches in managing autism spectrum disorder: a review. Nutr. Neurosci., 2019, 22(3), 145-155.
[http://dx.doi.org/10.1080/1028415X.2017.1358481] [PMID: 28762296]
[12]
Al-Farsi, Y.M.; Waly, M.I.; Deth, R.C.; Al-Sharbati, M.M.; Al-Shafaee, M.; Al-Farsi, O.; Al-Khaduri, M.M.; Gupta, I.; Ali, A.; Al-Khalili, M.; Al-Adawi, S.; Hodgson, N.W.; Ouhtit, A. Low folate and vitamin B12 nourishment is common in Omani children with newly diagnosed autism. Nutrition, 2013, 29(3), 537-541.
[http://dx.doi.org/10.1016/j.nut.2012.09.014] [PMID: 23287069]
[13]
Zhang, Y.; Hodgson, N.W.; Trivedi, M.S.; Abdolmaleky, H.M.; Fournier, M.; Cuenod, M.; Do, K.Q.; Deth, R.C. Decreased brain levels of vitamin B12 in aging, autism and schizophrenia. PLoS One, 2016, 11(1)e0146797
[http://dx.doi.org/10.1371/journal.pone.0146797] [PMID: 26799654]
[14]
Peretti, S.; Mariano, M.; Mazzocchetti, C.; Mazza, M.; Pino, M.; Verrotti Di Pianella, A.; Valenti, M. Diet: the keystone of autism spectrum disorder? Nutr. Neurosci., 2019, 22(12), 825-839.
[http://dx.doi.org/10.1080/1028415x.2018.1464819] [PMID: 29669486]
[15]
Sanctuary, M.R.; Kain, J.N.; Angkustsiri, K.; German, J.B. Dietary considerations in autism spectrum disorders: the potential role of protein digestion and microbial putrefaction in the gut-brain axis. Front. Nutr., 2018, 5, 40.
[http://dx.doi.org/10.3389/fnut.2018.00040] [PMID: 29868601]
[16]
American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5®), 2013.
[17]
Meguid, N.A.; Anwar, M.; Bjørklund, G.; Hashish, A.; Chirumbolo, S.; Hemimi, M.; Sultan, E. Dietary adequacy of Egyptian children with autism spectrum disorder compared to healthy developing children. Metab. Brain Dis., 2017, 32(2), 607-615.
[http://dx.doi.org/10.1007/s11011-016-9948-1] [PMID: 28074329]
[18]
Marí-Bauset, S.; Zazpe, I.; Mari-Sanchis, A.; Llopis-González, A.; Morales-Suárez-Varela, M. Food selectivity in autism spectrum disorders: a systematic review. J. Child Neurol., 2014, 29(11), 1554-1561.
[http://dx.doi.org/10.1177/0883073813498821] [PMID: 24097852]
[19]
Råstam, M.; Täljemark, J.; Tajnia, A.; Lundström, S.; Gustafsson, P.; Lichtenstein, P.; Gillberg, C.; Anckarsäter, H.; Kerekes, N. Eating problems and overlap with ADHD and autism spectrum disorders in a nationwide twin study of 9-and 12-year-old children. ScientificWorldJournal, 2013, 2013315429
[http://dx.doi.org/10.1155/2013/315429] [PMID: 23690743]
[20]
Pooni, J.; Ninteman, A.; Bryant-Waugh, R.; Nicholls, D.; Mandy, W. Investigating autism spectrum disorder and autistic traits in early onset eating disorder. Int. J. Eat. Disord., 2012, 45(4), 583-591.
[http://dx.doi.org/10.1002/eat.20980] [PMID: 22331792]
[21]
Mouridsen, S.E.; Rich, B.; Isager, T. Body mass index in male and female children with infantile autism. Autism, 2002, 6(2), 197-205.
[http://dx.doi.org/10.1177/1362361302006002006] [PMID: 12083285]
[22]
Memari, A.H.; Kordi, R.; Ziaee, V.; Mirfazeli, F.S.; Setoodeh, M.S. Weight status in Iranian children with autism spectrum disorders: investigation of underweight, overweight and obesity. Res. Autism Spectr. Disord., 2012, 6(1), 234-239.
[http://dx.doi.org/10.1016/j.rasd.2011.05.004]
[23]
Meguid, N.A.; Kandeel, W.A.; Wakeel, K.E.; El-Nofely, A.A. Anthropometric assessment of a Middle Eastern group of autistic children. World J. Pediatr., 2014, 10(4), 318-323.
[http://dx.doi.org/10.1007/s12519-014-0510-0] [PMID: 25515805]
[24]
Zilkha, N.; Kuperman, Y.; Kimchi, T. High-fat diet exacerbates cognitive rigidity and social deficiency in the BTBR mouse model of autism. Neuroscience, 2017, 345, 142-154.
[http://dx.doi.org/10.1016/j.neuroscience.2016.01.070] [PMID: 26855190]
[25]
Kuschner, E.S.; Morton, H.E.; Maddox, B.B.; de Marchena, A.; Anthony, L.G.; Reaven, J. The BUFFET program: development of a cognitive behavioral treatment for selective eating in youth with autism spectrum disorder. Clin. Child Fam. Psychol. Rev., 2017, 20(4), 403-421.
[http://dx.doi.org/10.1007/s10567-017-0236-3] [PMID: 28534237]
[26]
Vojdani, A.; O’Bryan, T.; Green, J.A.; Mccandless, J.; Woeller, K.N.; Vojdani, E.; Nourian, A.A.; Cooper, E.L. Immune response to dietary proteins, gliadin and cerebellar peptides in children with autism. Nutr. Neurosci., 2004, 7(3), 151-161.
[http://dx.doi.org/10.1080/10284150400004155] [PMID: 15526989]
[27]
Vojdani, A.; Campbell, A.W.; Anyanwu, E.; Kashanian, A.; Bock, K.; Vojdani, E. Antibodies to neuron-specific antigens in children with autism: possible cross-reaction with encephalitogenic proteins from milk, Chlamydia pneumoniae and Streptococcus group A. J. Neuroimmunol., 2002, 129(1-2), 168-177.
[http://dx.doi.org/10.1016/S0165-5728(02)00180-7] [PMID: 12161033]
[28]
Edmiston, E.; Ashwood, P.; Van de Water, J. Autoimmunity, autoantibodies, and autism spectrum disorder. Biol. Psychiatry, 2017, 81(5), 383-390.
[http://dx.doi.org/10.1016/j.biopsych.2016.08.031] [PMID: 28340985]
[29]
Meltzer, A.; Van de Water, J. The role of the immune system in autism spectrum disorder. Neuropsychopharmacology, 2017, 42(1), 284-298.
[http://dx.doi.org/10.1038/npp.2016.158] [PMID: 27534269]
[30]
Zhou, J.; Liu, A.; He, F.; Jin, Y.; Zhou, S.; Xu, R.; Guo, H.; Zhou, W.; Wei, Q.; Wang, M. High prevalence of serum folate receptor autoantibodies in children with autism spectrum disorders. Biomarkers, 2018, 23(7), 622-624.
[http://dx.doi.org/10.1080/1354750X.2018.1458152] [PMID: 29578363]
[31]
Quadros, E.V.; Sequeira, J.M.; Brown, W.T.; Mevs, C.; Marchi, E.; Flory, M.; Jenkins, E.C.; Velinov, M.T.; Cohen, I.L. Folate receptor autoantibodies are prevalent in children diagnosed with autism spectrum disorder, their normal siblings and parents. Autism Res., 2018, 11(5), 707-712.
[http://dx.doi.org/10.1002/aur.1934] [PMID: 29394471]
[32]
Lasheras, I.; Seral, P.; Latorre, E.; Barroso, E.; Gracia-García, P.; Santabárbara, J. Microbiota and gut-brain axis dysfunction in autism spectrum disorder: evidence for functional gastrointestinal disorders. Asian J. Psychiatr., 2019, 47101874
[http://dx.doi.org/10.1016/j.ajp.2019.101874] [PMID: 31785441]
[33]
Liu, S.; Li, E.; Sun, Z.; Fu, D.; Duan, G.; Jiang, M.; Yu, Y.; Mei, L.; Yang, P.; Tang, Y.; Zheng, P. Altered gut microbiota and short chain fatty acids in Chinese children with autism spectrum disorder. Sci. Rep., 2019, 9(1), 287.
[http://dx.doi.org/10.1038/s41598-018-36430-z] [PMID: 30670726]
[34]
Bourassa, M.W.; Alim, I.; Bultman, S.J.; Ratan, R.R. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health? Neurosci. Lett., 2016, 625, 56-63.
[http://dx.doi.org/10.1016/j.neulet.2016.02.009] [PMID: 26868600]
[35]
Selkrig, J.; Wong, P.; Zhang, X.; Pettersson, S. Metabolic tinkering by the gut microbiome: implications for brain development and function. Gut Microbes, 2014, 5(3), 369-380.
[http://dx.doi.org/10.4161/gmic.28681] [PMID: 24685620]
[36]
Gogou, M.; Kolios, G. Are therapeutic diets an emerging additional choice in autism spectrum disorder management? World J. Pediatr., 2018, 14(3), 215-223.
[http://dx.doi.org/10.1007/s12519-018-0164-4] [PMID: 29846886]
[37]
Walczyk, T.; Wick, J.Y. The ketogenic diet: making a comeback. Consult Pharm., 2017, 32(7), 388-396.
[http://dx.doi.org/10.4140/TCP.n.2017.388] [PMID: 28701250]
[38]
Mu, C.; Corley, M.J.; Lee, R.W.Y.; Wong, M.; Pang, A.; Arakaki, G.; Miyamoto, R.; Rho, J.M.; Mickiewicz, B.; Dowlatabadi, R.; Vogel, H.J.; Korchemagin, Y.; Shearer, J. Metabolic framework for the improvement of autism spectrum disorders by a modified ketogenic diet: a pilot study. J. Proteome Res., 2020, 19(1), 382-390.
[http://dx.doi.org/10.1021/acs.jproteome.9b00581] [PMID: 31696714]
[39]
Evangeliou, A.; Vlachonikolis, I.; Mihailidou, H.; Spilioti, M.; Skarpalezou, A.; Makaronas, N.; Prokopiou, A.; Christodoulou, P.; Liapi-Adamidou, G.; Helidonis, E.; Sbyrakis, S.; Smeitink, J. Application of a ketogenic diet in children with autistic behavior: pilot study. J. Child Neurol., 2003, 18(2), 113-118.
[http://dx.doi.org/10.1177/08830738030180020501] [PMID: 12693778]
[40]
Ma, D.; Wang, A.C.; Parikh, I.; Green, S.J.; Hoffman, J.D.; Chlipala, G.; Murphy, M.P.; Sokola, B.S.; Bauer, B.; Hartz, A.M.S.; Lin, A.L. Ketogenic diet enhances neurovascular function with altered gut microbiome in young healthy mice. Sci. Rep., 2018, 8(1), 6670.
[http://dx.doi.org/10.1038/s41598-018-25190-5] [PMID: 29703936]
[41]
Newell, C.; Johnsen, V.L.; Yee, N.C.; Xu, W.J.; Klein, M.S.; Khan, A.; Rho, J.M.; Shearer, J. Ketogenic diet leads to O-GlcNAc modification in the BTBRT+tf/j mouse model of autism. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(9), 2274-2281.
[http://dx.doi.org/10.1016/j.bbadis.2017.05.013] [PMID: 28502704]
[42]
Mychasiuk, R.; Rho, J.M. Genetic modifications associated with ketogenic diet treatment in the BTBRT+Tf/J mouse model of autism spectrum disorder. Autism Res., 2017, 10(3), 456-471.
[http://dx.doi.org/10.1002/aur.1682] [PMID: 27529337]
[43]
Hartman, A.L.; Santos, P.; O’Riordan, K.J.; Stafstrom, C.E.; Marie Hardwick, J. Potent anti-seizure effects of D-leucine. Neurobiol. Dis., 2015, 82, 46-53.
[http://dx.doi.org/10.1016/j.nbd.2015.05.013] [PMID: 26054437]
[44]
Evangeliou, A.; Spilioti, M.; Doulioglou, V.; Kalaidopoulou, P.; Ilias, A.; Skarpalezou, A.; Katsanika, I.; Kalamitsou, S.; Vasilaki, K.; Chatziioanidis, I.; Garganis, K.; Pavlou, E.; Varlamis, S.; Nikolaidis, N. Branched chain amino acids as adjunctive therapy to ketogenic diet in epilepsy: pilot study and hypothesis. J. Child Neurol., 2009, 24(10), 1268-1272.
[http://dx.doi.org/10.1177/0883073809336295] [PMID: 19687389]
[45]
Pillsbury, L.; Oria, M.; Erdman, J. Nutrition and traumatic brain injury: improving acute and subacute health outcomes in military personnel; National Academies Press, 2011.
[46]
Burrage, L.C.; Nagamani, S.C.; Campeau, P.M.; Lee, B.H. Branched-chain amino acid metabolism: from rare Mendelian diseases to more common disorders. Hum. Mol. Genet., 2014, 23(R1), R1-R8.
[http://dx.doi.org/10.1093/hmg/ddu123] [PMID: 24651065]
[47]
Ruskin, D.N.; Murphy, M.I.; Slade, S.L.; Masino, S.A. Ketogenic diet improves behaviors in a maternal immune activation model of autism spectrum disorder. PLoS One, 2017, 12(2)e0171643
[http://dx.doi.org/10.1371/journal.pone.0171643] [PMID: 28166277]
[48]
Shilpa, J.; Mohan, V. Ketogenic diets: boon or bane? Indian J. Med. Res., 2018, 148(3), 251-253.
[http://dx.doi.org/10.4103/ijmr.IJMR_1666_18] [PMID: 30425213]
[49]
Karimzadeh, P.; Tabrizi, A. A journey of dietary therapies for epilepsy in iran: diet restriction in the ancient era to the ketogenic diet in the modern period. Iran. J. Child. Neurol., 2019, 13(3), 7-24.
[PMID: 31327965]
[50]
Castro, K.; Faccioli, L.S.; Baronio, D.; Gottfried, C.; Perry, I.S.; dos Santos Riesgo, R. Effect of a ketogenic diet on autism spectrum disorder: a systematic review. Res. Autism Spectr. Disord., 2015, 20, 31-38.
[http://dx.doi.org/10.1016/j.rasd.2015.08.005]
[51]
Lee, R.W.Y.; Corley, M.J.; Pang, A.; Arakaki, G.; Abbott, L.; Nishimoto, M.; Miyamoto, R.; Lee, E.; Yamamoto, S.; Maunakea, A.K.; Lum-Jones, A.; Wong, M. A modified ketogenic gluten-free diet with MCT improves behavior in children with autism spectrum disorder. Physiol. Behav., 2018, 188, 205-211.
[http://dx.doi.org/10.1016/j.physbeh.2018.02.006] [PMID: 29421589]
[52]
van der Louw, E.; van den Hurk, D.; Neal, E.; Leiendecker, B.; Fitzsimmon, G.; Dority, L.; Thompson, L.; Marchió, M.; Dudzińska, M.; Dressler, A.; Klepper, J.; Auvin, S.; Cross, J.H. Ketogenic diet guidelines for infants with refractory epilepsy. Eur. J. Paediatr. Neurol., 2016, 20(6), 798-809.
[http://dx.doi.org/10.1016/j.ejpn.2016.07.009] [PMID: 27470655]
[53]
Panksepp, J. A neurochemical theory of autism. Trends Neurosci., 1979, 2, 174-177.
[http://dx.doi.org/10.1016/0166-2236(79)90071-7]
[54]
Krakowiak, P.; Walker, C.K.; Bremer, A.A.; Baker, A.S.; Ozonoff, S.; Hansen, R.L.; Hertz-Picciotto, I. Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders. Pediatrics, 2012, 129(5), e1121-e1128.
[http://dx.doi.org/10.1542/peds.2011-2583] [PMID: 22492772]
[55]
Jarmołowska, B.; Bukało, M.; Fiedorowicz, E.; Cieślińska, A.; Kordulewska, N.K.; Moszyńska, M.; Świątecki, A.; Kostyra, E. Role of milk-derived opioid peptides and proline dipeptidyl peptidase-4 in autism spectrum disorders. Nutrients, 2019, 11(1)E87
[http://dx.doi.org/10.3390/nu11010087] [PMID: 30621149]
[56]
Elder, J.H.; Kreider, C.M.; Schaefer, N.M.; de Laosa, M.B. A review of gluten- and casein-free diets for treatment of autism: 2005-2015. Nutr. Diet. Suppl., 2015, 7, 87-101.
[http://dx.doi.org/10.2147/NDS.S74718] [PMID: 28111520]
[57]
Buie, T. The relationship of autism and gluten. Clin. Ther., 2013, 35(5), 578-583.
[http://dx.doi.org/10.1016/j.clinthera.2013.04.011] [PMID: 23688532]
[58]
Marsden, R.E.F.; Francis, J.; Garner, I. Use of GFCF diets in children with ASD. An investigation into parents’ beliefs using the theory of planned behaviour. J. Autism Dev. Disord., 2019, 49(9), 3716-3731.
[http://dx.doi.org/10.1007/s10803-019-04035-8] [PMID: 31165958]
[59]
Millward, C.; Ferriter, M.; Calver, S.J.; Connell-Jones, G.G. WITHDRAWN: gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst. Rev., 2019, 4(4)CD003498
[http://dx.doi.org/10.1002/14651858] [PMID: 30938835]
[60]
Whiteley, P. Nutritional management of (some) autism: a case for gluten- and casein-free diets? Proc. Nutr. Soc., 2015, 74(3), 202-207.
[http://dx.doi.org/10.1017/S0029665114001475] [PMID: 25311313]
[61]
Reichelt, A.C.; Rodgers, R.J.; Clapcote, S.J. The role of neurexins in schizophrenia and autistic spectrum disorder. Neuropharmacology, 2012, 62(3), 1519-1526.
[http://dx.doi.org/10.1016/j.neuropharm.2011.01.024] [PMID: 21262241]
[62]
Fiorentino, M.; Sapone, A.; Senger, S.; Camhi, S.S.; Kadzielski, S.M.; Buie, T.M.; Kelly, D.L.; Cascella, N.; Fasano, A. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol. Autism, 2016, 7(1), 49.
[http://dx.doi.org/10.1186/s13229-016-0110-z] [PMID: 27957319]
[63]
Al-Ayadhi, L.Y. Gluten sensitivity in autistic children in Central Saudi Arabia. Neurosciences (Riyadh), 2006, 11(1), 11-14.
[PMID: 22266496]
[64]
Elder, J.H.; Shankar, M.; Shuster, J.; Theriaque, D.; Burns, S.; Sherrill, L. The gluten-free, casein-free diet in autism: results of a preliminary double blind clinical trial. J. Autism Dev. Disord., 2006, 36(3), 413-420.
[http://dx.doi.org/10.1007/s10803-006-0079-0] [PMID: 16555138]
[65]
Cornish, E. Gluten and casein free diets in autism: a study of the effects on food choice and nutrition. J. Hum. Nutr. Diet., 2002, 15(4), 261-269.
[http://dx.doi.org/10.1046/j.1365-277X.2002.00372.x] [PMID: 12153499]
[66]
Millward, C.; Ferriter, M.; Calver, S.; Connell-Jones, G. Gluten- and casein-free diets for autistic spectrum disorder. Cochrane Database Syst. Rev., 2004, (2)CD003498
[http://dx.doi.org/10.1002/14651858.CD003498.pub3] [PMID: 18425890]
[67]
Nazni, P.; Wesely, E.; Nishadevi, V. Impact of casein and gluten free dietary intervention on selected autistic children. Iran. J. Pediatr., 2008, 18(3), 244-250.
[68]
Piwowarczyk, A.; Horvath, A.; Łukasik, J.; Pisula, E.; Szajewska, H. Gluten- and casein-free diet and autism spectrum disorders in children: a systematic review. Eur. J. Nutr., 2018, 57(2), 433-440.
[http://dx.doi.org/10.1007/s00394-017-1483-2] [PMID: 28612113]
[69]
Arnold, G.L.; Hyman, S.L.; Mooney, R.A.; Kirby, R.S. Plasma amino acids profiles in children with autism: potential risk of nutritional deficiencies. J. Autism Dev. Disord., 2003, 33(4), 449-454.
[http://dx.doi.org/10.1023/A:1025071014191] [PMID: 12959424]
[70]
Lange, K.W.; Hauser, J.; Reissmann, A. Gluten-free and casein-free diets in the therapy of autism. Curr. Opin. Clin. Nutr. Metab. Care, 2015, 18(6), 572-575.
[http://dx.doi.org/10.1097/MCO.0000000000000228] [PMID: 26418822]
[71]
Mulloy, A.; Lang, R.; O’Reilly, M.; Sigafoos, J.; Lancioni, G.; Rispoli, M. Gluten-free and casein-free diets in the treatment of autism spectrum disorders: a systematic review. Res. Autism Spectr. Disord., 2010, 4(3), 328-339.
[http://dx.doi.org/10.1016/j.rasd.2009.10.008]
[72]
Hyman, S.L.; Stewart, P.A.; Foley, J.; Cain, U.; Peck, R.; Morris, D.D.; Wang, H.; Smith, T. The gluten-free/casein-free diet: a double-blind challenge trial in children with autism. J. Autism Dev. Disord., 2016, 46(1), 205-220.
[http://dx.doi.org/10.1007/s10803-015-2564-9] [PMID: 26343026]
[73]
Marí-Bauset, S.; Llopis-González, A.; Zazpe, I.; Marí-Sanchis, A.; Suárez-Varela, M.M. Nutritional impact of a gluten-free casein-free diet in children with autism spectrum disorder. J. Autism Dev. Disord., 2016, 46(2), 673-684.
[http://dx.doi.org/10.1007/s10803-015-2582-7] [PMID: 26428353]
[74]
Ristori, M.V.; Quagliariello, A.; Reddel, S.; Ianiro, G.; Vicari, S.; Gasbarrini, A.; Putignani, L. Autism, gastrointestinal symptoms and modulation of gut microbiota by nutritional interventions. Nutrients, 2019, 11(11)E2812
[http://dx.doi.org/10.3390/nu11112812] [PMID: 31752095]
[75]
Adams, J.B.; Borody, T.J.; Kang, D.W.; Khoruts, A.; Krajmalnik-Brown, R.; Sadowsky, M.J. Microbiota transplant therapy and autism: lessons for the clinic. Expert Rev. Gastroenterol. Hepatol., 2019, 13(11), 1033-1037.
[http://dx.doi.org/10.1080/17474124.2019.1687293] [PMID: 31665947]
[76]
Ding, H.T.; Taur, Y.; Walkup, J.T. Gut microbiota and autism: key concepts and findings. J. Autism Dev. Disord., 2017, 47(2), 480-489.
[http://dx.doi.org/10.1007/s10803-016-2960-9] [PMID: 27882443]
[77]
Argou-Cardozo, I.; Zeidán-Chuliá, F. Clostridium bacteria and autism spectrum conditions: a systematic review and hypothetical contribution of environmental glyphosate levels. Med. Sci. (Basel), 2018, 6(2)E29
[http://dx.doi.org/10.3390/medsci6020029] [PMID: 29617356]
[78]
Halmos, E.P.; Power, V.A.; Shepherd, S.J.; Gibson, P.R.; Muir, J.G. A diet low in FODMAPs reduces symptoms of irritable bowel syndrome. Gastroenterology, 2014, 146(1), 67-75.
[http://dx.doi.org/10.1053/j.gastro.2013.09.046] [PMID: 24076059]
[79]
Jeziorek, M.; Frej-Mądrzak, M.; Choroszy-Król, I. The influence of diet on gastrointestinal Candida spp. colonization and the susceptibility of Candida spp. to antifungal drugs. Rocz. Panstw. Zakl. Hig., 2019, 70(2), 195-200.
[http://dx.doi.org/10.32394/rpzh.2019.0070] [PMID: 31215785]
[80]
Gotschall, E. Digestion-gut-autism connection: the specific carbohydrate diet. Medical Veritas, 2004, 1(2), 261-271.
[http://dx.doi.org/10.1588/medver.2004.01.00029]
[81]
Hou, J.K.; Lee, D.; Lewis, J. Diet and inflammatory bowel disease: review of patient-targeted recommendations. Clin. Gastroenterol. Hepatol., 2014, 12(10), 1592-1600.
[http://dx.doi.org/10.1016/j.cgh.2013.09.063] [PMID: 24107394]
[82]
Feingold, B.F. Why your child is hyperactive; Random House Incorporated, 1985.
[83]
Cormier, E.; Elder, J.H. Diet and child behavior problems: fact or fiction? Pediatr. Nurs., 2007, 33(2), 138-143.
[PMID: 17542236]
[84]
Kirby, M.; Danner, E. Nutritional deficiencies in children on restricted diets. Pediatr. Clin. North Am., 2009, 56(5), 1085-1103.
[http://dx.doi.org/10.1016/j.pcl.2009.07.003] [PMID: 19931065]
[85]
Sathe, N.; Andrews, J.C.; McPheeters, M.L.; Warren, Z.E. Nutritional and dietary interventions for autism spectrum disorder: a systematic review. Pediatrics, 2017, 139(6)e20170346
[http://dx.doi.org/10.1542/peds.2017-0346] [PMID: 28562286]
[86]
Román, G.C. Autism: transient in utero hypothyroxinemia related to maternal flavonoid ingestion during pregnancy and to other environmental antithyroid agents. J. Neurol. Sci., 2007, 262(1-2), 15-26.
[http://dx.doi.org/10.1016/j.jns.2007.06.023] [PMID: 17651757]
[87]
Clark, J.H.; Rhoden, D.K.; Turner, D.S. Symptomatic vitamin A and D deficiencies in an eight-year-old with autism. JPEN J. Parenter. Enteral Nutr., 1993, 17(3), 284-286.
[http://dx.doi.org/10.1177/0148607193017003284] [PMID: 8505836]
[88]
Jacobson, D.; Mireskandari, K.; Cohen, E. An 11-year-old boy with vision loss. JAMA Pediatr., 2017, 171(12), 1226-1227.
[http://dx.doi.org/10.1001/jamapediatrics.2017.2543] [PMID: 28973072]
[89]
Canani, R.B.; Nocerino, R.; Pezzella, V.; Leone, L.; Cozzolino, T.; Aitoro, R.; Paparo, L.; Di Costanzo, M.; Cosenza, L.; Troncone, R. Diagnosing and treating food allergy. Curr. Pediatr. Rep., 2013, 1(3), 189-197.
[http://dx.doi.org/10.1007/s40124-013-0027-3]
[90]
Li, Y-J.; Ou, J-J.; Li, Y-M.; Xiang, D-X. Dietary supplement for core symptoms of autism spectrum disorder: where are we now and where should we go? Front. Psychiatry, 2017, 8, 155.
[http://dx.doi.org/10.3389/fpsyt.2017.00155] [PMID: 28878697]
[91]
Bandini, L.G.; Curtin, C.; Phillips, S.; Anderson, S.E.; Maslin, M.; Must, A. Changes in food selectivity in children with autism spectrum disorder. J. Autism Dev. Disord., 2017, 47(2), 439-446.
[http://dx.doi.org/10.1007/s10803-016-2963-6] [PMID: 27866350]
[92]
Rahbar, M.H.; Samms-Vaughan, M.; Loveland, K.A.; Ardjomand-Hessabi, M.; Chen, Z.; Bressler, J.; Shakespeare-Pellington, S.; Grove, M.L.; Bloom, K.; Pearson, D.A.; Lalor, G.C.; Boerwinkle, E. Seafood consumption and blood mercury concentrations in Jamaican children with and without autism spectrum disorders. Neurotox. Res., 2013, 23(1), 22-38.
[http://dx.doi.org/10.1007/s12640-012-9321-z] [PMID: 22488160]
[93]
Rommelse, N.N.; Peters, C.T.; Oosterling, I.J.; Visser, J.C.; Bons, D.; van Steijn, D.J.; Draaisma, J.; van der Gaag, R.J.; Buitelaar, J.K. A pilot study of abnormal growth in autism spectrum disorders and other childhood psychiatric disorders. J. Autism Dev. Disord., 2011, 41(1), 44-54.
[http://dx.doi.org/10.1007/s10803-010-1026-7] [PMID: 20428954]
[94]
Hopman, E.G.; le Cessie, S.; von Blomberg, B.M.; Mearin, M.L. Nutritional management of the gluten-free diet in young people with celiac disease in The Netherlands. J. Pediatr. Gastroenterol. Nutr., 2006, 43(1), 102-108.
[http://dx.doi.org/10.1097/01.mpg.0000228102.89454.eb] [PMID: 16819385]
[95]
Cook, J.D.; Dassenko, S.A.; Whittaker, P. Calcium supplementation: effect on iron absorption. Am. J. Clin. Nutr., 1991, 53(1), 106-111.
[http://dx.doi.org/10.1093/ajcn/53.1.106] [PMID: 1984334]
[96]
Kang, H.C.; Chung, D.E.; Kim, D.W.; Kim, H.D. Early- and late-onset complications of the ketogenic diet for intractable epilepsy. Epilepsia, 2004, 45(9), 1116-1123.
[http://dx.doi.org/10.1111/j.0013-9580.2004.10004.x] [PMID: 15329077]
[97]
Bjørklund, G.; Waly, M.I.; Al-Farsi, Y.; Saad, K.; Dadar, M.; Rahman, M.M.; Elhoufey, A.; Chirumbolo, S.; Jóźwik-Pruska, J.; Kałużna-Czaplińska, J. The role of vitamins in autism spectrum disorder: what do we know? J. Mol. Neurosci., 2019, 67(3), 373-387.
[http://dx.doi.org/10.1007/s12031-018-1237-5] [PMID: 30607900]
[98]
Lim, Z.; Wong, K.; Olson, H.E.; Bergin, A.M.; Downs, J.; Leonard, H. Use of the ketogenic diet to manage refractory epilepsy in CDKL5 disorder: experience of >100 patients. Epilepsia, 2017, 58(8), 1415-1422.
[http://dx.doi.org/10.1111/epi.13813] [PMID: 28605011]
[99]
Rosenfeld, C.S. Microbiome disturbances and autism spectrum disorders. Drug Metab. Dispos., 2015, 43(10), 1557-1571.
[http://dx.doi.org/10.1124/dmd.115.063826] [PMID: 25852213]
[100]
Berding, K.; Donovan, S.M. Diet and feeding behavior are related to microbiota composition in children with autism spectrum disorder. Front. Neurosci., 2018, 12, 515.
[http://dx.doi.org/10.3389/fnins.2018.00515] [PMID: 30108477]
[101]
Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; Bhutani, T.; Liao, W. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med., 2017, 15(1), 73.
[http://dx.doi.org/10.1186/s12967-017-1175-y] [PMID: 28388917]
[102]
Kang, D.W.; Adams, J.B.; Gregory, A.C.; Borody, T.; Chittick, L.; Fasano, A.; Khoruts, A.; Geis, E.; Maldonado, J.; McDonough-Means, S.; Pollard, E.L.; Roux, S.; Sadowsky, M.J.; Lipson, K.S.; Sullivan, M.B.; Caporaso, J.G.; Krajmalnik-Brown, R. Microbiota transfer therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: an open-label study. Microbiome, 2017, 5(1), 10.
[http://dx.doi.org/10.1186/s40168-016-0225-7] [PMID: 28122648]
[103]
Inoue, R.; Sakaue, Y.; Kawada, Y.; Tamaki, R.; Yasukawa, Z.; Ozeki, M.; Ueba, S.; Sawai, C.; Nonomura, K.; Tsukahara, T.; Naito, Y. Dietary supplementation with partially hydrolyzed guar gum helps improve constipation and gut dysbiosis symptoms and behavioral irritability in children with autism spectrum disorder. J. Clin. Biochem. Nutr., 2019, 64(3), 217-223.
[http://dx.doi.org/10.3164/jcbn.18-105] [PMID: 31138955]
[104]
Srikantha, P.; Mohajeri, M.H. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int. J. Mol. Sci., 2019, 20(9), 2115.
[http://dx.doi.org/10.3390/ijms20092115] [PMID: 31035684]
[105]
Frye, R.E.; Sreenivasula, S.; Adams, J.B. Traditional and non-traditional treatments for autism spectrum disorder with seizures: an on-line survey. BMC Pediatr., 2011, 11, 37.
[http://dx.doi.org/10.1186/1471-2431-11-37] [PMID: 21592359]
[106]
Spilioti, M.; Pavlou, E.; Gogou, M.; Katsanika, I.; Papadopoulou-Alataki, E.; Grafakou, O.; Gkampeta, A.; Dinopoulos, A.; Evangeliou, A. Valproate effect on ketosis in children under ketogenic diet. Eur. J. Paediatr. Neurol., 2016, 20(4), 555-559.
[http://dx.doi.org/10.1016/j.ejpn.2016.04.003] [PMID: 27117552]
[107]
Herbert, M.R.; Buckley, J.A. Autism and dietary therapy: case report and review of the literature. J. Child Neurol., 2013, 28(8), 975-982.
[http://dx.doi.org/10.1177/0883073813488668] [PMID: 23666039]
[108]
Jurecka, A.; Zikanova, M.; Jurkiewicz, E.; Tylki-Szymańska, A. Attenuated adenylosuccinate lyase deficiency: a report of one case and a review of the literature. Neuropediatrics, 2014, 45(1), 50-55.
[http://dx.doi.org/10.1055/s-0033-1337335] [PMID: 23504561]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy