Generic placeholder image

Recent Patents on Mechanical Engineering

Editor-in-Chief

ISSN (Print): 2212-7976
ISSN (Online): 1874-477X

Review Article

Recent Patents on Micro-EDM Milling

Author(s): Baocheng Xie*, Jianguo Liu and Yongqiu Chen

Volume 13, Issue 3, 2020

Page: [219 - 229] Pages: 11

DOI: 10.2174/2212797613666200213120209

Price: $65

Abstract

Background: Micro-Electrical Discharge Machining (EDM) milling is widely used in the processing of complex cavities and micro-three-dimensional structures, which is a more effective processing method for micro-precision parts. Thus, more attention has been paid on the micro-EDM milling.

Objective: To meet the increasing requirement of machining quality and machining efficiency of micro- EDM milling, the processing devices and processing methods of micro-EDM milling are being improved continuously.

Methods: This paper reviews various current representative patents related to the processing devices and processing methods of micro-EDM milling.

Results: Through summarizing a large number of patents about processing devices and processing methods of micro-EDM milling, the main problems of current development, such as the strategy of electrode wear compensation and the development trends of processing devices and processing methods of micro-EDM milling are discussed.

Conclusion: The optimization of processing devices and processing methods of micro-EDM milling are conducive to solving the problems of processing efficiency and quality. More relevant patents will be invented in the future.

Keywords: Electrode wear compensation, machining efficiency, machining quality, micro-EDM milling, processing device, processing method.

[1]
Huang CH, Yang AB, Hsu CY. The optimization of micro EDM milling of Ti-6Al-4V using a grey Taguchi method and its improvement by electrode coating. Int J Adv Manuf Technol 2018; 96(9-12): 3851-9.
[http://dx.doi.org/10.1007/s00170-018-1841-0]
[2]
Mishra K, Mukhopadhyay P, Sarkar BR, Doloi B, Bhattacharyya B. Improvement of micro-EDM performances with aid of vibration. Int J Precis Technol 2018; 8(1): 38-65.
[http://dx.doi.org/10.1504/IJPTECH.2018.094081]
[3]
Wang X, Shen Y. High-speed EDM milling with in-gas and outside-liquid electrode flushing techniques. Int J Adv Manuf Technol 2019; 104(5-8): 3191-8.
[http://dx.doi.org/10.1007/s00170-019-04242-8]
[4]
Nguyen MD, San WY, Rahman M. Profile error compensation in high precision 3D micro-EDM milling. Precis Eng 2013; 37(2): 399-407.
[http://dx.doi.org/10.1016/j.precisioneng.2012.11.002]
[5]
Xu LJ, Zhuang CH, Lu XH. Study on high efficiency milling technology of spinneret micro-hole EDM. Electromach & Mould 2017; 6: 58-61.
[6]
Ji R, Liu Y, Zhang Y, Cai B, Ma J, Li X. Influence of dielectric and machining parameters on the process performance for electric discharge milling of SiC ceramic. Int J Adv Manuf Technol 2012; 59(1-4): 127-36.
[http://dx.doi.org/10.1007/s00170-011-3493-1]
[7]
Marrocco V, Modica F, Fassi I. Analysis of discharge pulses in micro-EDM milling of Si3N4-TiN composite workpiece by means of Power Spectral Density (PSD). J Manuf Process 2019; 43: 112-8.
[http://dx.doi.org/10.1016/j.jmapro.2019.05.017]
[8]
Zhou T, Ma F, Ruan B, Zhou J, Liew P, Wang X. Microlens array fabrication on WC mold using EDM milling with in situ electrode trimming. Int J Adv Manuf Technol 2019; 103: 3003-11.
[http://dx.doi.org/10.1007/s00170-019-03731-0]
[9]
Uhlmann E, Perfilov I. Machinetool and technology for manufacturing of micro-structures by micro dry electrical discharge milling. Procedia CIRP 2018; 68: 825-30.
[http://dx.doi.org/10.1016/j.procir.2017.12.163]
[10]
Richard J, Giandomenico N. Electrode profile prediction and wear compensation in EDM-milling and micro-EDM-milling. Procedia CIRP 2018; 68: 819-24.
[http://dx.doi.org/10.1016/j.procir.2017.12.162]
[11]
Hanif M, Ahmad W, Hussain S, Jahanzaib M, Shah AH. Investigating the effects of electric discharge machining parameters on material removal rate and surface roughness on AISI D2 steel using RSM-GRA integrated approach. Int J Adv Manuf Technol 2019; 101(5-8): 1255-65.
[http://dx.doi.org/10.1007/s00170-018-3019-1]
[12]
Guo CB, Di SC, Wei DB. Study on machining efficiency of TC4 titanium alloy by EDM with high efficiency. Acta Armamentarii 2015; 36(11): 2149-56.
[13]
Sun ZM, Chen J, Lu GD. Summary of electrode compensation methods in micro-EDM. Lectromach Mould 2013; 1: 1-5.
[14]
Nadda R, Nirala CK, Saha P. Tool wear compensation in micro-EDM. Micro-Electr Discharge Mach Processes 2019; 2019: 185-208.
[15]
Bissacco G, Tristo G, Hansen HN, Valentincic J. Reliability of electrode wear compensation based on material removal per discharge in micro EDM milling. CIRP Ann 2013; 62(1): 179-82.
[http://dx.doi.org/10.1016/j.cirp.2013.03.033]
[16]
Yu ZY, Guo DM, Jia ZY. Micro-EDM technology. China Sciencepaper 2007; 2(3): 214-20.
[17]
Yu HL, Luan JJ, Li JZ, Zhang Y, Yu Z, Guo D-M. A new electrode wear compensation method for improving performance in 3D micro EDM milling. J Micromech Microeng 2010; 20(5)055011
[http://dx.doi.org/10.1088/0960-1317/20/5/055011]
[18]
Xiao L, Yu HL, Yin GQ. Micro-EDM electrode loss compensation method based on material area removal. National Academic Conference on Special Processing 2011; Suzhou, China. 10 2011.
[19]
Wang ZL. Simulation experiment of conical electrode formation and research of plane machining method under the method of fixed length compensation of micro EDM. PhD Dissertation, Shanghai Jiaotong University, Shanghai, China February 2015.
[20]
Meng J. Research on electrode loss prediction and compensation in flushing micro-EDM milling. PhD Dissertation, Harbin Institute of Technology Harbin, China July 2015.
[21]
Zhang L, Du J, Zhuang X, Wang Z, Pei J. Geometric prediction of conic tool in micro-EDM milling with fix-length compensation using simulation. Int J Mach Tools Manuf 2015; 89: 86-94.
[http://dx.doi.org/10.1016/j.ijmachtools.2014.11.007]
[22]
Vincent N, Kumar AB. Experimental investigations into EDM behaviours of En41b using copper and brass rotary tubular electrode. Procedia Technol 2016; 25: 877-84.
[http://dx.doi.org/10.1016/j.protcy.2016.08.196]
[23]
Shi W, Zhang YB, Chen F. Effect of electrode shape on EDM bottom profile. Manuf Technol & Mach Tool 2015; 3: 83-6.
[24]
Zhuang XS, Wu SK, Liu YB. Experimental study on hollow electrode fixed length compensation EDM milling. Electromach & Mould 2017; 1: 12-6.
[25]
Liu YB, Zhu YT, Zhuang XS. Hollow Electrode micro-EDM plane machining method based on fixed length compensation. Electromach & Mould 2018; 1: 2.
[26]
Pei J, Liu Y, Zhu Y, Zhang L, Zhuang X, Wu S. Machining strategy and key problems for 3D structure of micro-EDM by fix-length compensation method with tubular electrodes. Procedia CIRP 2018; 68: 802-7.
[http://dx.doi.org/10.1016/j.procir.2017.12.159]
[27]
Yan MT, Lin SS. Process planning and electrode wear compensation for 3D micro-EDM. Int J Adv Manuf Technol 2011; 53(1-4): 209-19.
[http://dx.doi.org/10.1007/s00170-010-2827-8]
[28]
Nguyen VQ, Duong TH, Kim HC. Precision micro EDM based on real-time monitoring and electrode wear compensation. Int J Adv Manuf Technol 2015; 79(9-12): 1829-38.
[http://dx.doi.org/10.1007/s00170-015-6964-y]
[29]
Xu B, Guo K, Zhu L, Wu X, Lei J, Zhao H. The wear of foil queue microelectrode in 3D micro-EDM. Int J Adv Manuf Technol 2019; 104: 3107-17.
[http://dx.doi.org/10.1007/s00170-019-04234-8]
[30]
Muthuramalingam T. Effect of diluted dielectric medium on spark energy in green EDM process using TGRA approach. J Clean Prod 2019; 238117894
[http://dx.doi.org/10.1016/j.jclepro.2019.117894]
[31]
Puthumana G, Bissacco G, Hansen HN. Modeling of the effect of tool wear per discharge estimation error on the depth of machined cavities in micro-EDM milling. Int J Adv Manuf Technol 2017; 92(9-12): 3253-64.
[http://dx.doi.org/10.1007/s00170-017-0371-5]
[32]
Sabotin I, Tristo G, Lebar A, Jerman M, Prijatelj M, Drešar P, et al. Preliminary study on staggered herringbone micromixer design suitable for micro EDM milling. Adv Manuf Eng Mater 2019; 2019: 229-36.
[http://dx.doi.org/10.1007/978-3-319-99353-9_25]
[33]
Yu Z, Li D, Yang J, Zeng Z, Yang X, Li J. Fabrication of micro punching mold for micro complex shape part by micro EDM. Int J Adv Manuf Technol 2019; 100(1-4): 743-9.
[http://dx.doi.org/10.1007/s00170-018-2731-1]
[34]
Jahan MP. Electro-Discharge Machining (EDM). Mod Manuf Processes 2019; 2019: 377-409.
[35]
Singh M, Jain VK, Ramkumar J. Micro-electrical discharge milling operation. Micro-Electr Discharge Mach Processes 2019; 2019: 23-51.
[36]
Boominathan E, Gowri S. Experimental study on micro-deburring of micro-grooves by micro-EDM. I-DAD 2019; 2019: 41-6.
[http://dx.doi.org/10.1007/978-981-13-2718-6_5]
[37]
Yang D, Qiu M, Han Y, Kong L, Zhou W, Liu Z. Technology of ablation milling by fast-moving electrode. Int J Adv Manuf Technol 2018; 96(1-4): 103-9.
[http://dx.doi.org/10.1007/s00170-017-1260-7]
[38]
Wang F, Liu Y, Zhang Y, Tang Z, Ji R, Zheng C. Compound machining of titanium alloy by super high speed EDM milling and arc machining. J Mater Process Technol 2014; 214(3): 531-8.
[http://dx.doi.org/10.1016/j.jmatprotec.2013.10.015]
[39]
Qiu MB. Research status of high efficiency discharge machining technology. Aeronaut Manuf Technol 2017; 522(3): 46-55.
[40]
Wan YL, Lian ZX, Yu ZJ. Experimental study on micro-EDM layered milling. J Changchun Univ Sci Technol 2014; 5: 37-40.
[41]
Xiang DS, Wang H, Li JZ. Effect of layer thickness on surface roughness of dies and hot pressed products in micro-EDM milling. Electromach & Mould 2016; 1: 10-6.
[42]
Wei W, Chu ZQ, Wei KX. A manufacturing method of nanostructured copper alloy for EDM electrode CN108359834 (2018).
[43]
Tomalin D, Hansard B, Chiba K. EDM milling electrode. WO2018085494 (2018).
[44]
Gao Q, Yuan RW, Weaver HP. Method and apparatus for maching workpiece. EP3225342 (2017).
[45]
Ye J, Wu GX, Kang L, Wan FR, Chen M, Zhu HY. Method for efficient discharge milling with hollow long electrode. CN1397399 (2006).
[46]
Zhang M, Zhang QH. Universal ultrasonic-assisted inner jetted dielectric Electric Discharge Machining (EDM) milling tool head and manufacturing method thereof. CN103920953 (2016).
[47]
Liu ZD, Wang W, Shen LD, et al. Electric spark induction controllable erosion and electrolysis compound efficient machining method. CN102151924 (2011).
[48]
Li JP, Yang F. Spout oxygen electric spark milling process device. CN205085509 (2016).
[49]
Liu YH, Shen Y, Dong X, et al. Aerial high-efficiency spark milling machining method. CN105880757 (2018).
[50]
Hu FQ, Guo YL, Chen Q. Particle reinforced aluminum matrix composites electric discharge milling tool electrode. CN102284752 (2011).
[51]
Yuan RW, Li L, Guo YY. Electrical discharge machining device and method. CN100526853 (2019).
[52]
Huang RN, Liu XF, Han SF, Zhao CL. A soft electrode EDM device based on liquid metal and porous ceramics. CN105562851 (2018).
[53]
Wan FR, Ye J, Wu GX, Wu Q. Method for compensating electrode loss based on discharge energy in electricity discharge milling process. CN101982280 (2012).
[54]
Pei JY, He L, Jin FJ, Zheng BW, Wang BW. Relative volume loss ratio measuring method based on cone electrode electrical discharge milling. CN103234497 (2013).
[55]
Di SC, Guo CB. Electrode loss real-time compensation method based on spark discharge rate. CN104646774 (2016).
[56]
Liu JW, Chen SG, Yu ZQ, Guo ZN, Yang XY. Automatically compensated discharge milling processing device and method of tool electrode. CN106825803 (2017).
[57]
Liu JW, Liu L, Guo ZN, Peng LQ. self-repairing strip electrode spark milling apparatus and method. CN106808036 (2018).
[58]
Kai R. Method and grinding and eroding machine for machining a workpiece. WO2018206454 (2018).
[59]
Luo JQ. A kind of electrolysis electric spark milling Multifunctional milling mounting device. CN110091015 (2019).
[60]
Vella C, Merten J. Method for manufacturing and using a work piece, in particular an EDM electrode. EP2829344 (2015).
[61]
Liu YH, Zhang YZ, Li XP, et al. Tool electrode compositely processed by electric spark end face milling and mechanical grinding. CN101670519 (2010).
[62]
Geng QD, Li CY. Electric spark milling and mechanical grinding combined machining device. CN104002000 (2014).
[63]
Tong H, Li Y, Hu MH, Chen XP. Electric spark and electrolysis combined milling machining method of micro three-dimensional structure. CN101693313 (2011).
[64]
Liu L. Spark milling apparatus and method. CN102922063 (2015).
[65]
Liu YH, Zhang YZ, Wang F, et al. Flushing system for high-speed arc discharge milling. CN102990172 (2013).
[66]
Wang ZL, Wang H, Wang YK, Zhang J, Jia YC. A kind of electrical discharge machining and the compound method for preparing super-hydrophobic surface of spray coating method. CN110124965 (2019).
[67]
Liu YH, Zhang YZ, Wang F, et al. High-instantaneous-energy-density electric spark high-speed milling method. CN103008802 (2013).
[68]
Liu YH, Zhang YZ, Wang F, et al. High energy density in high-speed milling EDM power supply device. CN103008803 (2016).
[69]
Zhao WS, Gu L, Hong H, Xu H. Side milling electrode clamping device for high-speed arc discharge machining. CN103586551 (2013).
[70]
Ma MJ. Electrode rotating device provided with hollow shaft motor and used for electrospark discharging machining machine. CN204159995 (2015).
[71]
Yi X, Wang LF, Hu YM. Rotatory processing equipment of electric spark electrode. CN204893120 (2015).
[72]
Wang YG. EDM milling method of three-dimensional parts. CN106077853 (2017).
[73]
Wang F, Wu Q, Wu QD, Peng ZL, Lan HB, Liu YH. Device for improving large-current arc discharge milling machining precision. CN108655523 (2018).
[74]
Qiu MB, Han YX, Li,u ZD, Shen LD, Tian ZJ. Cutting depth layering adjustable discharge ablation milling rapid feeding servo control method. CN106984877 (2017).
[75]
Tong H, Pu YB, Li JJ, Li Y, Ji BL. The fine hydrophilic probe operation microlayer model method and device of electrical discharge machining. CN109865904 (2019).
[76]
Su H, Gu M. A wire electric discharge machining the article carbide thread processing method and tooling CN104668682 (2017).
[77]
Xie J, Zhang ZR, Zhang HJ, et al. Method for manufacturing thin-wall metal semi-spherical shell with seam allowance. CN103846630 (2014).
[78]
Xie J, Zhang ZR, Zhang HJ, et al. On-line microelectrode manufacturing method. CN103878454 (2014).
[79]
Wang DS, Fan SJ, Ren J. Electric spark coat device with electrode capable of automatically feeding, rotating, vibrating and vertical depositing. CN201082897 (2008).
[80]
Kao CC, Awad JK, Valentin S. Electrical discharge machining method for generating variable spray-hole geometry. WO2017070557 (2017).
[81]
Ji RJ, Liu YH, Xu CC, et al. Servomechanism for milling electric spark made of non-conducting material. CN104874880 (2015).
[82]
Yu LL, Liu YH, Li XP, et al. Non-conducting material electric spark milling method. CN100519031 (2009).
[83]
Ji F, Zhang LX, Zhang YB, et al. Multifunctional microelectric- spark milling device. CN102658405 (2014).
[84]
Chen JL, Rong TA, Zhang K, et al. Microsatellite EDM milling method of three-dimensional structure. CN106180923 (2018).
[85]
Mei JC. Multifunctional micro-electric-spark milling device. CN10798422843 (2018).
[86]
Liu JW, Cheng. J, Yu. ZQ, Guo ZN, Chen SG. Discharge and mill insulating material's device. CN206718199. (2017).
[87]
Yang XD, Li SZ. Micro-beam arc selective fusing and electric spark layered milling composite additive manufacturing method. CN108672849 (2018).
[88]
Yang XD, Dai ZF. Spindle actuator electrical discharge machining apparatus of processing a square hole processing method and the use of the actuator to achieve. CN106041232 (2018).
[89]
Tong H, Li Y, Wang ZQ, Kong QC, Zhou K. Machining method of gravity-free smelting layer air membrane hole of aviation engine turbine blade. CN102861956 (2014).
[90]
Xie J, Zhang ZR, Huang YH, et al. Micro-shaft lateral surface platform machining method. CN106944684 (2017).
[91]
Ji RJ, Liu YH, Xu CC, et al. Insulating engineering ceramic discharging and milling servo device. CN104942389 (2015).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy