Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

DPepH3, an Improved Peptide Shuttle for Receptor-independent Transport Across the Blood-Brain Barrier

Author(s): Marco Cavaco, Javier Valle , Ruben da Silva, João D.G. Correia, Miguel A. R. B Castanho, David Andreu* and Vera Neves*

Volume 26, Issue 13, 2020

Page: [1495 - 1506] Pages: 12

DOI: 10.2174/1381612826666200213094556

Price: $65

Abstract

Background: The use of peptides as drug carriers across the blood-brain barrier (BBB) has increased significantly during the last decades. PepH3, a seven residue sequence (AGILKRW) derived from the α-helical domain of the dengue virus type-2 capsid protein, translocates across the BBB with very low toxicity. Somehow predictably from its size and sequence, PepH3 is degraded in serum relatively fast. Among strategies to increase peptide half-life (t1/2), the use of the enantiomer (wholly made of D-amino acid residues) can be quite successful if the peptide interacts with a target in non-stereospecific fashion.

Methods: The goal of this work was the development of a more proteolytic-resistant peptide, while keeping the translocation properties. The serum stability, cytotoxicity, in vitro BBB translocation, and internalization mechanism of DPepH3 was assessed and compared to the native peptide.

Results: DPepH3 demonstrates a much longer t1/2 compared to PepH3. We also confirm that BBB translocation is receptor-independent, which fully validates the enantiomer strategy chosen. In fact, we demonstrate that internalization occurs trough macropinocytosis. In addition, the enantiomer demonstrates to be non-cytotoxic towards endothelial cells as PepH3.

Conclusion: DPepH3 shows excellent translocation and internalization properties, safety, and improved stability. Taken together, our results place DPepH3 at the forefront of the second generation of BBB shuttles.

Keywords: Adsorption-mediated transcytosis, blood-brain barrier, D-amino acids, macropinocytosis, PepH3, peptide shuttles, stability.

« Previous
[1]
Serlin Y, Shelef I, Knyazer B, Friedman A. Anatomy and physiology of the blood-brain barrier. Semin Cell Dev Biol 2015; 38: 2-6.
[http://dx.doi.org/10.1016/j.semcdb.2015.01.002] [PMID: 25681530]
[2]
Furtado D, Björnmalm M, Ayton S, Bush AI, Kempe K, Caruso F. Overcoming the blood-brain barrier: the role of nanomaterials in treating neurological diseases. Adv Mater 2018; 30(46): e1801362
[http://dx.doi.org/10.1002/adma.201801362] [PMID: 30066406]
[3]
Pardridge WM. Blood-brain barrier delivery. Drug Discov Today 2007; 12(1-2): 54-61.
[http://dx.doi.org/10.1016/j.drudis.2006.10.013] [PMID: 17198973]
[4]
Gabathuler R. Approaches to transport therapeutic drugs across the blood-brain barrier to treat brain diseases. Neurobiol Dis 2010; 37(1): 48-57.
[http://dx.doi.org/10.1016/j.nbd.2009.07.028] [PMID: 19664710]
[5]
Neves V, Aires-da-Silva F, Corte-Real S, Castanho MARB. antibody approaches to treat brain diseases. Trends Biotechnol 2016; 34(1): 36-48.
[http://dx.doi.org/10.1016/j.tibtech.2015.10.005]
[6]
Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab 2012; 32(11): 1959-72.
[http://dx.doi.org/10.1038/jcbfm.2012.126] [PMID: 22929442]
[7]
Pulicherla KK, Verma MK. Targeting therapeutics across the blood brain barrier (BBB), prerequisite towards thrombolytic therapy for cerebrovascular disorders-an overview and advancements. AAPS PharmSciTech 2015; 16(2): 223-33.
[http://dx.doi.org/10.1208/s12249-015-0287-z] [PMID: 25613561]
[8]
Pulgar VM. Transcytosis to cross the blood brain barrier, new advancements and challenges. Front Neurosci 2019; 12(1019): 1019.
[http://dx.doi.org/10.3389/fnins.2018.01019] [PMID: 30686985]
[9]
Hervé F, Ghinea N, Scherrmann J-M. CNS delivery via adsorptive transcytosis. AAPS J 2008; 10(3): 455-72.
[http://dx.doi.org/10.1208/s12248-008-9055-2] [PMID: 18726697]
[10]
Abdul Razzak R, Florence GJ, Gunn-Moore FJ. Approaches to CNS drug delivery with a focus on transporter-mediated transcytosis. Int J Mol Sci 2019; 20(12): 3108.
[http://dx.doi.org/10.3390/ijms20123108] [PMID: 31242683]
[11]
Kristensen M, Brodin B. Routes for drug translocation across the blood-brain barrier: exploiting peptides as delivery vectors. J Pharm Sci 2017; 3549(17): 30361-1.
[12]
Freire JM, Almeida Dias S, Flores L, Veiga AS, Castanho MARB. Mining viral proteins for antimicrobial and cell-penetrating drug delivery peptides. Bioinformatics 2015; 31(14): 2252-6.
[http://dx.doi.org/10.1093/bioinformatics/btv131] [PMID: 25725499]
[13]
Freire JM, Veiga AS, Conceição TM, et al. Intracellular nucleic acid delivery by the supercharged dengue virus capsid protein. PLoS One 2013; 8(12): e81450
[http://dx.doi.org/10.1371/journal.pone.0081450] [PMID: 24339931]
[14]
Ma L, Jones CT, Groesch TD, Kuhn RJ, Post CB. Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci USA 2004; 101(10): 3414-9.
[http://dx.doi.org/10.1073/pnas.0305892101] [PMID: 14993605]
[15]
Neves V, Aires-da-Silva F, Morais M, et al. Novel peptides derived from dengue virus capsid protein translocate reversibly the blood-brain barrier through a receptor-free mechanism. ACS Chem Biol 2017; 12(5): 1257-68.
[http://dx.doi.org/10.1021/acschembio.7b00087] [PMID: 28263555]
[16]
Neves-Coelho S, Eleutério RP, Enguita FJ, Neves V, Castanho MARB. A new noncanonical anionic peptide that translocates a cellular blood-brain barrier model. Molecules 2017; 22(10): 1753.
[http://dx.doi.org/10.3390/molecules22101753] [PMID: 29057814]
[17]
Côrte-Real S, Neves V, Oliveira S. Canhão P, Outeiro T, Castanho M, Aires da Silva F. Antibody molecules and peptide delivery systems for use in Alzheimer’s disease and related disorders. World Intellectual Property Organization patent PCT/IB2016/050467 2016 Jan.
[18]
Wang B, Xie N, Li B. Influence of peptide characteristics on their stability, intestinal transport, and in vitro bioavailability: A review. J Food Biochem 2019; 43(1): e12571
[http://dx.doi.org/10.1111/jfbc.12571] [PMID: 31353489]
[19]
Cavaco M, Castanho MARB, Neves V. Peptibodies: An elegant solution for a long-standing problem. Biopolymers 2017; 110(1)e23095
[http://dx.doi.org/10.1002/bip.23095] [PMID: 29266205]
[20]
Vamanu E. Polyphenolic nutraceuticals to combat oxidative stress through microbiota modulation. Front Pharmacol 2019; 10(492): 492.
[http://dx.doi.org/10.3389/fphar.2019.00492] [PMID: 31130865]
[21]
Figueira TN, Freire JM, Cunha-Santos C, et al. Quantitative analysis of molecular partition towards lipid membranes using surface plasmon resonance. Sci Rep 2017; 7: 45647.
[http://dx.doi.org/10.1038/srep45647] [PMID: 28358389]
[22]
Figueira TN, Palermo LM, Veiga AS, et al. In vivo efficacy of measles virus fusion protein-derived peptides is modulated by the properties of self-assembly and membrane residence. J Virol 2016; 91(1): e01554-16.
[PMID: 27733647]
[23]
Falcao CB, Pérez-Peinado C, de la Torre BG, et al. Structural dissection of crotalicidin, a rattlesnake venom cathelicidin, retrieves a fragment with antimicrobial and antitumor activity. J Med Chem 2015; 58(21): 8553-63.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01142] [PMID: 26465972]
[24]
Pérez-Peinado C, Dias SA, Domingues MM, et al. Mechanisms of bacterial membrane permeabilization by crotalicidin (Ctn) and its fragment Ctn(15-34), antimicrobial peptides from rattlesnake venom. J Biol Chem 2018; 293(5): 1536-49.
[http://dx.doi.org/10.1074/jbc.RA117.000125] [PMID: 29255091]
[25]
Ghosh A, Raju N, Tweedle M, Kumar K. In vitro mouse and human serum stability of a heterobivalent dual-target probe that has strong affinity to gastrin-releasing peptide and neuropeptide y1 receptors on tumor cells. Cancer Biother Radiopharm 2017; 32(1): 24-32.
[http://dx.doi.org/10.1089/cbr.2016.2136] [PMID: 28186846]
[26]
Helms HC, Abbott NJ, Burek M, et al. In vitro models of the blood-brain barrier: An overview of commonly used brain endothelial cell culture models and guidelines for their use. J Cereb Blood Flow Metab 2016; 36(5): 862-90.
[http://dx.doi.org/10.1177/0271678X16630991] [PMID: 26868179]
[27]
Czupalla CJ, Liebner S, Devraj K. In vitro models of the blood–brain barriercerebral angiogenesis: methods and protocols. New York, NY: Springer New York 2014; pp. 415-37.
[http://dx.doi.org/10.1007/978-1-4939-0320-7_34]
[28]
Illien F, Rodriguez N, Amoura M, et al. Quantitative fluorescence spectroscopy and flow cytometry analyses of cell-penetrating peptides internalization pathways: optimization, pitfalls, comparison with mass spectrometry quantification. Sci Rep 2016; 6: 36938.
[http://dx.doi.org/10.1038/srep36938] [PMID: 27841303]
[29]
Ribeiro MM, Domingues MM, Freire JM, Santos NC, Castanho MA. Translocating the blood-brain barrier using electrostatics. Front Cell Neurosci 2012; 6(44): 44.
[PMID: 23087614]
[30]
Gonzalez-Velasquez FJ, Kotarek JA, Moss MA. Soluble aggregates of the amyloid-beta protein selectively stimulate permeability in human brain microvascular endothelial monolayers. J Neurochem 2008; 107(2): 466-77.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05618.x] [PMID: 18702666]
[31]
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64(7): 1097-123.
[http://dx.doi.org/10.1002/glia.22960] [PMID: 26852907]
[32]
Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K. Extraction of cholesterol with methyl-beta-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol Biol Cell 1999; 10(4): 961-74.
[http://dx.doi.org/10.1091/mbc.10.4.961] [PMID: 10198050]
[33]
Fittipaldi A, Ferrari A, Zoppé M, et al. Cell membrane lipid rafts mediate caveolar endocytosis of HIV-1 Tat fusion proteins. J Biol Chem 2003; 278(36): 34141-9.
[http://dx.doi.org/10.1074/jbc.M303045200] [PMID: 12773529]
[34]
Pearlstein RA, Dickson CJ, Hornak V. Contributions of the membrane dipole potential to the function of voltage-gated cation channels and modulation by small molecule potentiators. Biochim Biophys Acta Biomembr 2017; 1859(2): 177-94.
[http://dx.doi.org/10.1016/j.bbamem.2016.11.005] [PMID: 27836643]
[35]
Fujiwara T, Oda K, Yokota S, Takatsuki A, Ikehara Y. Brefeldin A causes disassembly of the Golgi complex and accumulation of secretory proteins in the endoplasmic reticulum. J Biol Chem 1988; 263(34): 18545-52.
[PMID: 3192548]
[36]
Zou L-L, Ma J-L, Wang T, Yang T-B, Liu C-B. Cell-penetrating Peptide-mediated therapeutic molecule delivery into the central nervous system. Curr Neuropharmacol 2013; 11(2): 197-208.
[http://dx.doi.org/10.2174/1570159X11311020006] [PMID: 23997754]
[37]
Böttger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One 2017; 12(6): e0178943
[http://dx.doi.org/10.1371/journal.pone.0178943]
[38]
Gorris HH, Bade S, Röckendorf N, et al. Rapid profiling of peptide stability in proteolytic environments. Anal Chem 2009; 81(4): 1580-6.
[http://dx.doi.org/10.1021/ac802324f] [PMID: 19159331]
[39]
Feng Z, Xu B. Inspiration from the mirror: D-amino acid containing peptides in biomedical approaches. Biomol Concepts 2016; 7(3): 179-87.
[http://dx.doi.org/10.1515/bmc-2015-0035] [PMID: 27159920]
[40]
Garton M, Nim S, Stone TA, Wang KE, Deber CM, Kim PM. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci USA 2018; 115(7): 1505-10.
[http://dx.doi.org/10.1073/pnas.1711837115] [PMID: 29378946]
[41]
Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomed Rep 2016; 4(5): 528-34.
[http://dx.doi.org/10.3892/br.2016.639] [PMID: 27123243]
[42]
Takeuchi T, Futaki S. Current understanding of direct translocation of arginine-rich cell-penetrating peptides and its internalization mechanisms. Chem Pharm Bull 2016; 64(10): 1431-7.
[http://dx.doi.org/10.1248/cpb.c16-00505] [PMID: 27725497]
[43]
Erickson SD, Simon JA, Still WC. Practical synthesis of a highly enantioselective receptor for peptides. J Org Chem 1993; 58(6): 1305-8.
[http://dx.doi.org/10.1021/jo00058a005]
[44]
Plazinska A, Plazinski W. Stereoselective binding of agonists to the β2-adrenergic receptor: insights into molecular details and thermodynamics from molecular dynamics simulations. Mol Biosyst 2017; 13(5): 910-20.
[http://dx.doi.org/10.1039/C6MB00814C] [PMID: 28338133]
[45]
Bechinger B, Seelig J. Interaction of electric dipoles with phospholipid head groups. A deuterium and phosphorus-31 NMR study of phloretin and phloretin analogs in phosphatidylcholine membranes. Biochemistry 1991; 30(16): 3923-9.
[http://dx.doi.org/10.1021/bi00230a017] [PMID: 1850293]
[46]
McLaurin J, Chakrabartty A. Characterization of the interactions of Alzheimer β-amyloid peptides with phospholipid membranes. Eur J Biochem 1997; 245(2): 355-63.
[http://dx.doi.org/10.1111/j.1432-1033.1997.t01-2-00355.x] [PMID: 9151964]
[47]
Peitzsch RM, Eisenberg M, Sharp KA, McLaughlin S. Calculations of the electrostatic potential adjacent to model phospholipid bilayers. Biophys J 1995; 68(3): 729-38.
[http://dx.doi.org/10.1016/S0006-3495(95)80253-5] [PMID: 7756540]
[48]
Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett 2018; 13(1): 339.
[http://dx.doi.org/10.1186/s11671-018-2728-6] [PMID: 30361809]
[49]
Salatin S, Yari Khosroushahi A. Overviews on the cellular uptake mechanism of polysaccharide colloidal nanoparticles. J Cell Mol Med 2017; 21(9): 1668-86.
[http://dx.doi.org/10.1111/jcmm.13110] [PMID: 28244656]
[50]
Jiao C-Y, Delaroche D, Burlina F, Alves ID, Chassaing G, Sagan S. Translocation and endocytosis for cell-penetrating peptide internalization. J Biol Chem 2009; 284(49): 33957-65.
[http://dx.doi.org/10.1074/jbc.M109.056309] [PMID: 19833724]
[51]
Madani F, Lindberg S, Langel U, Futaki S, Gräslund A. Mechanisms of cellular uptake of cell-penetrating peptides. J Biophys 2011; 2011414729
[http://dx.doi.org/10.1155/2011/414729]
[52]
Futaki S, Suzuki T, Ohashi W, et al. Arginine-rich peptides. An abundant source of membrane-permeable peptides having potential as carriers for intracellular protein delivery. J Biol Chem 2001; 276(8): 5836-40.
[http://dx.doi.org/10.1074/jbc.M007540200] [PMID: 11084031]
[53]
de Figueiredo IR, Freire JM, Flores L, Veiga AS, Castanho MARB. Cell-penetrating peptides: A tool for effective delivery in gene-targeted therapies. IUBMB Life 2014; 66(3): 182-94.
[http://dx.doi.org/10.1002/iub.1257] [PMID: 24659560]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy