Generic placeholder image

Current Protein & Peptide Science

Editor-in-Chief

ISSN (Print): 1389-2037
ISSN (Online): 1875-5550

Review Article

Plant Virus Nanoparticles for Vaccine Applications

Author(s): Mattia Santoni, Roberta Zampieri and Linda Avesani*

Volume 21, Issue 4, 2020

Page: [344 - 356] Pages: 13

DOI: 10.2174/1389203721666200212100255

Price: $65

Abstract

In the rapidly evolving field of nanotechnology, plant virus nanoparticles (pVNPs) are emerging as powerful tools in diverse applications ranging from biomedicine to materials science. The proteinaceous structure of plant viruses allows the capsid structure to be modified by genetic engineering and/or chemical conjugation with nanoscale precision. This means that pVNPs can be engineered to display peptides and proteins on their external surface, including immunodominant peptides derived from pathogens allowing pVNPs to be used for active immunization. In this context, pVNPs are safer than VNPs derived from mammalian viruses because there is no risk of infection or reversion to pathogenicity. Furthermore, pVNPs can be produced rapidly and inexpensively in natural host plants or heterologous production platforms.

In this review, we discuss the use of pVNPs for the delivery of peptide antigens to the host immune in pre-clinical studies with the final aim of promoting systemic immunity against the corresponding pathogens. Furthermore, we described the versatility of plant viruses, with innate immunostimulatory properties, in providing a huge natural resource of carriers that can be used to develop the next generation of sustainable vaccines.

Keywords: Molecular farming, CVP, eVLP, VLP, vaccine, peptide production.

Graphical Abstract

[1]
Wege, C.; Lomonossoff, G.P. Virus-Derived Nanoparticles for Advanced Technologies: Methods and Protocols In:Methods in Molecular Biology; ; Springer Science+Business Media: New York, NY, 2018.
[http://dx.doi.org/10.1007/978-1-4939-7808-3]
[2]
Koudelka, K.J.; Pitek, A.S.; Manchester, M.; Steinmetz, N.F. Virus-Based Nanoparticles as Versatile Nanomachines. Annu. Rev. Virol., 2015, 2(1), 379-401.
[http://dx.doi.org/10.1146/annurev-virology-100114-055141] [PMID: 26958921]
[3]
Sainsbury, F.; Cañizares, M.C.; Lomonossoff, G.P. Cowpea mosaic virus: the plant virus-based biotechnology workhorse. Annu. Rev. Phytopathol., 2010, 48, 437-455.
[http://dx.doi.org/10.1146/annurev-phyto-073009-114242] [PMID: 20455698]
[4]
Chu, S.; Brown, A.D.; Culver, J.N.; Ghodssi, R. Tobacco Mosaic Virus as a Versatile Platform for Molecular Assembly and Device Fabrication. Biotechnol. J., 2018, 13(12), e1800147
[http://dx.doi.org/10.1002/biot.201800147] [PMID: 30288951]
[5]
Röder, J.; Dickmeis, C.; Commandeur, U. Small, Smaller, Nano: New Applications for Potato Virus X in Nanotechnology. Front. Plant Sci., 2019, 10, 158.
[http://dx.doi.org/10.3389/fpls.2019.00158] [PMID: 30838013]
[6]
Dane, D.S.; Cameron, C.H.; Briggs, M. Virus-like particles in serum of patients with Australia-antigen-associated hepatitis. Lancet, 1970, 1(7649), 695-698.
[http://dx.doi.org/10.1016/S0140-6736(70)90926-8] [PMID: 4190997]
[7]
Jagadish, M.N.; Ward, C.W.; Gough, K.H.; Tulloch, P.A.; Whittaker, L.A.; Shukla, D.D. Expression of potyvirus coat protein in Escherichia coli and yeast and its assembly into virus-like particles. J. Gen. Virol., 1991, 72(Pt 7), 1543-1550.
[http://dx.doi.org/10.1099/0022-1317-72-7-1543] [PMID: 1856692]
[8]
Chackerian, B. Virus-like particles: flexible platforms for vaccine development. Expert Rev. Vaccines, 2007, 6(3), 381-390.
[http://dx.doi.org/10.1586/14760584.6.3.381] [PMID: 17542753]
[9]
Kotterman, M.A.; Chalberg, T.W.; Schaffer, D.V. Viral Vectors for Gene Therapy: Translational and Clinical Outlook. Annu. Rev. Biomed. Eng., 2015, 17, 63-89.
[http://dx.doi.org/10.1146/annurev-bioeng-071813-104938] [PMID: 26643018]
[10]
Kaiser, C.R.; Flenniken, M.L.; Gillitzer, E.; Harmsen, A.L.; Harmsen, A.G.; Jutila, M.A.; Douglas, T.; Young, M.J. Biodistribution studies of protein cage nanoparticles demonstrate broad tissue distribution and rapid clearance in vivo. Int. J. Nanomedicine, 2007, 2(4), 715-733.
[PMID: 18203438]
[11]
Bruckman, M.A.; Randolph, L.N.; VanMeter, A.; Hern, S.; Shoffstall, A.J.; Taurog, R.E.; Steinmetz, N.F. Biodistribution, pharmacokinetics, and blood compatibility of native and PEGylated tobacco mosaic virus nano-rods and -spheres in mice. Virology, 2014, 449, 163-173.
[http://dx.doi.org/10.1016/j.virol.2013.10.035] [PMID: 24418549]
[12]
Le, D.H.T.; Lee, K.L.; Shukla, S.; Commandeur, U.; Steinmetz, N.F. Potato virus X, a filamentous plant viral nanoparticle for doxorubicin delivery in cancer therapy. Nanoscale, 2017, 9(6), 2348-2357.
[http://dx.doi.org/10.1039/C6NR09099K] [PMID: 28144662]
[13]
Steinmetz, N.F.; Mertens, M.E.; Taurog, R.E.; Johnson, J.E.; Commandeur, U.; Fischer, R.; Manchester, M. Potato virus X as a novel platform for potential biomedical applications. Nano Lett., 2010, 10(1), 305-312.
[http://dx.doi.org/10.1021/nl9035753] [PMID: 20017489]
[14]
Czapar, A.E.; Steinmetz, N.F. Plant viruses and bacteriophages for drug delivery in medicine and biotechnology. Curr. Opin. Chem. Biol., 2017, 38, 108-116.
[http://dx.doi.org/10.1016/j.cbpa.2017.03.013] [PMID: 28426952]
[15]
Lizotte, P.H.; Wen, A.M.; Sheen, M.R.; Fields, J.; Rojanasopondist, P.; Steinmetz, N.F.; Fiering, S. In situ vaccination with cowpea mosaic virus nanoparticles suppresses metastatic cancer. Nat. Nanotechnol., 2016, 11(3), 295-303.
[http://dx.doi.org/10.1038/nnano.2015.292] [PMID: 26689376]
[16]
Bobbala, S.; Hook, S. Is There an Optimal Formulation and Delivery Strategy for Subunit Vaccines? Pharm. Res., 2016, 33(9), 2078-2097.
[http://dx.doi.org/10.1007/s11095-016-1979-0] [PMID: 27380191]
[17]
Bastola, R.; Noh, G.; Keum, T.; Bashyal, S.; Seo, J-E.; Choi, J.; Oh, Y.; Cho, Y.; Lee, S. Vaccine adjuvants: smart components to boost the immune system. Arch. Pharm. Res., 2017, 40(11), 1238-1248.
[http://dx.doi.org/10.1007/s12272-017-0969-z] [PMID: 29027637]
[18]
Gleiter, S.; Lilie, H. Coupling of antibodies via protein Z on modified polyoma virus-like particles. Protein Sci., 2001, 10(2), 434-444.
[http://dx.doi.org/10.1110/ps.31101] [PMID: 11266629]
[19]
Hajitou, A.; Trepel, M.; Lilley, C.E.; Soghomonyan, S.; Alauddin, M.M.; Marini, F.C., III; Restel, B.H.; Ozawa, M.G.; Moya, C.A.; Rangel, R.; Sun, Y.; Zaoui, K.; Schmidt, M.; von Kalle, C.; Weitzman, M.D.; Gelovani, J.G.; Pasqualini, R.; Arap, W. A hybrid vector for ligand-directed tumor targeting and molecular imaging. Cell, 2006, 125(2), 385-398.
[http://dx.doi.org/10.1016/j.cell.2006.02.042] [PMID: 16630824]
[20]
McCormick, C.J.; Maucourant, S.; Griffin, S.; Rowlands, D.J.; Harris, M. Tagging of NS5A expressed from a functional hepatitis C virus replicon. J. Gen. Virol., 2006, 87(Pt 3), 635-640.
[http://dx.doi.org/10.1099/vir.0.81553-0] [PMID: 16476985]
[21]
Beterams, G.; Böttcher, B.; Nassal, M. Packaging of up to 240 subunits of a 17 kDa nuclease into the interior of recombinant hepatitis B virus capsids. FEBS Lett., 2000, 481(2), 169-176.
[http://dx.doi.org/10.1016/S0014-5793(00)01927-X] [PMID: 10996318]
[22]
Raja, K.S.; Wang, Q.; Gonzalez, M.J.; Manchester, M.; Johnson, J.E.; Finn, M.G. Hybrid virus-polymer materials. 1. Synthesis and properties of PEG-decorated cowpea mosaic virus. Biomacromolecules, 2003, 4(3), 472-476.
[23]
Smith, M.L.; Lindbo, J.A.; Dillard-Telm, S.; Brosio, P.M.; Lasnik, A.B.; McCormick, A.A.; Nguyen, L.V.; Palmer, K.E. Modified tobacco mosaic virus particles as scaffolds for display of protein antigens for vaccine applications. Virology, 2006, 348(2), 475-488.
[http://dx.doi.org/10.1016/j.virol.2005.12.039] [PMID: 16466765]
[24]
Meunier, S.; Strable, E.; Finn, M.G. Crosslinking of and coupling to viral capsid proteins by tyrosine oxidation. Chem. Biol., 2004, 11(3), 319-326.
[http://dx.doi.org/10.1016/j.chembiol.2004.02.019] [PMID: 15123261]
[25]
Dogic, Z.; Fraden, S. Phase Behavior of Rod-like Virus and Polymer Mixture. Biomacromolecules, 2003, 4(3), 472-476.
[26]
Atabekov, J.; Nikitin, N.; Arkhipenko, M.; Chirkov, S.; Karpova, O. Thermal transition of native tobacco mosaic virus and RNA-free viral proteins into spherical nanoparticles. J. Gen. Virol., 2011, 92(Pt 2), 453-456.
[http://dx.doi.org/10.1099/vir.0.024356-0] [PMID: 20980527]
[27]
Shukla, S.; Ablack, A.L.; Wen, A.M.; Lee, K.L.; Lewis, J.D.; Steinmetz, N.F. Increased tumor homing and tissue penetration of the filamentous plant viral nanoparticle Potato virus X. Mol. Pharm., 2013, 10(1), 33-42.
[http://dx.doi.org/10.1021/mp300240m] [PMID: 22731633]
[28]
Lico, C.; Mancini, C.; Italiani, P.; Betti, C.; Boraschi, D.; Benvenuto, E.; Baschieri, S. Plant-produced potato virus X chimeric particles displaying an influenza virus-derived peptide activate specific CD8+ T cells in mice. Vaccine, 2009, 27(37), 5069-5076.
[http://dx.doi.org/10.1016/j.vaccine.2009.06.045] [PMID: 19563889]
[29]
Scholthof, H.B.; Scholthof, K-B.G.; Jackson, A.O. Plant virus gene vectors for transient expression of foreign proteins in plants. Annu. Rev. Phytopathol., 1996, 34, 299-323.
[http://dx.doi.org/10.1146/annurev.phyto.34.1.299] [PMID: 15012545]
[30]
Lico, C.; Capuano, F.; Renzone, G.; Donini, M.; Marusic, C.; Scaloni, A.; Benvenuto, E.; Baschieri, S. Peptide display on Potato virus X: molecular features of the coat protein-fused peptide affecting cell-to-cell and phloem movement of chimeric virus particles. J. Gen. Virol., 2006, 87(Pt 10), 3103-3112.
[http://dx.doi.org/10.1099/vir.0.82097-0] [PMID: 16963770]
[31]
Porta, C.; Spall, V.E.; Findlay, K.C.; Gergerich, R.C.; Farrance, C.E.; Lomonossoff, G.P. Cowpea mosaic virus-based chimaeras. Effects of inserted peptides on the phenotype, host range, and transmissibility of the modified viruses. Virology, 2003, 310(1), 50-63.
[http://dx.doi.org/10.1016/S0042-6822(03)00140-5] [PMID: 12788630]
[32]
Schneemann, A. The structural and functional role of RNA in icosahedral virus assembly. Annu. Rev. Microbiol., 2006, 60, 51-67.
[http://dx.doi.org/10.1146/annurev.micro.60.080805.142304] [PMID: 16704342]
[33]
Ahlquist, P.; Schwartz, M.; Chen, J.; Kushner, D.; Hao, L.; Dye, B.T. Viral and host determinants of RNA virus vector replication and expression. Vaccine, 2005, 23(15), 1784-1787.
[http://dx.doi.org/10.1016/j.vaccine.2004.11.005] [PMID: 15734041]
[34]
Cañizares, M.C.; Lomonossoff, G.P.; Nicholson, L. Development of cowpea mosaic virus-based vectors for the production of vaccines in plants. Expert Rev. Vaccines, 2005, 4(5), 687-697.
[http://dx.doi.org/10.1586/14760584.4.5.687] [PMID: 16221070]
[35]
Chen, Q.; Lai, H. Plant-derived virus-like particles as vaccines. Hum. Vaccin. Immunother., 2013, 9(1), 26-49.
[http://dx.doi.org/10.4161/hv.22218] [PMID: 22995837]
[36]
Richter, L.J.; Thanavala, Y.; Arntzen, C.J.; Mason, H.S. Production of hepatitis B surface antigen in transgenic plants for oral immunization. Nat. Biotechnol., 2000, 18(11), 1167-1171.
[http://dx.doi.org/10.1038/81153] [PMID: 11062435]
[37]
Merlin, M.; Gecchele, E.; Capaldi, S.; Pezzotti, M.; Avesani, L. Comparative evaluation of recombinant protein production in different biofactories: the green perspective. BioMed Res. Int., 2014, 2014, 136419
[http://dx.doi.org/10.1155/2014/136419] [PMID: 24745008]
[38]
Merlin, M.; Pezzotti, M.; Avesani, L. Edible plants for oral delivery of biopharmaceuticals. Br. J. Clin. Pharmacol., 2017, 83(1), 71-81.
[http://dx.doi.org/10.1111/bcp.12949] [PMID: 27037892]
[39]
Nuzzaci, M.; Vitti, A.; Condelli, V.; Lanorte, M.T.; Tortorella, C.; Boscia, D.; Piazzolla, P.; Piazzolla, G. In vitro stability of Cucumber mosaic virus nanoparticles carrying a Hepatitis C virus-derived epitope under simulated gastrointestinal conditions and in vivo efficacy of an edible vaccine. J. Virol. Methods, 2010, 165(2), 211-215.
[http://dx.doi.org/10.1016/j.jviromet.2010.01.021] [PMID: 20132840]
[40]
Noris, E. Self-Assembling Plant-Derived Vaccines Against Papillomaviruses. Methods Mol. Biol., 2018, 1776, 85-95.
[http://dx.doi.org/10.1007/978-1-4939-7808-3_6] [PMID: 29869236]
[41]
Scotti, N.; Rybicki, E.P. Virus-like particles produced in plants as potential vaccines. Expert Rev. Vaccines, 2013, 12(2), 211-224.
[http://dx.doi.org/10.1586/erv.12.147] [PMID: 23414411]
[42]
Harrison, S.C.; Olson, A.J.; Schutt, C.E.; Winkler, F.K.; Bricogne, G. Tomato bushy stunt virus at 2.9 A resolution. Nature, 1978, 276(5686), 368-373.
[http://dx.doi.org/10.1038/276368a0] [PMID: 19711552]
[43]
Olson, A.J.; Bricogne, G.; Harrison, S.C. Structure of tomato busy stunt virus IV. The virus particle at 2.9 A resolution. J. Mol. Biol., 1983, 171(1), 61-93.
[http://dx.doi.org/10.1016/S0022-2836(83)80314-3] [PMID: 6644820]
[44]
Grasso, S.; Lico, C.; Imperatori, F.; Santi, L. A plant derived multifunctional tool for nanobiotechnology based on Tomato bushy stunt virus. Transgenic Res., 2013, 22(3), 519-535.
[http://dx.doi.org/10.1007/s11248-012-9663-6] [PMID: 23108557]
[45]
Lin, T.; Clark, A.J.; Chen, Z.; Shanks, M.; Dai, J-B.; Li, Y.; Schmidt, T.; Oxelfelt, P.; Lomonossoff, G.P.; Johnson, J.E. Structural fingerprinting: subgrouping of comoviruses by structural studies of red clover mottle virus to 2.4-A resolution and comparisons with other comoviruses. J. Virol., 2000, 74(1), 493-504.
[http://dx.doi.org/10.1128/JVI.74.1.493-504.2000] [PMID: 10590139]
[46]
Saunders, K.; Sainsbury, F.; Lomonossoff, G.P. Efficient generation of cowpea mosaic virus empty virus-like particles by the proteolytic processing of precursors in insect cells and plants. Virology, 2009, 393(2), 329-337.
[http://dx.doi.org/10.1016/j.virol.2009.08.023] [PMID: 19733890]
[47]
Hassani-Mehraban, A.; Creutzburg, S.; van Heereveld, L.; Kormelink, R. Feasibility of Cowpea chlorotic mottle virus-like particles as scaffold for epitope presentations. BMC Biotechnol., 2015, 15, 80.
[http://dx.doi.org/10.1186/s12896-015-0180-6] [PMID: 26311254]
[48]
Speir, J.A.; Munshi, S.; Wang, G.; Baker, T.S.; Johnson, J.E. Structures of the native and swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography and cryo-electron microscopy. Structure, 1995, 3(1), 63-78.
[http://dx.doi.org/10.1016/S0969-2126(01)00135-6] [PMID: 7743132]
[49]
Burgess, J.; Motoyoshi, F.; Fleming, E.N. Structural changes accompanying infection of tobacco protoplasts with two spherical viruses. Planta, 1974, 117(2), 133-144.
[http://dx.doi.org/10.1007/BF00390795] [PMID: 24458326]
[50]
Wu, Y.; Li, J.; Yang, H.; Seoung, J.; Lim, H-D.; Kim, G-J.; Shin, H-J. Targeted Cowpea Chlorotic Mottle Virus-Based Nanoparticles with Tumor-Homing Peptide F3 for Photothermal Therapy. Biotechnol. Bioprocess Eng.; BBE, 2017, 22, 700-708.
[http://dx.doi.org/10.1007/s12257-017-0443-2]
[51]
Terradot, L.; Souchet, M.; Tran, V.; Giblot Ducray-Bourdin, D. Analysis of a three-dimensional structure of Potato leafroll virus coat protein obtained by homology modeling. Virology, 2001, 286(1), 72-82.
[http://dx.doi.org/10.1006/viro.2001.0900] [PMID: 11448160]
[52]
Lamb, J.W.; Duncan, G.H.; Reavy, B.; Gildow, F.E.; Mayo, M.A.; Hay, R.T. Assembly of virus-like particles in insect cells infected with a baculovirus containing a modified coat protein gene of potato leafroll luteovirus. J. Gen. Virol., 1996, 77(Pt 7), 1349-1358.
[http://dx.doi.org/10.1099/0022-1317-77-7-1349] [PMID: 8757974]
[53]
Watson, J.D. The structure of tobacco mosaic virus. I. X-ray evidence of a helical arrangement of sub-units around the longitudinal axis. Biochim. Biophys. Acta, 1954, 13(1), 10-19.
[http://dx.doi.org/10.1016/0006-3002(54)90265-6] [PMID: 13140277]
[54]
Namba, K.; Stubbs, G. Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. Science, 1986, 231(4744), 1401-1406.
[http://dx.doi.org/10.1126/science.3952490] [PMID: 3952490]
[55]
Saini, M.; Vrati, S. A Japanese encephalitis virus peptide present on Johnson grass mosaic virus-like particles induces virus-neutralizing antibodies and protects mice against lethal challenge. J. Virol., 2003, 77(6), 3487-3494.
[http://dx.doi.org/10.1128/JVI.77.6.3487-3494.2003] [PMID: 12610124]
[56]
Parker, L.; Kendall, A.; Stubbs, G. Surface features of potato virus X from fiber diffraction. Virology, 2002, 300(2), 291-295.
[http://dx.doi.org/10.1006/viro.2002.1483] [PMID: 12350359]
[57]
Lico, C.; Benvenuto, E.; Baschieri, S. The Two-Faced Potato Virus X: From Plant Pathogen to Smart Nanoparticle. Front. Plant Sci., 2015, 6, 1009.
[http://dx.doi.org/10.3389/fpls.2015.01009] [PMID: 26635836]
[58]
Masarapu, H.; Patel, B.K.; Chariou, P.L.; Hu, H.; Gulati, N.M.; Carpenter, B.L.; Ghiladi, R.A.; Shukla, S.; Steinmetz, N.F. Physalis Mottle Virus-Like Particles as Nanocarriers for Imaging Reagents and Drugs. Biomacromolecules, 2017, 18(12), 4141-4153.
[http://dx.doi.org/10.1021/acs.biomac.7b01196] [PMID: 29144726]
[59]
Krishna, S.S.; Sastri, M.; Savithri, H.S.; Murthy, M.R. Structural studies on the empty capsids of Physalis mottle virus. J. Mol. Biol., 2001, 307(4), 1035-1047.
[http://dx.doi.org/10.1006/jmbi.2001.4533] [PMID: 11286554]
[60]
Sánchez, F.; Sáez, M.; Lunello, P.; Ponz, F. Plant viral elongated nanoparticles modified for log-increases of foreign peptide immunogenicity and specific antibody detection. J. Biotechnol., 2013, 168(4), 409-415.
[http://dx.doi.org/10.1016/j.jbiotec.2013.09.002] [PMID: 24055625]
[61]
Rioux, G.; Babin, C.; Majeau, N.; Leclerc, D. Engineering of papaya mosaic virus (PapMV) nanoparticles through fusion of the HA11 peptide to several putative surface-exposed sites. PLoS One, 2012, 7(2), e31925
[http://dx.doi.org/10.1371/journal.pone.0031925] [PMID: 22363771]
[62]
Thérien, A.; Bédard, M.; Carignan, D.; Rioux, G.; Gauthier-Landry, L.; Laliberté-Gagné, M-È.; Bolduc, M.; Savard, P.; Leclerc, D. A versatile papaya mosaic virus (PapMV) vaccine platform based on sortase-mediated antigen coupling. J. Nanobiotechnology, 2017, 15(1), 54.
[http://dx.doi.org/10.1186/s12951-017-0289-y] [PMID: 28720097]
[63]
Denis, J.; Majeau, N.; Acosta-Ramirez, E.; Savard, C.; Bedard, M-C.; Simard, S.; Lecours, K.; Bolduc, M.; Pare, C.; Willems, B.; Shoukry, N.; Tessier, P.; Lacasse, P.; Lamarre, A.; Lapointe, R.; Lopez Macias, C.; Leclerc, D. Immunogenicity of papaya mosaic virus-like particles fused to a hepatitis C virus epitope: evidence for the critical function of multimerization. Virology, 2007, 363(1), 59-68.
[http://dx.doi.org/10.1016/j.virol.2007.01.011] [PMID: 17320136]
[64]
Carignan, D.; Thérien, A.; Rioux, G.; Paquet, G.; Gagné, M.L.; Bolduc, M.; Savard, P.; Leclerc, D. Engineering of the PapMV vaccine platform with a shortened M2e peptide leads to an effective one dose influenza vaccine. Vaccine, 2015, 33(51), 7245-7253.
[http://dx.doi.org/10.1016/j.vaccine.2015.10.123] [PMID: 26549362]
[65]
Yang, S.; Wang, T.; Bohon, J.; Gagné, M-È.L.; Bolduc, M.; Leclerc, D.; Li, H. Crystal structure of the coat protein of the flexible filamentous papaya mosaic virus. J. Mol. Biol., 2012, 422(2), 263-273.
[http://dx.doi.org/10.1016/j.jmb.2012.05.032] [PMID: 22659319]
[66]
Babin, C.; Majeau, N.; Leclerc, D. Engineering of papaya mosaic virus (PapMV) nanoparticles with a CTL epitope derived from influenza NP. J. Nanobiotechnology, 2013, 11, 10.
[http://dx.doi.org/10.1186/1477-3155-11-10] [PMID: 23556511]
[67]
Tremblay, M-H.; Majeau, N.; Gagné, M-E.L.; Lecours, K.; Morin, H.; Duvignaud, J-B.; Bolduc, M.; Chouinard, N.; Paré, C.; Gagné, S.; Leclerc, D. Effect of mutations K97A and E128A on RNA binding and self assembly of papaya mosaic potexvirus coat protein. FEBS J., 2006, 273(1), 14-25.
[http://dx.doi.org/10.1111/j.1742-4658.2005.05033.x] [PMID: 16367744]
[68]
Donchenko, E.K.; Pechnikova, E.V.; Mishyna, M.Yu.; Manukhova, T.I.; Sokolova, O.S.; Nikitin, N.A.; Atabekov, J.G.; Karpova, O.V. Structure and properties of virions and virus-like particles derived from the coat protein of Alternanthera mosaic virus. PLoS One, 2017, 12(8), e0183824
[http://dx.doi.org/10.1371/journal.pone.0183824] [PMID: 28837650]
[69]
Tyulkina, L.G.; Skurat, E.V.; Frolova, O.Y.; Komarova, T.V.; Karger, E.M.; Atabekov, I.G. New viral vector for superproduction of epitopes of vaccine proteins in plants. Acta Naturae, 2011, 3(4), 73-82.
[http://dx.doi.org/10.32607/20758251-2011-3-4-73-82] [PMID: 22649706]
[70]
Yang, C-D.; Liao, J-T.; Lai, C-Y.; Jong, M-H.; Liang, C-M.; Lin, Y-L.; Lin, N-S.; Hsu, Y-H.; Liang, S-M. Induction of protective immunity in swine by recombinant bamboo mosaic virus expressing foot-and-mouth disease virus epitopes. BMC Biotechnol., 2007, 7, 62.
[http://dx.doi.org/10.1186/1472-6750-7-62] [PMID: 17900346]
[71]
DiMaio, F.; Chen, C-C.; Yu, X.; Frenz, B.; Hsu, Y-H.; Lin, N-S.; Egelman, E.H. The molecular basis for flexibility in the flexible filamentous plant viruses. Nat. Struct. Mol. Biol., 2015, 22(8), 642-644.
[http://dx.doi.org/10.1038/nsmb.3054] [PMID: 26167882]
[72]
Yusibov, V.; Hooper, D.C.; Spitsin, S.V.; Fleysh, N.; Kean, R.B.; Mikheeva, T.; Deka, D.; Karasev, A.; Cox, S.; Randall, J.; Koprowski, H. Expression in plants and immunogenicity of plant virus-based experimental rabies vaccine. Vaccine, 2002, 20(25-26), 3155-3164.
[http://dx.doi.org/10.1016/S0264-410X(02)00260-8] [PMID: 12163267]
[73]
Yusibov, V.; Modelska, A.; Steplewski, K.; Agadjanyan, M.; Weiner, D.; Hooper, D.C.; Koprowski, H. Antigens produced in plants by infection with chimeric plant viruses immunize against rabies virus and HIV-1. Proc. Natl. Acad. Sci. USA, 1997, 94(11), 5784-5788.
[http://dx.doi.org/10.1073/pnas.94.11.5784] [PMID: 9159151]
[74]
Yusibov, V.; Mett, V.; Mett, V.; Davidson, C.; Musiychuk, K.; Gilliam, S.; Farese, A.; Macvittie, T.; Mann, D. Peptide-based candidate vaccine against respiratory syncytial virus. Vaccine, 2005, 23(17-18), 2261-2265.
[http://dx.doi.org/10.1016/j.vaccine.2005.01.039] [PMID: 15755607]
[75]
Brodzik, R.; Bandurska, K.; Deka, D.; Golovkin, M.; Koprowski, H. Advances in alfalfa mosaic virus-mediated expression of anthrax antigen in planta. Biochem. Biophys. Res. Commun., 2005, 338(2), 717-722.
[http://dx.doi.org/10.1016/j.bbrc.2005.09.196] [PMID: 16236249]
[76]
Piazzolla, G.; Nuzzaci, M.; Tortorella, C.; Panella, E.; Natilla, A.; Boscia, D.; De Stradis, A.; Piazzolla, P.; Antonaci, S. Immunogenic properties of a chimeric plant virus expressing a hepatitis C virus (HCV)-derived epitope: new prospects for an HCV vaccine. J. Clin. Immunol., 2005, 25(2), 142-152.
[http://dx.doi.org/10.1007/s10875-005-2820-4] [PMID: 15821891]
[77]
Natilla, A.; Nemchinov, L.G. Improvement of PVX/CMV CP expression tool for display of short foreign antigens. Protein Expr. Purif., 2008, 59(1), 117-121.
[http://dx.doi.org/10.1016/j.pep.2008.01.011] [PMID: 18280751]
[78]
Natilla, A.; Hammond, R.W.; Nemchinov, L.G. Epitope presentation system based on cucumber mosaic virus coat protein expressed from a potato virus X-based vector. Arch. Virol., 2006, 151(7), 1373-1386.
[http://dx.doi.org/10.1007/s00705-005-0711-x] [PMID: 16489509]
[79]
Damodharan, S.; Gujar, R.; Pattabiraman, S.; Nesakumar, M.; Hanna, L.E.; Vadakkuppattu, R.D.; Usha, R. Expression and immunological characterization of cardamom mosaic virus coat protein displaying HIV gp41 epitopes. Microbiol. Immunol., 2013, 57(5), 374-385.
[http://dx.doi.org/10.1111/1348-0421.12045] [PMID: 23668610]
[80]
Arcangeli, C.; Circelli, P.; Donini, M.; Aljabali, A.A.A.; Benvenuto, E.; Lomonossoff, G.P.; Marusic, C. Structure-based design and experimental engineering of a plant virus nanoparticle for the presentation of immunogenic epitopes and as a drug carrier. J. Biomol. Struct. Dyn., 2014, 32(4), 630-647.
[http://dx.doi.org/10.1080/07391102.2013.785920] [PMID: 23672348]
[81]
Fernández-Fernández, M.R.; Martínez-Torrecuadrada, J.L.; Casal, J.I.; García, J.A. Development of an antigen presentation system based on plum pox potyvirus. FEBS Lett., 1998, 427(2), 229-235.
[http://dx.doi.org/10.1016/S0014-5793(98)00429-3] [PMID: 9607317]
[82]
Kalnciema, I.; Skrastina, D.; Ose, V.; Pumpens, P.; Zeltins, A. Potato virus Y-like particles as a new carrier for the presentation of foreign protein stretches. Mol. Biotechnol., 2012, 52(2), 129-139.
[http://dx.doi.org/10.1007/s12033-011-9480-9] [PMID: 22167454]
[83]
Rubino, L.; Stradis, A.D.; Russo, M.; Martelli, G.P. Generation of virus-like particles in plants expressing the capsid protein of cymbidium ringspot virus. J. Plant Pathol., 2011, 93, 751-756.
[84]
Wen, A.M.; Shukla, S.; Saxena, P.; Aljabali, A.A.A.; Yildiz, I.; Dey, S.; Mealy, J.E.; Yang, A.C.; Evans, D.J.; Lomonossoff, G.P.; Steinmetz, N.F. Interior engineering of a viral nanoparticle and its tumor homing properties. Biomacromolecules, 2012, 13(12), 3990-4001.
[http://dx.doi.org/10.1021/bm301278f] [PMID: 23121655]
[85]
Ganguly, R.; Wen, A.M.; Myer, A.B.; Czech, T.; Sahu, S.; Steinmetz, N.F.; Raman, P. Anti-atherogenic effect of trivalent chromium-loaded CPMV nanoparticles in human aortic smooth muscle cells under hyperglycemic conditions in vitro. Nanoscale, 2016, 8(12), 6542-6554.
[http://dx.doi.org/10.1039/C6NR00398B] [PMID: 26935414]
[86]
Sainsbury, F.; Sack, M.; Stadlmann, J.; Quendler, H.; Fischer, R.; Lomonossoff, G.P. Rapid transient production in plants by replicating and non-replicating vectors yields high quality functional anti-HIV antibody. PLoS One, 2010, 5(11), e13976
[http://dx.doi.org/10.1371/journal.pone.0013976] [PMID: 21103044]
[87]
Meshcheriakova, Y.; Durrant, A.; Hesketh, E.L.; Ranson, N.A.; Lomonossoff, G.P. Combining high-resolution cryo-electron microscopy and mutagenesis to develop cowpea mosaic virus for bionanotechnology. Biochem. Soc. Trans., 2017, 45(6), 1263-1269.
[http://dx.doi.org/10.1042/BST20160312] [PMID: 29101307]
[88]
Draghici, H-K.; Pilot, R.; Thiel, H.; Varrelmann, M. Functional mapping of PVX RNA-dependent RNA-replicase using pentapeptide scanning mutagenesis-Identification of regions essential for replication and subgenomic RNA amplification. Virus Res., 2009, 143(1), 114-124.
[http://dx.doi.org/10.1016/j.virusres.2009.03.013] [PMID: 19463728]
[89]
Kendall, A.; Bian, W.; Maris, A.; Azzo, C.; Groom, J.; Williams, D.; Shi, J.; Stewart, P.L.; Wall, J.S.; Stubbs, G. A common structure for the potexviruses. Virology, 2013, 436(1), 173-178.
[http://dx.doi.org/10.1016/j.virol.2012.11.008] [PMID: 23245732]
[90]
Venter, P.A.; Dirksen, A.; Thomas, D.; Manchester, M.; Dawson, P.E.; Schneemann, A. Multivalent display of proteins on viral nanoparticles using molecular recognition and chemical ligation strategies. Biomacromolecules, 2011, 12(6), 2293-2301.
[http://dx.doi.org/10.1021/bm200369e] [PMID: 21545187]
[91]
Wen, A.M.; Ryan, M.J.; Yang, A.C.; Breitenkamp, K.; Pokorski, J.K.; Steinmetz, N.F. Photodynamic activity of viral nanoparticles conjugated with C60. Chem. Commun. (Camb.), 2012, 48(72), 9044-9046.
[http://dx.doi.org/10.1039/c2cc34695h] [PMID: 22858632]
[92]
Tinazzi, E.; Merlin, M.; Bason, C.; Beri, R.; Zampieri, R.; Lico, C.; Bartoloni, E.; Puccetti, A.; Lunardi, C.; Pezzotti, M.; Avesani, L. Plant-derived chimeric virus particles for the diagnosis of primary sjögren syndrome. Front. Plant Sci., 2015, 6, 1080.
[http://dx.doi.org/10.3389/fpls.2015.01080] [PMID: 26648961]
[93]
Cruz, S.S.; Chapman, S.; Roberts, A.G.; Roberts, I.M.; Prior, D.A.; Oparka, K.J. Assembly and movement of a plant virus carrying a green fluorescent protein overcoat. Proc. Natl. Acad. Sci. USA, 1996, 93(13), 6286-6290.
[http://dx.doi.org/10.1073/pnas.93.13.6286] [PMID: 8692807]
[94]
Betti, C.; Lico, C.; Maffi, D.; D’Angeli, S.; Altamura, M.M.; Benvenuto, E.; Faoro, F.; Baschieri, S. Potato virus X movement in Nicotiana benthamiana: new details revealed by chimeric coat protein variants. Mol. Plant Pathol., 2012, 13(2), 198-203.
[http://dx.doi.org/10.1111/j.1364-3703.2011.00739.x] [PMID: 21851552]
[95]
Uhde-Holzem, K.; Schlösser, V.; Viazov, S.; Fischer, R.; Commandeur, U. Immunogenic properties of chimeric potato virus X particles displaying the hepatitis C virus hypervariable region I peptide R9. J. Virol. Methods, 2010, 166(1-2), 12-20.
[http://dx.doi.org/10.1016/j.jviromet.2010.01.017] [PMID: 20138085]
[96]
Marconi, G.; Albertini, E.; Barone, P.; De Marchis, F.; Lico, C.; Marusic, C.; Rutili, D.; Veronesi, F.; Porceddu, A. In planta production of two peptides of the Classical Swine Fever Virus (CSFV) E2 glycoprotein fused to the coat protein of potato virus X. BMC Biotechnol., 2006, 6, 29.
[http://dx.doi.org/10.1186/1472-6750-6-29] [PMID: 16792815]
[97]
Bendahmane, M.; Koo, M.; Karrer, E.; Beachy, R.N. Display of epitopes on the surface of tobacco mosaic virus: impact of charge and isoelectric point of the epitope on virus-host interactions. J. Mol. Biol., 1999, 290(1), 9-20.
[http://dx.doi.org/10.1006/jmbi.1999.2860] [PMID: 10388554]
[98]
Palmer, K.E.; Benko, A.; Doucette, S.A.; Cameron, T.I.; Foster, T.; Hanley, K.M.; McCormick, A.A.; McCulloch, M.; Pogue, G.P.; Smith, M.L.; Christensen, N.D. Protection of rabbits against cutaneous papillomavirus infection using recombinant tobacco mosaic virus containing L2 capsid epitopes. Vaccine, 2006, 24(26), 5516-5525.
[http://dx.doi.org/10.1016/j.vaccine.2006.04.058] [PMID: 16725236]
[99]
Staczek, J.; Bendahmane, M.; Gilleland, L.B.; Beachy, R.N.; Gilleland, H.E., Jr Immunization with a chimeric tobacco mosaic virus containing an epitope of outer membrane protein F of Pseudomonas aeruginosa provides protection against challenge with P. aeruginosa. Vaccine, 2000, 18(21), 2266-2274.
[http://dx.doi.org/10.1016/S0264-410X(99)00571-X] [PMID: 10717347]
[100]
Clancy, K.W.; Melvin, J.A.; McCafferty, D.G. Sortase transpeptidases: insights into mechanism, substrate specificity, and inhibition. Biopolymers, 2010, 94(4), 385-396.
[http://dx.doi.org/10.1002/bip.21472] [PMID: 20593474]
[101]
Hamamoto, H.; Sugiyama, Y.; Nakagawa, N.; Hashida, E.; Matsunaga, Y.; Takemoto, S.; Watanabe, Y.; Okada, Y. A new tobacco mosaic virus vector and its use for the systemic production of angiotensin-I-converting enzyme inhibitor in transgenic tobacco and tomato. Biotechnology (N. Y.), 1993, 11(8), 930-932.
[PMID: 7763916]
[102]
Fitchen, J.; Beachy, R.N.; Hein, M.B. Plant virus expressing hybrid coat protein with added murine epitope elicits autoantibody response. Vaccine, 1995, 13(12), 1051-1057.
[http://dx.doi.org/10.1016/0264-410X(95)00075-C] [PMID: 7491811]
[103]
Sugiyama, Y.; Hamamoto, H.; Takemoto, S.; Watanabe, Y.; Okada, Y. Systemic production of foreign peptides on the particle surface of tobacco mosaic virus. FEBS Lett., 1995, 359(2-3), 247-250.
[http://dx.doi.org/10.1016/0014-5793(95)00054-D] [PMID: 7532596]
[104]
Turpen, T.H.; Reinl, S.J.; Charoenvit, Y.; Hoffman, S.L.; Fallarme, V.; Grill, L.K. Malarial epitopes expressed on the surface of recombinant tobacco mosaic virus. Biotechnology (N. Y.), 1995, 13(1), 53-57.
[PMID: 9634749]
[105]
Casper, S.J.; Holt, C.A. Expression of the green fluorescent protein-encoding gene from a tobacco mosaic virus-based vector. Gene, 1996, 173(1 Spec No), 69-73.
[http://dx.doi.org/10.1016/0378-1119(95)00782-2] [PMID: 8707059]
[106]
Muthamilselvan, T.; Lee, C-W.; Cho, Y-H.; Wu, F-C.; Hu, C-C.; Liang, Y-C.; Lin, N-S.; Hsu, Y-H. A transgenic plant cell-suspension system for expression of epitopes on chimeric Bamboo mosaic virus particles. Plant Biotechnol. J., 2016, 14(1), 231-239.
[http://dx.doi.org/10.1111/pbi.12377] [PMID: 25879277]
[107]
Jiang, L.; Li, Q.; Li, M.; Zhou, Z.; Wu, L.; Fan, J.; Zhang, Q.; Zhu, H.; Xu, Z. A modified TMV-based vector facilitates the expression of longer foreign epitopes in tobacco. Vaccine, 2006, 24(2), 109-115.
[http://dx.doi.org/10.1016/j.vaccine.2005.09.060] [PMID: 16337317]
[108]
Uhde, K.; Fischer, R.; Commandeur, U. Expression of multiple foreign epitopes presented as synthetic antigens on the surface of Potato virus X particles. Arch. Virol., 2005, 150(2), 327-340.
[http://dx.doi.org/10.1007/s00705-004-0402-z] [PMID: 15503224]
[109]
Zhang, Y.; Li, J.; Pu, H.; Jin, J.; Zhang, X.; Chen, M.; Wang, B.; Han, C.; Yu, J.; Li, D. Development of Tobacco necrosis virus A as a vector for efficient and stable expression of FMDV VP1 peptides. Plant Biotechnol. J., 2010, 8(4), 506-523.
[http://dx.doi.org/10.1111/j.1467-7652.2010.00500.x] [PMID: 20331532]
[110]
Sit, T.L.; Leclerc, D.; AbouHaidar, M.G. The minimal 5′ sequence for in vitro initiation of papaya mosaic potexvirus assembly. Virology, 1994, 199(1), 238-242.
[http://dx.doi.org/10.1006/viro.1994.1118] [PMID: 8116250]
[111]
Savard, C.; Guérin, A.; Drouin, K.; Bolduc, M.; Laliberté-Gagné, M-E.; Dumas, M-C.; Majeau, N.; Leclerc, D. Improvement of the trivalent inactivated flu vaccine using PapMV nanoparticles. PLoS One, 2011, 6(6), e21522
[http://dx.doi.org/10.1371/journal.pone.0021522] [PMID: 21747909]
[112]
Lebel, M-È.; Chartrand, K.; Tarrab, E.; Savard, P.; Leclerc, D.; Lamarre, A. Potentiating cancer immunotherapy using papaya mosaic virus-derived nanoparticles. Nano Lett., 2016, 16(3), 1826-1832.
[http://dx.doi.org/10.1021/acs.nanolett.5b04877] [PMID: 26891174]
[113]
Leclerc, D. Plant viral epitope display systems for vaccine development. Curr. Top. Microbiol. Immunol., 2014, 375, 47-59.
[http://dx.doi.org/10.1007/82_2011_183] [PMID: 22021043]
[114]
Taylor, K.M.; Lin, T.; Porta, C.; Mosser, A.G.; Giesing, H.A.; Lomonossoff, G.P.; Johnson, J.E. Influence of three-dimensional structure on the immunogenicity of a peptide expressed on the surface of a plant virus. J. Mol. Recognit., 2000, 13(2), 71-82.
[http://dx.doi.org/10.1002/(SICI)1099-1352(200003/04)13:2<71::AID-JMR489>3.0.CO;2-V] [PMID: 10822251]
[115]
Petukhova, N.V.; Gasanova, T.V.; Ivanov, P.A.; Atabekov, J.G. High-level systemic expression of conserved influenza epitope in plants on the surface of rod-shaped chimeric particles. Viruses, 2014, 6(4), 1789-1800.
[http://dx.doi.org/10.3390/v6041789] [PMID: 24755563]
[116]
Petukhova, N.V.; Gasanova, T.V.; Stepanova, L.A.; Rusova, O.A.; Potapchuk, M.V.; Korotkov, A.V.; Skurat, E.V.; Tsybalova, L.M.; Kiselev, O.I.; Ivanov, P.A.; Atabekov, J.G. Immunogenicity and protective efficacy of candidate universal influenza A nanovaccines produced in plants by Tobacco mosaic virus-based vectors. Curr. Pharm. Des., 2013, 19(31), 5587-5600.
[http://dx.doi.org/10.2174/13816128113199990337] [PMID: 23394564]
[117]
Chen, T-H.; Chen, T-H.; Hu, C-C.; Liao, J-T.; Lee, C-W.; Liao, J-W.; Lin, M-Y.; Liu, H-J.; Wang, M-Y.; Lin, N-S.; Hsu, Y-H. Induction of protective immunity in chickens immunized with plant-made chimeric Bamboo mosaic virus particles expressing very virulent Infectious bursal disease virus antigen. Virus Res., 2012, 166(1-2), 109-115.
[http://dx.doi.org/10.1016/j.virusres.2012.02.021] [PMID: 22406128]
[118]
Marusic, C.; Rizza, P.; Lattanzi, L.; Mancini, C.; Spada, M.; Belardelli, F.; Benvenuto, E.; Capone, I. Chimeric plant virus particles as immunogens for inducing murine and human immune responses against human immunodeficiency virus type 1. J. Virol., 2001, 75(18), 8434-8439.
[http://dx.doi.org/10.1128/JVI.75.18.8434-8439.2001] [PMID: 11507188]
[119]
Cerovska, N.; Hoffmeisterova, H.; Moravec, T.; Plchova, H.; Folwarczna, J.; Synkova, H.; Ryslava, H.; Ludvikova, V.; Smahel, M. Transient expression of Human papillomavirus type 16 L2 epitope fused to N- and C-terminus of coat protein of Potato virus X in plants. J. Biosci., 2012, 37(1), 125-133.
[http://dx.doi.org/10.1007/s12038-011-9177-z] [PMID: 22357210]
[120]
Brennan, F.R.; Jones, T.D.; Longstaff, M.; Chapman, S.; Bellaby, T.; Smith, H.; Xu, F.; Hamilton, W.D.O.; Flock, J-I. Immunogenicity of peptides derived from a fibronectin-binding protein of S. aureus expressed on two different plant viruses. Vaccine, 1999, 17(15-16), 1846-1857.
[http://dx.doi.org/10.1016/S0264-410X(98)00485-X] [PMID: 10217582]
[121]
Dalsgaard, K.; Uttenthal, A.; Jones, T.D.; Xu, F.; Merryweather, A.; Langeveld, J.P.M.; Boshuizen, R.S.; Porta, C.; Vela, C.; Casal, J.I.; Meloen, R.H.; Rodgers, P.B. Plant-derived vaccine protects target animals against a viral disease. Nat. Biotechnol., 1997, 15 , 5
[122]
Langeveld, J.P.M.; Brennan, F.R.; Martínez-Torrecuadrada, J.L.; Jones, T.D.; Boshuizen, R.S.; Vela, C.; Casal, J.I.; Kamstrup, S.; Dalsgaard, K.; Meloen, R.H.; Bendig, M.M.; Hamilton, W.D.O. Inactivated recombinant plant virus protects dogs from a lethal challenge with canine parvovirus. Vaccine, 2001, 19(27), 3661-3670.
[http://dx.doi.org/10.1016/S0264-410X(01)00083-4] [PMID: 11395200]
[123]
McLain, L.; Durrani, Z.; Wisniewski, L.A.; Porta, C.; Lomonossoff, G.P.; Dimmock, N.J. Stimulation of neutralizing antibodies to human immunodeficiency virus type 1 in three strains of mice immunized with a 22 amino acid peptide of gp41 expressed on the surface of a plant virus. Vaccine, 1996, 14(8), 799-810.
[http://dx.doi.org/10.1016/0264-410X(95)00229-T] [PMID: 8817828]
[124]
Denis, J.; Acosta-Ramirez, E.; Zhao, Y.; Hamelin, M-E.; Koukavica, I.; Baz, M.; Abed, Y.; Savard, C.; Pare, C.; Lopez Macias, C.; Boivin, G.; Leclerc, D. Development of a universal influenza A vaccine based on the M2e peptide fused to the papaya mosaic virus (PapMV) vaccine platform. Vaccine, 2008, 26(27-28), 3395-3403.
[http://dx.doi.org/10.1016/j.vaccine.2008.04.052] [PMID: 18511159]
[125]
Kumar, S.; Ochoa, W.; Singh, P.; Hsu, C.; Schneemann, A.; Manchester, M.; Olson, M.; Reddy, V. Tomato bushy stunt virus (TBSV), a versatile platform for polyvalent display of antigenic epitopes and vaccine design. Virology, 2009, 388(1), 185-190.
[http://dx.doi.org/10.1016/j.virol.2009.02.051] [PMID: 19344926]
[126]
Joelson, T.; Akerblom, L.; Oxelfelt, P.; Strandberg, B.; Tomenius, K.; Morris, T.J. Presentation of a foreign peptide on the surface of tomato bushy stunt virus. J. Gen. Virol., 1997, 78(Pt 6), 1213-1217.
[http://dx.doi.org/10.1099/0022-1317-78-6-1213] [PMID: 9191910]
[127]
Hema, M.; Nagendrakumar, S.B.; Yamini, R.; Chandran, D.; Rajendra, L.; Thiagarajan, D.; Parida, S.; Paton, D.J.; Srinivasan, V.A. Chimeric tymovirus-like particles displaying foot-and-mouth disease virus non-structural protein epitopes and its use for detection of FMDV-NSP antibodies. Vaccine, 2007, 25(25), 4784-4794.
[http://dx.doi.org/10.1016/j.vaccine.2007.04.023] [PMID: 17499404]
[128]
Jegerlehner, A.; Storni, T.; Lipowsky, G.; Schmid, M.; Pumpens, P.; Bachmann, M.F. Regulation of IgG antibody responses by epitope density and CD21-mediated costimulation. Eur. J. Immunol., 2002, 32(11), 3305-3314.
[http://dx.doi.org/10.1002/1521-4141(200211)32:11<3305:AID-IMMU3305>3.0.CO;2-J] [PMID: 12555676]
[129]
Roldão, A.; Mellado, M.C.M.; Castilho, L.R.; Carrondo, M.J.; Alves, P.M. Virus-like particles in vaccine development. Expert Rev. Vaccines, 2010, 9(10), 1149-1176.
[http://dx.doi.org/10.1586/erv.10.115] [PMID: 20923267]
[130]
Townsend, A.; Bodmer, H. Antigen recognition by class I-restricted T lymphocytes. Annu. Rev. Immunol., 1989, 7, 601-624.
[http://dx.doi.org/10.1146/annurev.iy.07.040189.003125] [PMID: 2469442]
[131]
Bachmann, M.F.; Lutz, M.B.; Layton, G.T.; Harris, S.J.; Fehr, T.; Rescigno, M.; Ricciardi-Castagnoli, P. Dendritic cells process exogenous viral proteins and virus-like particles for class I presentation to CD8+ cytotoxic T lymphocytes. Eur. J. Immunol., 1996, 26(11), 2595-2600.
[http://dx.doi.org/10.1002/eji.1830261109] [PMID: 8921944]
[132]
Fifis, T.; Gamvrellis, A.; Crimeen-Irwin, B.; Pietersz, G.A.; Li, J.; Mottram, P.L.; McKenzie, I.F.C.; Plebanski, M. Size-dependent immunogenicity: therapeutic and protective properties of nano-vaccines against tumors. J. Immunol., 2004, 173(5), 3148-3154.
[http://dx.doi.org/10.4049/jimmunol.173.5.3148] [PMID: 15322175]
[133]
Bachmann, M.F.; Zinkernagel, R.M. Neutralizing antiviral B cell responses. Annu. Rev. Immunol., 1997, 15, 235-270.
[http://dx.doi.org/10.1146/annurev.immunol.15.1.235] [PMID: 9143688]
[134]
Bachmann, M.F.; Rohrer, U.H.; Kündig, T.M.; Bürki, K.; Hengartner, H.; Zinkernagel, R.M. The influence of antigen organization on B cell responsiveness. Science, 1993, 262(5138), 1448-1451.
[http://dx.doi.org/10.1126/science.8248784] [PMID: 8248784]
[135]
Jobsri, J.; Allen, A.; Rajagopal, D.; Shipton, M.; Kanyuka, K.; Lomonossoff, G.P.; Ottensmeier, C.; Diebold, S.S.; Stevenson, F.K.; Savelyeva, N. Plant virus particles carrying tumour antigen activate TLR7 and Induce high levels of protective antibody. PLoS One, 2015, 10(2), e0118096
[http://dx.doi.org/10.1371/journal.pone.0118096] [PMID: 25692288]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy