General Research Article

蛋白酶体抑制剂对AAV介导的视网膜双极细胞转导效率的影响。

卷 19, 期 6, 2019

页: [404 - 412] 页: 9

弟呕挨: 10.2174/1566523220666200211111326

价格: $65

摘要

背景:腺相关病毒(AAV)载体是将治疗性基因传递至视网膜的最有希望的载体。为了开发实用的基因传递工具,通常需要在特定细胞类型中实现高的AAV转导效率。在某些应用(例如光遗传疗法)中,需要在视网膜双极细胞中AAV介导的靶向表达,但是,内源性细胞特异性启动子驱动的转导效率通常较低。需要开发可以提高双极细胞中AAV转导效率的方法。 目的:该研究旨在检查蛋白酶体抑制剂对视网膜双极细胞中AAV介导的转导效率的影响。 方法:定量分析荧光报告蛋白的表达,以评估两种蛋白酶体抑制剂阿霉素和MG132对AAV介导的小鼠视网膜双极细胞转导效率的影响。 结果:我们的结果表明,阿霉素可以以剂量依赖性方式增加视网膜双极细胞中AAV的转导效率。我们还观察到了视网膜神经元中阿霉素介导的细胞毒性,但可通过右旋右雷佐生的联合应用减轻细胞毒性。与阿霉素(300μM)和右雷佐生共同应用三个月后,视网膜双极细胞中AAV的转导效率提高了33.8%,并且在视网膜的所有层中均未观察到细胞毒性。 结论:阿霉素可提高体内视网膜双极细胞的AAV转导效率。右雷佐生可以部分减轻阿霉素对视网膜神经元的潜在长期细胞毒性。阿霉素和右雷佐生的共同应用可作为潜在的佐剂方案,以提高视网膜双极细胞中AAV的转导效率。

关键词: 腺相关病毒,视网膜基因治疗,阿霉素,右雷佐生,视网膜,双极细胞。

图形摘要

[1]
Vandenberghe LH, Auricchio A. Novel adeno-associated viral vectors for retinal gene therapy. Gene Ther 2012; 19(2): 162-8.
[http://dx.doi.org/10.1038/gt.2011.151] [PMID: 21993172]
[2]
Dalkara D, Sahel JA. Gene therapy for inherited retinal degenerations. C R Biol 2014; 337(3): 185-92.
[http://dx.doi.org/10.1016/j.crvi.2014.01.002] [PMID: 24702845]
[3]
Buch PK, Bainbridge JW, Ali RR. AAV-mediated gene therapy for retinal disorders: from mouse to man. Gene Ther 2008; 15(11): 849-57.
[http://dx.doi.org/10.1038/gt.2008.66] [PMID: 18418417]
[4]
Wang D, Tai PWL, Gao G. Adeno-associated virus vector as a platform for gene therapy delivery. Nat Rev Drug Discov 2019; 18(5): 358-78.
[http://dx.doi.org/10.1038/s41573-019-0012-9] [PMID: 30710128]
[5]
Naso MF, Tomkowicz B, Perry WL, Strohl WR. Adeno-Associated Virus (AAV) as a vector for gene therapy. BioDrugs 2017; 31(4): 317-34.
[http://dx.doi.org/10.1007/s40259-017-0234-5] [PMID: 28669112]
[6]
Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vision Res 2008; 48(3): 353-9.
[http://dx.doi.org/10.1016/j.visres.2007.07.027] [PMID: 17923143]
[7]
McClements ME, MacLaren RE. Gene therapy for retinal disease. Transl Res 2013; 161(4): 241-54.
[http://dx.doi.org/10.1016/j.trsl.2012.12.007] [PMID: 23305707]
[8]
Boyd RF, Sledge DG, Boye SL, et al. Photoreceptor-targeted gene delivery using intravitreally administered AAV vectors in dogs. Gene Ther 2016; 23(2): 223-30.
[http://dx.doi.org/10.1038/gt.2015.96] [PMID: 26467396]
[9]
Macé E, Caplette R, Marre O, et al. Targeting channelrhodopsin-2 to ON-bipolar cells with vitreally administered AAV Restores on and off visual responses in blind mice. Mol Ther 2015; 23(1): 7-16.
[http://dx.doi.org/10.1038/mt.2014.154]
[10]
Lu Q, Ganjawala TH, Ivanova E, Cheng JG, Troilo D, Pan ZH. AAV-mediated transduction and targeting of retinal bipolar cells with improved mGluR6 promoters in rodents and primates. Gene Ther 2016; 23(8-9): 680-9.
[http://dx.doi.org/10.1038/gt.2016.42] [PMID: 27115727]
[11]
Hanlon KS, Chadderton N, Palfi A, et al. A novel retinal ganglion cell promoter for utility in AAV vectors. Front Neurosci 2017; 11: 521.
[http://dx.doi.org/10.3389/fnins.2017.00521] [PMID: 28983234]
[12]
Chaffiol A, Caplette R, Jaillard C, et al. A new promoter allows optogenetic vision restoration with enhanced sensitivity in macaque retina. Mol Ther 2017; 25(11): 2546-60.
[http://dx.doi.org/10.1016/j.ymthe.2017.07.011]
[13]
Sun X, Pawlyk B, Xu X, et al. Gene therapy with a promoter targeting both rods and cones rescues retinal degeneration caused by AIPL1 mutations. Gene Ther 2010; 17(1): 117-31.
[http://dx.doi.org/10.1038/gt.2009.104] [PMID: 19710705]
[14]
Khani SC, Pawlyk BS, Bulgakov OV, et al. AAV-mediated expression targeting of rod and cone photoreceptors with a human rhodopsin kinase promoter. Invest Ophthalmol Vis Sci 2007; 48(9): 3954-61.
[http://dx.doi.org/10.1167/iovs.07-0257] [PMID: 17724172]
[15]
Jüttner J, Szabo A, Gross-Scherf B, et al. Targeting neuronal and glial cell types with synthetic promoter AAVs in mice, non-human primates and humans. Nat Neurosci 2019; 22(8): 1345-56.
[http://dx.doi.org/10.1038/s41593-019-0431-2] [PMID: 31285614]
[16]
Lagali PS, Balya D, Awatramani GB, et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 2008; 11(6): 667-75.
[http://dx.doi.org/10.1038/nn.2117] [PMID: 18432197]
[17]
Doroudchi MM, Greenberg KP, Liu J, et al. Virally delivered channelrhodopsin-2 safely and effectively restores visual function in multiple mouse models of blindness. Mol Ther 2011; 19(7): 1220-9.
[http://dx.doi.org/10.1038/mt.2011.69]
[18]
Cronin T, Vandenberghe LH, Hantz P, et al. Efficient transduction and optogenetic stimulation of retinal bipolar cells by a synthetic adeno-associated virus capsid and promoter. EMBO Mol Med 2014; 6(9): 1175-90.
[http://dx.doi.org/10.15252/emmm.201404077] [PMID: 25092770]
[19]
van Wyk M, Pielecka-Fortuna J, Löwel S, Kleinlogel S. Restoring the ON switch in blind retinas: Opto-mGluR6, a next-generation, cell-tailored optogenetic tool. PLoS Biol 2015; 13(5)e1002143
[http://dx.doi.org/10.1371/journal.pbio.1002143] [PMID: 25950461]
[20]
Klapper SD, Swiersy A, Bamberg E, Busskamp V. Biophysical properties of optogenetic tools and their application for vision restoration approaches. Front Syst Neurosci 2016; 10: 74.
[http://dx.doi.org/10.3389/fnsys.2016.00074] [PMID: 27642278]
[21]
Busskamp V, Picaud S, Sahel JA, Roska B. Optogenetic therapy for retinitis pigmentosa. Gene Ther 2012; 19(2): 169-75.
[http://dx.doi.org/10.1038/gt.2011.155] [PMID: 21993174]
[22]
Pan ZH, Lu Q, Bi A, Dizhoor AM, Abrams GW. Optogenetic Approaches to restoring vision. Annu Rev Vis Sci 2015; 1: 185-210.
[http://dx.doi.org/10.1146/annurev-vision-082114-035532] [PMID: 28532375]
[23]
Kim DS, Matsuda T, Cepko CL. A core paired-type and POU homeodomain-containing transcription factor program drives retinal bipolar cell gene expression. J Neurosci 2008; 28(31): 7748-64.
[http://dx.doi.org/10.1523/JNEUROSCI.0397-08.2008] [PMID: 18667607]
[24]
Powell SK, Rivera-Soto R, Gray SJ. Viral expression cassette elements to enhance transgene target specificity and expression in gene therapy. Discov Med 2015; 19(102): 49-57.
[PMID: 25636961]
[25]
Nonnenmacher M, Weber T. Intracellular transport of recombinant adeno-associated virus vectors. Gene Ther 2012; 19(6): 649-58.
[http://dx.doi.org/10.1038/gt.2012.6] [PMID: 22357511]
[26]
Dalkara D, Kolstad KD, Caporale N, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther 2009; 17(12): 2096-102.
[http://dx.doi.org/10.1038/mt.2009.181] [PMID: 19672248]
[27]
Ding W, Zhang L, Yan Z, Engelhardt JF. Intracellular trafficking of adeno-associated viral vectors. Gene Ther 2005; 12(11): 873-80.
[http://dx.doi.org/10.1038/sj.gt.3302527] [PMID: 15829993]
[28]
Douar AM, Poulard K, Stockholm D, Danos O. Intracellular trafficking of adeno-associated virus vectors: routing to the late endosomal compartment and proteasome degradation. J Virol 2001; 75(4): 1824-33.
[http://dx.doi.org/10.1128/JVI.75.4.1824-1833.2001] [PMID: 11160681]
[29]
Petrs-Silva H, Dinculescu A, Li Q, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther 2009; 17(3): 463-71.
[http://dx.doi.org/10.1038/mt.2008.269]
[30]
Kay CN, Ryals RC, Aslanidi GV, et al. Targeting photoreceptors via intravitreal delivery using novel, capsid-mutated AAV vectors. PLoS One 2013; 8(4)e62097
[http://dx.doi.org/10.1371/journal.pone.0062097] [PMID: 23637972]
[31]
Petrs-Silva H, Dinculescu A, Li Q, et al. Novel properties of tyrosine-mutant AAV2 vectors in the mouse retina. Mol Ther 2011; 19(2): 293-301.
[http://dx.doi.org/10.1038/mt.2010.234]
[32]
Han YH, Moon HJ, You BR, Park WH. The effect of MG132, a proteasome inhibitor on HeLa cells in relation to cell growth, reactive oxygen species and GSH. Oncol Rep 2009; 22(1): 215-21.
[PMID: 19513526]
[33]
Guo N, Peng Z. MG132, a proteasome inhibitor, induces apoptosis in tumor cells. Asia Pac J Clin Oncol 2013; 9(1): 6-11.
[http://dx.doi.org/10.1111/j.1743-7563.2012.01535.x] [PMID: 22897979]
[34]
Kisselev AF, Goldberg AL. Proteasome inhibitors: from research tools to drug candidates. Chem Biol 2001; 8(8): 739-58.
[http://dx.doi.org/10.1016/S1074-5521(01)00056-4] [PMID: 11514224]
[35]
Liu J, Zheng H, Tang M, Ryu YC, Wang X. A therapeutic dose of doxorubicin activates ubiquitin-proteasome system-mediated proteolysis by acting on both the ubiquitination apparatus and proteasome. Am J Physiol Heart Circ Physiol 2008; 295(6): H2541-50.
[http://dx.doi.org/10.1152/ajpheart.01052.2008] [PMID: 18978187]
[36]
Ortiz-Lazareno PC, Bravo-Cuellar A, Lerma-Díaz JM, et al. Sensitization of U937 leukemia cells to doxorubicin by the MG132 proteasome inhibitor induces an increase in apoptosis by suppressing NF-kappa B and mitochondrial membrane potential loss. Cancer Cell Int 2014; 14(1): 13.
[http://dx.doi.org/10.1186/1475-2867-14-13] [PMID: 24495648]
[37]
Yan Z, Zak R, Luxton GW, Ritchie TC, Bantel-Schaal U, Engelhardt JF. Ubiquitination of both adeno-associated virus type 2 and 5 capsid proteins affects the transduction efficiency of recombinant vectors. J Virol 2002; 76(5): 2043-53.
[http://dx.doi.org/10.1128/jvi.76.5.2043-2053.2002] [PMID: 11836382]
[38]
Yan Z, Zak R, Zhang Y, et al. Distinct classes of proteasome-modulating agents cooperatively augment recombinant adeno-associated virus type 2 and type 5-mediated transduction from the apical surfaces of human airway epithelia. J Virol 2004; 78(6): 2863-74.
[http://dx.doi.org/10.1128/JVI.78.6.2863-2874.2004] [PMID: 14990705]
[39]
Zhang T, Hu J, Ding W, Wang X. Doxorubicin augments rAAV-2 transduction in rat neuronal cells. Neurochem Int 2009; 55(7): 521-8.
[http://dx.doi.org/10.1016/j.neuint.2009.05.005] [PMID: 19450628]
[40]
Gammella E, Maccarinelli F, Buratti P, Recalcati S, Cairo G. The role of iron in anthracycline cardiotoxicity. Front Pharmacol 2014; 5: 25.
[http://dx.doi.org/10.3389/fphar.2014.00025] [PMID: 24616701]
[41]
Kwok JC, Richardson DR. The cardioprotective effect of the iron chelator dexrazoxane (ICRF-187) on anthracycline-mediated cardiotoxicity. Redox Rep 2000; 5(6): 317-24.
[http://dx.doi.org/10.1179/135100000101535898] [PMID: 11140743]
[42]
Ichikawa Y, Ghanefar M, Bayeva M, et al. Cardiotoxicity of doxorubicin is mediated through mitochondrial iron accumulation. J Clin Invest 2014; 124(2): 617-30.
[http://dx.doi.org/10.1172/JCI72931] [PMID: 24382354]
[43]
Zhao L, Dai J, Wu Q. Autophagy-like processes are involved in lipid droplet degradation in Auxenochlorella protothecoides during the heterotrophy-autotrophy transition. Front Plant Sci 2014; 5: 400.
[http://dx.doi.org/10.3389/fpls.2014.00400] [PMID: 25177326]
[44]
Jeon CJ, Strettoi E, Masland RH. The major cell populations of the mouse retina. J Neurosci 1998; 18(21): 8936-46.
[http://dx.doi.org/10.1523/JNEUROSCI.18-21-08936.1998] [PMID: 9786999]
[45]
Kumar S, Marfatia R, Tannenbaum S, Yang C, Avelar E. Doxorubicin-induced cardiomyopathy 17 years after chemotherapy. Tex Heart Inst J 2012; 39(3): 424-7.
[PMID: 22719160]
[46]
Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991; 266(12): 1672-7.
[http://dx.doi.org/10.1001/jama.1991.03470120074036] [PMID: 1886191]
[47]
Longhi A, Ferrari S, Bacci G, Specchia S. Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs 2007; 18(6): 737-44.
[http://dx.doi.org/10.1097/CAD.0b013e32803d36fe] [PMID: 17762406]
[48]
Lopes MA, Meisel A, Dirnagl U, Carvalho FD, Bastos MdeL. Doxorubicin induces biphasic neurotoxicity to rat cortical neurons. Neurotoxicology 2008; 29(2): 286-93.
[http://dx.doi.org/10.1016/j.neuro.2007.12.003] [PMID: 18258305]
[49]
Muindi JR, Sinha BK, Gianni L, Myers CE. Hydroxyl radical production and DNA damage induced by anthracycline-iron complex. FEBS Lett 1984; 172(2): 226-30.
[http://dx.doi.org/10.1016/0014-5793(84)81130-8] [PMID: 6086388]
[50]
Buss JL, Hasinoff BB. The one-ring open hydrolysis product intermediates of the cardioprotective agent ICRF-187 (dexrazoxane) displace iron from iron-anthracycline complexes. Agents Actions 1993; 40(1-2): 86-95.
[http://dx.doi.org/10.1007/BF01976756] [PMID: 8147274]
[51]
Imondi AR, Della Torre P, Mazué G, et al. Dose-response relationship of dexrazoxane for prevention of doxorubicin-induced cardiotoxicity in mice, rats, and dogs. Cancer Res 1996; 56(18): 4200-4.
[PMID: 8797592]
[52]
Octavia Y, Tocchetti CG, Gabrielson KL, Janssens S, Crijns HJ, Moens AL. Doxorubicin-induced cardiomyopathy: from molecular mechanisms to therapeutic strategies. J Mol Cell Cardiol 2012; 52(6): 1213-25.
[http://dx.doi.org/10.1016/j.yjmcc.2012.03.006] [PMID: 22465037]
[53]
Kim SY, Kim SJ, Kim BJ, et al. Doxorubicin-induced reactive oxygen species generation and intracellular Ca2+ increase are reciprocally modulated in rat cardiomyocytes. Exp Mol Med 2006; 38(5): 535-45.
[http://dx.doi.org/10.1038/emm.2006.63] [PMID: 17079870]
[54]
Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998; 339(13): 900-5.
[http://dx.doi.org/10.1056/NEJM199809243391307] [PMID: 9744975]
[55]
Sanlioglu S, Engelhardt JF. Cellular redox state alters recombinant adeno-associated virus transduction through tyrosine phosphatase pathways. Gene Ther 1999; 6(8): 1427-37.
[http://dx.doi.org/10.1038/sj.gt.3300967] [PMID: 10467367]
[56]
Hasinoff BB, Kuschak TI, Yalowich JC, Creighton AM. A QSAR study comparing the cytotoxicity and DNA topoisomerase II inhibitory effects of bisdioxopiperazine analogs of ICRF-187 (dexrazoxane). Biochem Pharmacol 1995; 50(7): 953-8.
[http://dx.doi.org/10.1016/0006-2952(95)00218-O] [PMID: 7575679]
[57]
Deng S, Yan T, Nikolova T, et al. The catalytic topoisomerase II inhibitor dexrazoxane induces DNA breaks, ATF3 and the DNA damage response in cancer cells. Br J Pharmacol 2015; 172(9): 2246-57.
[http://dx.doi.org/10.1111/bph.13046] [PMID: 25521189]
[58]
Hasinoff BB, Abram ME, Chee GL, et al. The catalytic DNA topoisomerase II inhibitor dexrazoxane (ICRF-187) induces endopolyploidy in Chinese hamster ovary cells. J Pharmacol Exp Ther 2000; 295(2): 474-83.
[PMID: 11046078]
[59]
Hensley ML, Hagerty KL, Kewalramani T, et al. American Society of Clinical Oncology 2008 clinical practice guideline update: use of chemotherapy and radiation therapy protectants. J Clin Oncol 2009; 27(1): 127-45.
[http://dx.doi.org/10.1200/JCO.2008.17.2627] [PMID: 19018081]
[60]
Reichardt P, Tabone MD, Mora J, Morland B, Jones RL. Risk-benefit of dexrazoxane for preventing anthracycline-related cardiotoxicity: re-evaluating the European labeling. Future Oncol 2018; 14(25): 2663-76.
[http://dx.doi.org/10.2217/fon-2018-0210] [PMID: 29747541]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy